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Infection and inflammation of the male reproductive tract are relevant causes of infertility.

Inflammatory damage occurs in the special immunosuppressive microenvironment

of the testis, a hallmark termed testicular immune privilege, which allows tolerance

to neo-antigens from developing germ cells appearing at puberty, long after the

establishment of systemic immune tolerance. Experimental autoimmune orchitis (EAO)

is a well-established rodent model of chronic testicular inflammation and organ specific

autoimmunity that offers a valuable in vivo tool to investigate the pathological and

molecular mechanisms leading to the breakdown of the testicular immune privilege.

The disease is characterized by the infiltration of the interstitium by immune cells

(mainly macrophages, dendritic cells, and T cells), formation of autoantibodies against

testicular antigens, production of pro-inflammatory mediators such as NO, MCP1, TNFα,

IL6, or activins and dysregulation of steroidogenesis with reduced levels of serum

testosterone. EAO leads to sloughing of germ cells, atrophic seminiferous tubules and

fibrotic remodeling, parameters all found similarly to changes in human biopsies from

infertile patients with inflammatory infiltrates. Interestingly, testosterone supplementation

during the course of EAO leads to expansion of the regulatory T cell population and

inhibition of disease development. Knowledge of EAO pathogenesis aims to contribute

to a better understanding of human testicular autoimmune disease as an essential

prerequisite for improved diagnosis and treatment.

Keywords: testicular inflammation, autoimmunity, experimental autoimmune orchitis (EAO), infertility, testis

immunoregulation

INTRODUCTION

Infection and inflammation of the male reproductive tract are relevant causes of infertility
with a prevalence of 6–10% (1, 2). Bacterial infections eliciting epididymo-orchitis are either
sexually transmitted or originate from urinary infections often resulting from ascending canalicular
infections of the male excurrent ducts. Also, a number of systemically transmitted viruses (mumps
virus, HIV and ZIKV virus, among others) are able to induce orchitis. Inflammation of the male
reproductive tract is associated not only with infections but also with aging and diseases that
damage germ cells (GC) including testis cancer, obesity, cryptorchidism and systemic autoimmune
diseases, as well as trauma and toxic agents (3–7).
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Autoimmune infertility has long been postulated as one of the
causes of infertility, even though a well-defined entity has not yet
been established. However, it is relevant that focal lymphocytic
infiltrations have been detected in 25–30% of testicular biopsies
from infertile patients (8, 9). Anti-sperm antibodies (ASA) have
been mainly detected in patients with obstructive azoospermia
(10). However, there is so far no close association between ASA
and male genital tract inflammation (11, 12) except for some
reports associating ASA with idiopathic granulomatous orchitis
(13, 14) and a history of epididymitis/orchitis (15). Our own
studies reported significantly elevated titers of autoantibodies
against disulphide isomerase family A, member 3 (ER-60)
in sera from infertile azoospermic patients with histologically
confirmed low-grade testicular inflammation (16). Further, the
major evidence for an autoimmune basis of human orchitis
comes from patients with autoimmune polyendocrine syndrome
APS-type 1 caused by AIRE gene mutation which induces testis
impairment and antibodies to Leydig cell antigens (17).

Experimental autoimmune orchitis (EAO) is a
well-established rodent model of organ specific autoimmunity
that provides a very valuable in vivo tool to investigate
pathological, immune and molecular mechanisms involved in
chronic testicular inflammation.

EXPERIMENTAL MODELS OF
AUTOIMMUNE ORCHITIS

Research on spontaneous autoimmune orchitis in mink (18,
19) and rodents after vasectomy (20), thymectomy (21, 22), or
genetic manipulation (23) have constructed a body of evidence
for better understanding of systemic and peripheral tolerance.
Studies in classical rodent EAO models induced by antigen
immunization have also clarified pathological mechanisms of
autoimmune-based testicular inflammation [reviewed in (8, 24)].

The first report on a classical EAO model was published by
Voisin et al. (25) who injected testicular tissue and adjuvants into
guinea pigs. However, it was Freund et al. (26) who clarified the
organ and species specificity of the model. In a murine model,
EAO susceptibility depends of genetic background of each strain
(27). Further progress on the pathogenesis of EAO has come
from mouse and rat models, initiated by Tung and colleagues
(28) and Doncel et al. (29), respectively. A description of the
histopathology, mechanisms of disease initiation and testicular
inflammation are discussed below.

Current rat and mouse EAO models utilizing testicular
homogenate in complete Freund’s adjuvant plus pertussis toxin
(8), vasectomized mouse model (20), and mouse EAO model
without adjuvants (30) have provided novel insights into
orchitogenic antigens. Most of these antigens, identified by sera
obtained from animals with EAO, are not testis-specific except
zonadhesin or outer dense fiber major protein 2 (30–32).

IMMUNE PRIVILEGE OF THE TESTIS

Testicular homeostasis that protects GC from immune attack
is known to be maintained by structural components such as

the blood-testis barrier (BTB) and systemic and local tolerance
mechanisms. In contrast with the previous testis antigen
sequestration paradigm, some meiotic germ cell antigens, located
in the adluminal compartment of the seminiferous tubules (ST)
behind the BTB, are continuously released into the interstitial
space despite an intact BTB. Systemic tolerance involving
antigen-specific regulatory T cells (Tregs) is maintained in
peripheral lymphoid organs by continuously egressing germ
cell antigens via transcytosis in Sertoli cells (33). Originally,
the testis was defined as an immune-privileged site since it
was demonstrated that foreign-tissue grafts placed within the
testis are tolerated and survive for several days longer than
when these grafts are implanted in conventional body sites
(34). Currently, testicular immune privilege is understood as the
coordinated regulation of immunologic components to protect
GC, including active processes associated with Sertoli cells,
peritubular cells, Leydig cells, tolerogenic antigen-presenting
cells, T cells and the production of immune-regulatory factors
such as TGFβ, IL10, and activin [reviewed in (35–37)]. Several
reviews suggest galectin-1 (Lgals1) as a putative candidate
involved in the maintenance of testis immune privilege, mainly
based on its expression by Sertoli cells (38–40). However, a
significant reduction in the incidence and severity of EAO
was observed in Lgals1−/− deficient vs. wild-type mice (41)
adding a note of caution to this discussion. Indoleamine-2,3-
dioxygenase (IDO) expression in porcine Sertoli cells and the
ability of these cells to restore immune tolerance in NOD mice
(42) point to a role of IDO in testis immune privilege. Current
findings from functional in vivo experimental studies confirm
that tryptophan metabolism modulates inflammatory immune
response to spermatic antigens (43).

The BTB is formed by cell junctions of adjacent Sertoli cells
at the base of the ST. It is constituted by multiple cell junction
types including tight junctions, basal ectoplasmic specializations,
gap junctions and desmosome-like junctions. Various integral
tight junction proteins have been described between adjacent
Sertoli cells with occludin and claudin 11 being the most
important for barrier integrity (44). These proteins link to the
actin cytoskeleton via cytoplasmic plaque proteins including
zonula occludens-1,−2, and−3, and provide links to other
junctional types (gap-, adherens-) in the BTB (45). Ectoplasmic
specialization-mediated adhesion is largely constituted by the
cadherin-catenin multifunctional complex (46). Gap junctions
are cell-cell channels that allow diffusion of metabolites, second
messengers, ions, and other molecules smaller than 1 kDa, being
Cx43 the dominant gap junction protein within the ST (47).
Testosterone, nitric oxide (NO), cytokines and growth factors
regulate the stability or localization of proteins at the BTB (48–
50). The BTB is a dynamic ultrastructure that transiently “opens”
and “closes” during the movement of preleptotene/leptotene
spermatocytes to the adluminal compartment without causing
failure of BTB function. As leptotene spermatocytes transit
toward the tubule lumen, junction disassembly ahead of
spermatocytes is coordinated by junction assembly behind these
GC so that the two spermatogenic events are synchronized (46).
Moreover, the presence of specific transporters located along the
basolateral membrane of Sertoli cells that allow the passage of
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selective molecules while restricting the entry of others, makes
the BTB a physiological barrier crucial for the development and
maturation of GC.

HISTOPATHOLOGY AND MECHANISMS OF
TESTICULAR INFLAMMATION IN RODENT
EAO MODEL

Testis histopathology in EAO is characterized by an increase
in the number of dendritic cells (DC), macrophages (Mφ),
mast cells and T lymphocytes (L) distributed in the interstitium
close to ST, exhibiting different degrees of GC sloughing
(mainly spermatids and spermatocytes). Germ cell apoptosis
and multinucleated spermatids in the lumen of ST as well as
vacuolization in the cytoplasm of Sertoli cell are frequently
observed. Damage of ST is initially focal, followed by
development of severe orchitis showing aspermatogenesis
and fibrosis of the wall of most ST (Figure 1). L and Mφ

distributed in the interstitium might enter the ST in mice as
well as in humans in contrast to rats. Large granulomae are
frequently observed. Hyperplasia and hypertrophy of Leydig
cells and an increased number of small blood vessels are also
detected (Figure 2).

Blood Testis Barrier
During testicular inflammation BTB integrity is impaired—
denoted by increased permeability to tracers (52, 53).
Concomitantly, changes in expression of cell junction adhesion
molecules were detected. A decrease in occludin and Cx43
expression and an increase in the expression of N-cadherin and
α-catenin were observed in testis of rats with EAO (53, 54).

Increased levels of inflammatory cytokines in the EAO testis
alter the normal function of the BTB. Local administration of
IL17A into the rat testis increases BTB permeability by reducing
occludin expression and delocalization of claudin-11 (55). IL6
impairs the Sertoli cell tight junction barrier in normal rats by
perturbing the MAPK14 signaling pathway and inhibiting BTB-
constituent protein degradation (54, 56). TNFα administered
locally to adult rat testis inhibits the steady-state protein levels of
occludin, ZO-1, and N-cadherin altering the BTB function (57).

Dendritic Cells
Thematuration state of DC cells is regarded as a control point for
the induction of peripheral tolerance or autoimmunity. Purified
DC from EAO rat testes demonstrated significantly upregulated
expression of the chemokine receptor CCR7, which is responsible
for the migration of DC to the draining lymph nodes (58).
Moreover, the expression of IL10 and IL12p35 transcripts were
detectable only in DC from inflamed testes, pointing to a
mature immunogenic state before imminent migration to the
lymph nodes. DC in draining lymph nodes from rats with
EAO are mature, present antigens to T cells, and stimulate
an autoimmune response against testicular antigens, thereby
causing immunological disturbances of the testis (59).

Macrophages
A large population of resident Mφ subsets in the interstitium
of normal testis is in close association with Leydig cells (60).
Testicular Mφ modulate spermatogenesis, steroidogenesis and
also BTB permeability in the normal testis (61). Once testicular
immune privilege is disrupted by immunization with spermatic
antigens, the number of Mφ progressively increases in the
testicular interstitium. Chemokines, mainly MCP1, acting on
endothelial cells, facilitate infiltration into the testis of CD68+

CD163− monocytes from circulation, expressing the MCP1
receptor CCR2 (62, 63). Most of these infiltrating Mφ express
MHCII molecules and secrete pro-inflammatory mediators,
mainly TNFα, IL6, and NO involved in BTB impairment,
lymphocyte infiltration, and germ cell apoptosis (53, 64–66).
Depletion of Mφ by in vivo administration of liposomes
containing clodronate significantly reduced the incidence and
severity of EAO, thereby highlighting the requirement of these
cells for disease induction (63).

T Cells
From the early focal EAO stage onwards, a large increase in the
number of CD4+ and CD8+ T cells occurs in the interstitium in
association with increasing damage of ST (67). Interestingly, in a
mouse EAO testis, a population of double positive CD4+CD8+

T cells was detected (68). However, the function of these cells
in the periphery is not very well-investigated. TNFα and IFNg-
producing Th1 cells and IL17-producing Th17 cells govern
the early stage of EAO while CD8+ T cells (TNFα+, IFNγ+,
and IL17+) lead the disease to its chronic severe stage (69).
Besides being the main source of Th1 and Th17 cytokines in
the chronically inflamed testis, CD8+ cells are the main subset
expressing the CD25 activation marker (67). Together with the
influx of auto-pathogenic T cells, CD4+ and CD8+ cells with
regulatory phenotype (Tregs) also accumulate in EAO testis
and in the lymph nodes draining the testis (TLN) (67, 70).
These subsets show dynamic behavior during EAO progression;
interstitial CD4+Foxp3+ Tregs reach a maximum number at
the early stage of EAO and then decline at the chronic stage.
However, the number of CD8+Foxp3+ subset that increases to a
lesser extent than their CD4+ Foxp3+ counterparts during EAO
onset remains stable throughout disease. The regulatory function
of this subset was not evaluated. Most CD4+ Foxp3+ Tregs from
TLN display an antigen-experienced phenotype and also express
TGF-β. In vitro suppression studies showed that CD4+Foxp3+

Tregs derived from EAO TLN suppress T cell proliferation more
efficiently than their counterparts derived from normal TLN,
suggesting that EAO Tregs are over-activated by inflammation
(70). However, Tregs present in the testicular inflammatory
microenvironment fail to counteract deleterious autoimmune
effects on GC; consequently, tissue damage progresses (71).

Germ Cells
In EAO testis, GC death occurs through apoptotic mechanisms
involving FasL-Fas, TNFα-TNFR, IL6-IL6R, and NO-NOS
systems, via autocrine or paracrine pathways. The number
of apoptotic GC sloughed from the seminiferous epithelium
expressing Fas, TNFR, or IL6R increases with progression of
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FIGURE 1 | Testicular histology in normal (A) and severe EAO (B) mouse testis. Typical histopathological changes include infiltration of the interstitium by immune

cells, sloughing of germ cells leading to aspermatogenesis, vacuolization of Sertoli cells cytoplasm, thickening of lamina propria, extensive necrosis, and fibrosis of

seminiferous tubules (magnification × 200).

FIGURE 2 | Distribution of immune cells in a rodent testis section under normal (A) and inflammatory conditions (EAO) (B). In EAO, dendritic cells (DC), macrophages

(MΦ), T cells, regulatory T cells (Treg), and mast cells (MC) are increased in number and distributed in the interstitium, mainly in the peritubular area of damaged

seminiferous tubules (ST). Some MC are located in a close proximity to peritubular cells (PC). Impairment of blood testis barrier (BTB) and disturbances of

spermatogenesis (presence of apoptotic germ cells in the ST lumen) are illustrated; BV, blood vessel; v, vacuole in Sertoli cell cytoplasm [modified from (51)].

testicular damage (66, 72, 73). With the influx of T cells
expressing FasL, the content of the soluble form of FasL increases
in the interstitial fluid. This factor is capable of crossing the
altered BTB in inflammation, and triggers Fas-sensitive germ cell
apoptosis (74). TNFα produced in large quantities by resident
Mφ, infiltrating monocytes, and also by T cells induces apoptosis
of spermatocytes and spermatids expressing TNFR1 (66, 72, 74).
IL6 secreted by infiltrating Mφ, Leydig, and peritubular cells
activates executioner caspase-3, resulting in apoptosis of IL6R+

GC (73).
An oxidative microenvironment is generated in EAO testis

by high levels of NO, produced mainly by both resident
and infiltrating Mφ (65). NO reaches ST and induces basal
germ cell apoptosis by activating the mitochondrial pathway.
Spermatogonia are likely sensitive to oxidative stress generated
by NO since DETA-NO, a compound that releases NO, induces
cell cycle arrest and apoptosis in GC-1 cell line (75).

Apoptosis in EAO testis occurs via a cytokine-dependent
amplification loop resulting from the activation of death
receptors and oxidative damage of GC. This phenomenon is
sustained by the ongoing influx of immune cells into the
testicular interstitium.

FIBROTIC RESPONSE—INVOLVEMENT OF
ACTIVIN A

In severe EAO fibrotic remodeling is a hallmark of the disease.
Fibrotic changes are initiated around the ST and show excessive
production and deposition of extracellular matrix proteins such
as fibronectin and collagens and a thickening of the lamina
propria. The fibrotic alterations are accompanied by changes in
the morphological appearance and thickening of the α-smooth
muscle actin layer in the peritubular cells, belonging to the
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population of myofibroblasts in the testis (68, 76). Expression
of fibronectin correlates positively with the disease damage
score and fibrosis. Moreover, there is strong correlation between
activin A concentrations and fibrotic damage in EAO testis (76).
These changes show—also in human biopsies from patients with
Sertoli cell only syndrom—a clear relationship between activin
A expression—and lymphocytic infiltrates (76). Stimulation of
peritubular cells by activin A increased levels of fibronectin
and collagen I and IV implicating activin A as an important
mediator of fibrotic remodeling during testicular inflammation
(76). This underlines a function for activin A beside its classical
endocrine function in inducing follicle stimulating hormone
(FSH) secretion from the pituitary but increasingly as an
important regulator of inflammation and fibrosis in many organs
(77). Activin A is broadly expressed in testicular cells and
stimulation of cultured Sertoli cells with TNFα leads to elevated
expression of activin A (76). However, elevating circulating levels
of follistatin, an endogenous antagonist of the activins prior to
EAO induction was not sufficient to fully inhibit the disease
development, although the severity of the disease and the extent
of the fibrotic damage was reduced (52).

HORMONAL REGULATION DURING
INFLAMMATORY PHASE OF THE DISEASE

The hormonal status of EAO animals shows disturbances of
the hypothalamic-testicular axis at several levels. In EAO rats
the levels of FSH are increased while the concentration of
testosterone in serum is significantly downregulated (78–80).
In contrast, the levels of intratesticular testosterone were
either upregulated or unchanged, depending on the scientific
report (78–80). Earlier in vitro experiments demonstrated that
basal and human chorionic gonadotropin (hCG) stimulated
testosterone production were significantly elevated in EAO testis
(81). Moreover, Leydig cells from EAO testis in vitro showed
an increased basal and hCG stimulated testosterone production
compared to cells from control animals. Stimulation with TNFα
inhibited this effect (72). Interestingly, testosterone substitution
of EAO rats demonstrated a reduction of macrophage
accumulation and CD4+ T cell influx at the testicular level, while
the numbers of regulatory CD4+CD25+Foxp3+ T cells were
increased. Testosterone treatment induced a strong increase in
the number of regulatory T cells in vivo and in vitro (80, 82). Of
note, androgens through androgen receptor modulate expression
of Foxp3 (83) (Table 1).

INVOLVEMENT OF THE EPIDIDYMIS

In EAO mice, the epididymis underwent a region-specific
immune response positively correlating to the severity of
orchitis (28, 84). Similar to the observed differential immune
responsiveness in a model of acute bacterial epididymitis (85, 86),
the distally located cauda epididymidis and vas deferens show
a severe immune reaction in EAO mice characterized by an
upregulated expression of cytokines and immunomodulatory
factors (Tgfb1, Ccl2, Il1b, Il10, Tnf, Foxp3, Ido1), immune

TABLE 1 | Pathological events leading to development of experimental

autoimmune orchitis (EAO).

Structural and functional

changes in Sertoli cells

Impairment of BTB structure and function by the

action of pro-inflammatory cytokines mainly

secreted by immune cells

Vacuolization of Sertoli cell cytoplasm

Immunopathology Testicular dendritic cells (DC) become mature,

migrate to the testis-draining lymph nodes (TLN)

and activate T cells

Inflammatory macrophages (MΦ), DC, effector T

lymphocytes (Th1, Th17, and CD8+) and mast cells

(MC), infiltrate the testis

CD4+ Foxp3+ regulatory T lymphocytes (Tregs)

actively accumulate within the testis and TLN

Small vessels increase in number and chemokines

enhance immune cell infiltration

Tregs present in the testis fail to counterbalance

immunoreactions that cause deleterious effects on

germ cells (GC)

Antigens released from damaged seminiferous

tubules (ST) amplify the autoimmune response

leading to continuous antigen presentation to T

lymphocytes in TLN (chronification of orchitis)

Disturbances of

spermatogenesis

GC apoptosis and sloughing in the tubular lumen

mainly induced by the action of TNFα, IL6, NO, and

Fas ligand

Hormonal changes Impairment of androgen production

Chronic phase of disease Aspermatogenesis, ST atrophy, fibrosis and

thickening of ST wall

Infertility

cell infiltration, fibrosis and epithelial damage resulting in
a loss of tissue integrity and subsequent aggregation of
displaced spermatozoa within the interstitium (84). The proximal
regions (initial segment and caput), in contrast, do not reveal
histopathological alterations or an upregulated expression of
cytokines, although these regions are more densely vascularized
and harbor a high number of resident immune cells (87, 88). It
needs to be noted though that data on epididymal reactions in
EAO models are very scarce and thus the underlying molecular
pathomechanisms remain unknown.

DISCUSSION

In summary, rodent models of EAO offer a valuable tool
to discover the decisive mechanisms for the development
of autoimmune-based epididymo-testicular inflammation.
However, caution is necessary in extrapolating the data from
rodent models to human due to several differences at the
immunological and cellular level. Silent asymptomatic testicular
inflammation in human is rather difficult to diagnose and
treatment hampered due to missing non-invasive diagnostic
tools. Possible therapeutical interventions and the development
of new non-invasive diagnostic tools, such as serum assays
may offer potential developments in the field gathered from
the animal model. Several previous studies were already
successfully dealing with the therapeutic inhibition of EAO by
using e.g., depletion of Mφ (63), blockade of pro-inflammatory
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mediators (41, 52, 64, 89) or administration of testosterone (80).
Supplementation of reduced testosterone levels in EAO rats led
to inhibition of disease development and suggests testosterone
as an immunoregulatory and immunosuppressive factor during
testicular inflammation (80). Further studies are necessary to
define the biomarkers and possible targets of autoimmune-based
testicular inflammation.

MAIN OUTSTANDING QUESTIONS IN THE
FIELD

To further our understanding of the immunopathology of
autoimmune based impairment of fertility, the following aspects
would warrant attention in future research: (a) the identification
of molecular mechanism that trigger the autoimmune attack
in the human testis without obvious presence of pathogens,
(b) the evaluation of specific genetic predisposition in humans
responsible for susceptibility to autoimmune diseases of the
gonads, (c) elucidation of the common features of testis

autoimmunity with autoimmune diseases of other organs, mainly
in relation to Tregs behavior, and (d) the role of specific
testicular somatic cells beside immune cells in the development
of the disease.
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