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Systemic juvenile idiopathic arthritis (JIA) and adult-onset Still’s disease (AOSD) are
systemic inflammatory disorders that manifest as high-spiking fever, joint pain,
evanescent skin rash, and organomegaly. Their pathogenesis is unclear, but
inflammation is triggered by activation of the innate immune system with aberrant
production of proinflammatory cytokines. Along with extrinsic factors, intrinsic pathways
can trigger an unexpected immune response. Damage-associated molecular patterns
(DAMPs) induce the activation of innate immune cells, leading to sterile inflammation in
systemic JIA and AOSD. These endogenous proteins interact with Toll-like receptors
(TLRs), which are pattern recognition receptors, and mediate immune signaling following
stimulation by pathogen-associated molecular patterns and DAMPs. Several DAMPs,
such as S100 proteins, play a role in the development or severity of systemic JIA and
AOSD, in which their interactions with TLRs are altered. Also, the expression levels of
genes encoding DAMPs contribute to the susceptibility to systemic JIA and AOSD.
Herein, we review reports that TLR and DAMP signaling initiates and/or maintains the
inflammatory response in systemic JIA and AOSD, and their correlations with the clinical
characteristics of those diseases. In addition, we assess their utility as biomarkers or
therapeutics for systemic JIA and AOSD.
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onse still disease, inflammation
INTRODUCTION

Systemic juvenile idiopathic arthritis (JIA) and adult-onset Still’s disease (AOSD) are systemic
autoinflammatory diseases characterized by spiking fever, skin rash, polyarticular arthralgia,
hepatosplenomegaly, and leukocytosis (1–4). Although the role of the adaptive immune response
is limited, activation of the innate immune system plays a pivotal role in both diseases. This has been
demonstrated by the activation of innate immune cells and overproduction of proinflammatory
org November 2020 | Volume 11 | Article 5835131
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cytokines including interleukin (IL)-1b, IL-18, IL-6, and tumor
necrosis factor-a (TNF-a) in systemic JIA and AOSD (5, 6).
Human leukocyte antigen (HLA) and IL-18, IL-6, and
macrophage inhibitory factor (MIF) polymorphisms are
associated with the occurrence of systemic JIA and AOSD (7–
11). Several viruses, such as rubella, measles, echovirus 7,
coxsackievirus, cytomegalovirus, Epstein–Barr virus,
parainfluenza, influenza, adenovirus, hepatitis B and C, and
parvovirus B19, are reported to trigger both diseases (12–16).

These factors activate the innate immune system;
macrophages and neutrophils increase in number, and the
levels of markers indicating their activation increase
abnormally. Patients with systemic JIA or AOSD had a high
serum level of the neutrophil activation marker, CD64 (FcɣRI),
the level of which was correlated with disease severity (17, 18).
The level of macrophage-colony stimulating factor, which is
involved in macrophage differentiation and survival, was
increased in the serum of patients with AOSD (19). The serum
levels of calprotectin, a calcium-binding protein released during
activation of neutrophils and macrophages, and soluble CD163,
which is released by activated macrophages, were higher in
patients with systemic JIA or AOSD; moreover, their levels
were correlated with disease activity (17, 20, 21).

During an innate immune response, pattern-recognition
receptors (PRRs) on immune cells interact with pathogen-
associated molecular patterns (PAMPs) to induce an immune
response. PAMPs include microbial components such as
lipopolysaccharides (LPS) from Gram-negative bacteria and
viral single-stranded RNA (22). Also, after infectious or non-
infectious tissue injury, the release and binding of intracellular or
extracellular factors to PRRs on immune cells leads to sterile
inflammation. Damage-associated molecular patterns [DAMPs;
e.g., high mobility group box 1 (HMGB1), histones, cell-free
DNA, and S100 proteins] are potent activators of the
immune system.

Several DAMPs play a role in the pathogenesis of systemic JIA
and AOSD (23). The level of HMGB1 in serum was elevated in
patients with systemic JIA or AOSD, and then downregulated
after disease resolution (24, 25). The serum levels of S100A8
(calgranulin A or myeloid-related protein 8, MRP8) and S100A9
(calgranulin B or MRP14) were increased in patients with
systemic JIA and AOSD, and these factors were deposited in
the skin or lymph nodes of the latter patients (21, 26, 27). Such
DAMPs are recognized by members of the PRR family, including
Toll-like receptors (TLRs), nucleotide-binding oligomerization
domain receptors (NOD-like receptors; NLRs), C-type lectin
receptors, and retinoic-acid-inducible gene 1-like receptors, in
several inflammatory disorders.

Changes in the adaptive immune system in systemic JIA and
AOSD, and the effects of IL-1 and IL-18 on T cell differentiation
and activity have been established, suggesting that innate and
adaptive immune responses are linked in both disorders (28).
The frequencies of circulating Th17 cells were elevated and
correlated with disease activity in patients with AOSD, and the
proportions of IFN-g- and IL-17-producing CD4+T cells and IL-
17-producing CD3+CD4- T cells were increased in systemic JIA
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(29, 30). Moreover, an increased population of activated
regulatory T cell expressing IL-17 and a prominent Th17 gene
expression signature were observed in acute systemic JIA (31).
The proportion of CD8+naïve T cells was elevated in AOSD
patients and correlated with disease activity (32).

Systemic JIA and AOSD are diagnosed based on clinical
manifestations and laboratory results, because there is no
reliable biomarker. Although criteria based on combinations of
typical clinical and laboratory findings have been established,
there is no way to differentiate systemic JIA and AOSD from
other conditions (e.g., infections or neoplasms) (33). High levels
of inflammatory markers, such as ferritin, have poor diagnostic
specificity for systemic JIA and AOSD (34).

Here, we review TLRs and their ligands, and the mechanisms
by which they induce an innate inflammatory response. We also
summarize the roles of TLRs and their ligands in rheumatic
diseases, focusing on systemic JIA and AOSD. An understanding
of their pathogenesis will enable the identification and
development of reliable biomarkers of both diseases.
TOLL-LIKE RECEPTORS AND THEIR
LIGANDS

As a link between infection/tissue damage and inflammation,
TLRs sense and transfer danger signals to intracellular signaling
pathways (35). TLRs interact with different PAMPs and transmit
signals via specific sets of adaptors and transcription factors in
various immune and non-immune cells (Table 1). For example,
TLR4 recognizes LPS, TLR9 senses unmethylated CpG from
bacteria, viruses, or parasites; and TLR7 and 8 recognize viral or
parasitic ssRNAs.

TLRs are expressed on macrophages, neutrophils, dendritic
cells (DCs), natural killer (NK) cells, mast cells, T- and B-cells,
and some types of nonimmune cells (e.g., epithelial and
endothelial cells) (36). Most TLRs are type I transmembrane
proteins located in the plasma membrane, intracellular
endosomes, or both. TLR2 and TLR4 are extracellular
receptors, and TLR3, TLR7, TLR8, and TLR9 are located in the
endosomal compartment (37). TLRs comprise extracellular
domain-containing leucine-rich repeats (LRRs) and a
cytoplasmic Toll/IL-1 receptor (TIR) domain (35, 36). Upon
ligand interaction, the homodimerization or heterodimerization
of TLRs, with the exception of TLR3, triggers the production of
the adaptor molecule myeloid differentiation primary response
protein 88 (MYD88), which interacts with IL-1R-activating
kinase (IRAK)-4 and IRAK-2. TLR3 and TLR4 interact with
TIR domain-containing adaptor molecule 1 (TICAM-1 or TRIF)
via stimulation by dsRNA viruses (38). The dimerization of
IRAK-4 and -2 activates TNF-receptor-associated factor 6
(TRAF6); the final protein complex (Myddosome) induces
nuclear transcriptional activity and the transcription of nuclear
factor kappa B (NF-kB), interferon regulatory factor (IRF), and
AP-1 (39, 40). The various TLR signaling pathways involve
different transcription factors, and trigger various cellular
responses, resulting in the expression of genes encoding
November 2020 | Volume 11 | Article 583513
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inflammatory cytokines such as type I IFN and IFN-inducible
genes. The production of IL-1, IL-6, TNF-a, IL-12, IFNs,
chemokines, adhesion molecules, costimulatory molecules, and
tissue-degrading enzymes is induced by interactions between
ligands and TLRs (41). Diverse factors, ranging from microbial
agents to self-DNAs, trigger multiple TLR pathways in a variety
of cell types and induce the expression of distinct subsets
of genes.
ROLES OF TLRS AND THEIR
ENDOGENOUS LIGANDS IN STERILE
INFLAMMATION

TLR-mediated stimulation is implicated in diverse diseases,
including infections, sepsis, autoimmune diseases, and
malignancies. DAMPs interact with TLRs as endogenous
ligands and initiate signal transduction, inducing inflammatory
responses. Most DAMPs, which include nucleic acids,
intracellular proteins, and extracellular matrix components, are
released by damaged tissues or dying cells. Their interactions are
implicated in the pathogenesis of sterile inflammatory
conditions, including rheumatic diseases, cancer, and
wound healing.
Frontiers in Immunology | www.frontiersin.org 3
S100A8 and S100A9 are released during the apoptosis or
necrosis of neutrophils and monocytes or the formation of
neutrophil extracellular traps (NETs) (42). They interact with
TLR4 and receptor for advanced glycation end products (RAGE),
and S100A8/S100A9-TLR4 signaling in human monocytes has
effects similar to LPS-TLR4 signaling. HMGB1 is a
proinflammatory mediator that binds several PRRs, including
RAGE, TLR4, TLR9, C-X-C chemokine receptor type 4
(CXCR4), and T cell immunoglobulin mucin-3 (TIM-3) (43).
HMGB1 is released during apoptosis or necrosis, acting as a
DAMP, and inflammatory cytokines including TNF-a and
IFN-ɣ enhance the release of HMGB1 (44, 45). Extracellular
HMGB1 binds to TLR4 adaptor myeloid differentiation factor-2
(MD-2), triggering the activation of NF-kB and the transcription
of proinflammatory cytokines (46). In addition, the HMGB1–
CpG-ODN complex binds to TLR9, promoting cytokine
production (37). As an acute-phase reactant and DAMP,
serum amyloid A (SAA) can induce proinflammatory
cytokines during injury, sterile inflammation, and infection,
and SAA promotes the production of IL-1b via activation of
the NLRP3 inflammasome (47). The action of SAA is dependent
on TLR signaling. SAA activity decreases in TLR4 deficiency and
SAA induces G-CSF and IL-8/CXCL8 via TLR2 (48–50).

TLR3, TLR7, and TLR9 on endosomes are activated by self-
nucleic acids such as self-DNA and RNA-protein particles (41).
Single-stranded RNA, double-stranded RNA, and unmethylated
CpG DNA stimulate the TLR7, TLR3, and TLR9 signaling
pathways, respectively. Internalization of self-nucleic acids
activates the TLR7 and TLR9 signaling pathways and
stimulates transcription of IFN-a in patients with autoimmune
diseases, such as SLE.

TLR signaling promotes activation of the NLR family pyrin
domain-containing 3 (NLRP3) inflammasome, which is a
cytoplasmic protein complex that modulates the innate
immune response (51). TLR signaling via MyD88 or TRIF
stimulates transcription of Nlrp3 and synthesis of pro-IL-1b,
resulting in inflammasome assembly and activity (52). TLR
signaling and inflammasome activity also promote pyroptosis
and inflammatory caspase-dependent lytic cell death, inducing
the release of IL-1b, IL-18, and HMGB1 in sterile inflammation
(53, 54).
ROLES OF TLRS AND THEIR LIGANDS
IN RHEUMATIC DISEASES

Rheumatoid arthritis (RA), which is the most common
autoimmune disease, is characterized by joint inflammation
and destruction. A variety of genetic and environmental factors
are related to the chronic inflammatory response in RA. TLR
signaling is implicated in the development and maintenance of
RA, and potential strategies targeting TLR signaling are currently
under investigation (55). TLR2, TLR3, TLR4, and TLR7 were
highly expressed on synovial tissue, and synovial tissue
macrophages, and the levels of TLR2 and TLR4 expression
were associated with IL-12 and IL-18 levels in synovial tissue
TABLE 1 | Toll like receptors and their ligands with involved adaptors.

TLR Localization of immune
cell

PAMP Endogenous ligands

TLR1/2 Cell surface monocyte,
macrophage, DC, B cell

Triacyated
lipoproteins,
peptidoglycan

HSP, HMGB1, b-
defensin-3

TLR2 Cell surface monocyte,
macrophage, mast cell, B
cell

Zymosan,
peptidoglycan

HSP, HMGB1, serum
amyloid A, surfactant
protein A,D, b-defensin-
3, antiphospholipid
antibody, biglycan

TLR3 Endosomes B cell, T cell,
NK cell, DC

dsRNA (viral) mRNA, tRNA

TLR4 Cell surface/endosomes
monocyte, macrophage,
DC, mast cell

LPS HSP, HMGB1,
proteoglycans, S100A8,
S100A9, S100A12,
antiphospholipid
antibody, fibronectin,
serum amyloid A,
oxidized LDL, saturated
fatty acids

TLR5 Cell surface monocyte,
macrophage, DC,

Flagellin –

TLR2/6 Cell surface monocyte,
macrophage, mast cells,
B cell

Diacylated
Lipoprotein,
Zymosan

–

TLR7 Endosomes monocyte,
macrophage, DC, B cell

ssRNA (viral) ssRNA/IgG complexes,
antiphospholipid antibody

TLR8 Endosomes monocyte,
macrophage, DC, mast
cell

ssRNA (viral) ssRNA/IgG complexes,
antiphospholipid
antibody. mircoRNAs

TLR9 Endosomes monocyte,
macrophage, DC, B cell, T
cell

Unmethylated
CpG (viral and
bacterial)

Chromatin, IgG
complexes, self–DNA
including mtDNA
PAMP, pathogen-associated molecular patterns.
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in RA (56, 57). Endogenous DAMPs, such as heat shock proteins,
fibronectin, HMGB1, and S100 proteins, activate synovial
macrophages or DCs via TLR signaling pathways (58, 59).
TLR2 signaling induces the release of chemokines by synovial
fibroblasts, and the MYD88-dependent pathway is involved in
joint inflammation in RA (60). Synthetic dsRNA and necrotic
synovial fluid stimulated TLR3 on synovial fibroblasts, inducing
the production of IFN-b, CXCL10, CCL5, and IL-6. Also, TLR3
and TLR4 signaling in synovial fluid macrophages resulted in
overproduction of TNF-a and IL-6 (61, 62). TLR-3 and TLR-7
were highly expressed in the RA synovium, and TLR2 and TLR4
signaling in DCs from patients with RA triggered the production
of inflammatory mediators (63). TLR7 expression in RA
monocytes induced TNF-a production and correlated with the
disease activity of RA (64).

TLR2 signaling promotes joint inflammation during the acute
phase, and TLR4 promotes matrix metalloproteinase (MMP)-
mediated cartilage destruction, osteoclast formation, and IL-17
production in the chronic phase (65). A study using a serotonin
receptor antagonist showed that TLR8 signaling induced TNF
production in RA (66). The expression of TLR3 and TLR7 on
DCs and synovial fibroblasts was controlled by type I IFN, but
not by IL-1b, IL-18, or TNF-a (67). TLR5 is strongly expressed
in the synovium of RA patients, and ligation of TLR5 induces
TNF-a and promotes monocyte migration to synovial tissue and
osteoclastic development of myeloid cells (68). Some TLR4,
TLR5, TLR7, and TLR9 polymorphisms are associated with
susceptibility to RA (69). TLR4 polymorphisms are also
associated with shared epitope and disease activity (70).

Systemic lupus erythematosus (SLE) is a systemic
autoimmune disease involving multiple organs, an
autoantibody response, and immune complex deposition. The
TLR7/MyD88 signaling pathway in plasmacytoid DCs and B
cells plays a role in the pathogenesis of SLE (71). After
internalization, immune complexes bound to DNA or RNA
interact with endosomal TLR7 and TLR8, promoting a type I
IFN response (72). TLR7 was overexpressed in models of severe
lupus, and in patients with SLE, and the inhibition or attenuation
of TLR7 signaling ameliorated the inflammatory response in the
lung and kidney of lupus-prone mice (73, 74). TLR9 expression
induced the generation of autoantibodies (e.g., anti-dsDNA
antibodies) and B-cell activation via immune complexes (75).
Although TLR9 signaling contributes to the development of
lupus nephritis, enhanced TLR9 signaling prevents severe
manifestations and defective TLR9 expression promotes
inflammation in murine lupus (76–78). The role of TLR9 in
SLE is controversial. TLR8 signaling modulates TLR7 activation,
and deletion of TLR8 promotes autoantibody production and
inflammation (79).

In addition, blockade of TLR signaling in major immune cells
attenuates the inflammatory response in SLE, confirming a role
for TLR in its pathogenesis. The inhibition of IRAK-4, which
involves the TLR7 signaling pathway, on plasmacytoid DCs not
only reduces the expression of IFN-responsive genes but also
ameliorates inflammation in lupus nephritis (80). A TLR
inhibitor prevented tissue damage caused by immune complex
Frontiers in Immunology | www.frontiersin.org 4
deposition and cellular infiltration, and alleviated collagen-
induced arthritis and the manifestations of SLE (81).
Mutations in TLR-trafficking chaperone, which suppresses
TLR7 signaling, ameliorated systemic inflammation (82). TLR7
and TLR9 polymorphisms are associated with SLE susceptibility,
particularly in Asians (83).

Sjögren syndrome is an autoimmune disease characterized by
lymphocytic infiltration and inflammation of the salivary and
lacrimal glands. There is aberrant expression of TLRs on PBMCs,
minor salivary gland (MSG) biopsy tissue and salivary gland
epithelial cells (SGECs) in Sjögren syndrome. TLR2, TLR3, and
TLR4 were strongly expressed on the SGECs of patients with
Sjögren syndrome, and TLR2 signaling induces the production of
IL-23/IL-17 via IL-6 and signal transducer and activator of
transcription (STAT) in the NF-kB pathway in Sjögren
syndrome (84, 85). TLR7, TL9, and TLR7/8 signaling is also
associated with a salivary inflammatory response involving
antigen presentation and the secretion of proinflammatory
cytokines (86).

Systemic sclerosis (SSc) is an autoimmune disease
characterized by fibrosis of the skin and/or internal organs and
vasculopathy (87). Autoantibody-producing or autoreactive cells
induce endothelial activation and progressive fibrosis in SSc. TLR
signaling pathways play roles in the pathogenesis of SSc, and
their pharmacological inhibition ameliorates disease progression.
The level offibronectin, an endogenous TLR4 ligand, is increased
in the serum and skin tissue of patients with SSc, and disruption
of TLR4 signaling abrogated collagen production and
myofibroblast differentiation (88). Also, the level of the
extracellular matrix glycoprotein tenascin-C is elevated in the
serum, fibroblasts, and skin lesions of patients with SSc, inducing
collagen gene expression and myofibroblast transformation via
TLR4 signaling (89). Mitochondrial DNA and CpG
oligonucleotides trigger TLR9 signaling, leading to TGFb
production and fibroblast activation in patients with SSc (90).
Liquid crystalline complexes composed of CXCL4 and self-DNA
or microbial DNA amplify the activation of plasmacytoid DCs
and IFN-a production via TLR9 signaling in SSc (91).

Antiphospholipid antibody syndrome is characterized by
recurrent thrombosis and complications of pregnancy
associated with an autoimmune-mediated inflammatory
response. Antiphospholipid antibodies (aPLs) include anti-
cardiolipin antibodies (aCLs), lupus anticoagulant (LAC), and
anti-b2 glycoprotein I (GPI) antibodies. aPLs induce an
inflammatory response by interacting with TLR2, TLR4, TLR7,
TLR8, and TLR9 (92–95). In placental inflammation or
thrombosis, anti-b2 GPI activates TLR4, impairing autophagy
and activating the inflammasome in endothelial cells (96, 97).

Gout, which is the most common rheumatic disease, is
characterized by an acute inflammatory response against
monosodium urate monohydrate (MSU) crystals in the joints.
TLR2 and TLR4 signaling via MyD88 is triggered by MSU
crystals, and induces the production of proinflammatory
cytokines (including IL-1b and TNF-a) by activating the
NALP3 inflammasome (98–100). S100A8 and S100A9 were
released by MSU crystal-activated phagocytes, and stimulated
November 2020 | Volume 11 | Article 583513
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IL-1b secretion in a TLR4-dependent manner. The S100A8 and
S100/A9 levels were elevated in patients with gout and were
correlated with disease activity (101). An inhibitor of the NALP3
inflammasome and TLR2 suppressed MSU crystal uptake by
macrophages, and alleviated swelling and pain in MSU-injected
joints (102).

Table 2 summarizes the putative pathological roles of TLR
and its ligands in several rheumatic diseases.
ROLES OF TLR AND THEIR LIGANDS IN
THE PATHOGENESIS OF SYSTEMIC JIA
AND AOSD

Macrophages and monocytes are highly activated in systemic JIA
and AOSD. Altered TLR signaling and its ligands have been
implicated in the pathogenesis of systemic JIA and AOSD
(Figure 1). We review the role of TLR and its DAMP
molecules in the pathogenesis of systemic JIA and AOSD.

Interaction of S100 Proteins and TLR4
S100A8, S100A9, S100A8/A9 (calprotectin), and S100A12 are
calcium-binding proteins released from activated phagocytic
myeloid cells that act as proinflammatory endogenous TLR4
ligands during sterile inflammation (42). The interaction of S100
proteins and TLR4 in the context of sterile inflammation or
tissue injury is independent of the presence of PAMP. S100A8,
S100A9, and S100A12 induce proinflammatory cytokines via
TLR4 (103–106). S100A8 interacts with the TLR4/MD2
complex, and S100A8/S100A9 activities are locally restricted
through hiding the TLR4/MD2-binding site by (S100A8/
S100A9)2 tetramer formation (107).

S100A8/S100A9 binding to TLR4 also induces the
transcription of inflammatory cytokine genes, such as IFN
regulatory factor 3 (IRF3) (108). Injection of S100A8 enhanced
the expression of the Fcɣ receptor (FcɣR) on macrophages in the
synovium of a chronic experimental arthritis mice model, while
up-regulated expression of FcɣR was abrogated in the synovium
of TLR4 knockout mice (109). In an inflammatory autoimmune
disease model, S100A8 and S100A9 expression was up-regulated
and contributed to the development of IL-17-expressing CD8+ T
cells (110). The interaction of S100A8/A9 and TLR4 upregulates
IL-17 expression in CD8+ T cells.

Serum S100A8 and S100A9 levels were highly elevated in
patients with systemic JIA or AOSD (26, 65). Serum levels of
S100A8/A9 were significantly higher in patients with systemic
JIA compared to those with systemic infection or other types of
JIA, and were correlated with IL-1b expression on phagocytes
(111). Serum S100A8/A9 levels were elevated in patients with
AOSD, including those with lymphadenopathy and skin rash
(21, 26, 112). The serum S100A12 levels were also increased in
systemic JIA and AOSD, suggesting pathological roles as DAMPs
(113, 114). As endogenous ligands, S100A8/A9 and S100A12
activate TLR4 and RAGE signaling, promoting the production of
proinflammatory cytokines such as IL-1b, IL-6, and TNF-a (103,
115, 116). Elevated levels of these cytokines activate
Frontiers in Immunology | www.frontiersin.org 5
inflammatory cells, including neutrophils and monocytes, to
produce the TLR4 ligand S100, leading to disease progression.
Furthermore, a recent study identified neutrophil activation in
both active and clinically inactive systemic JIA patients,
characterized by the expression of proinflammatory genes,
such as S100A8, and inflammasome components, reflecting
persistent innate immune activation (117). They showed that
neutrophils in patients with both active disease and longstanding
clinically inactive disease had significantly increased capacity to
release S100A8/A9 upon activation. However, there was no
association between two functional single nucleotide
polymorphisms in TLR4 and susceptibility to JIA (118).
Furthermore, TLR4 expression is reportedly significantly
decreased on the monocytes of patients with SLE and JIA,
including systemic JIA. Reduced TLR4 expression was
suggested to be a cause of chronic arthritis or the result of a
feedback loop (119).

Interaction of HMGB1 and TLR4
HMGB1, which is a DNA-binding protein released by necrotic or
damaged cells, is an extracellular DAMP that links tissue injury
to the innate immune response (43). HMGB1 binds to RAGE
and TLR4, propagating inflammatory signals. HMGB1 is
implicated in systemic inflammation in sepsis, liver injury,
arthritis, and SLE. The serum HMGB1 level is elevated in
patients with AOSD and systemic JIA compared to healthy
controls (HCs) (24, 25), and is correlated with the systemic
AOSD score (24). HMGB1 is released from NETs, which are
important in the pathophysiology of AOSD (120). The serum
levels of NET molecules (including cell-free DNA,
myeloperoxidase (MPO)-DNA complex, and a-defensin) were
increased in patients with AOSD (121). The serum from active
AOSD patients induced NETosis in neutrophils from HCs. NET
molecules induced IL-1b production by monocytes, representing
a novel pathogenic mechanism of AOSD. Therefore, NET
molecules, as ligands of TLR4, might be associated with
activation of the TLR signaling pathway in systemic JIA
and AOSD.

NLRP3 Inflammasome and TLR7
TLR7 signaling, which is triggered by nucleic acids from
damaged host cells, contributes to chronic inflammatory
disorders. The expression of TLR7 on circulating precursors of
myeloid DCs (pre-mDCs) and mDCs was markedly elevated in
patients with AOSD compared to HCs (51). The transcript levels
of TLR7, Myd88, IRAK4, TRAF6, and IFN-a were correlated
with the serum IL-1b and IFN-a levels in patients with AOSD.
After remission, the expression of TLR7 on circulating pre-
mDCs, and the transcript levels of TRAF6 and IRAK4, were
significantly decreased. NLRP3 inflammasome activation via the
TLR7-MyD88 pathway promotes secretion of IL-1b and IL-18,
leading to chronic inflammation. The levels of the NLRP3
inflammasome and its byproducts were significantly elevated in
patients with AOSD and correlated with disease activity (122). A
TLR7 agonist upregulated the levels of NLRP3 inflammasome
pathway components (caspase-1, IL-1b, and IL-18) in patients
with AOSD, but not in HCs.
November 2020 | Volume 11 | Article 583513
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IL-6
IL-6, as one of the proinflammatory cytokines upregulated in
systemic JIA and AOSD, plays an important role in systemic
inflammation. IL-6 enhances the TLR-induced inflammatory
Frontiers in Immunology | www.frontiersin.org 6
response in vivo and in vitro (123). The administration of IL-6
increased the levels of IL-1b, and some chemokines, in peripheral
blood monocytes and synovial fluid mononuclear cells (RA
synoviocytes), suggesting amplification of the TLR signaling-
TABLE 2 | Toll like receptors in rheumatic diseases.

Disease Involved
TLRs

Expressed cells DAMP Function References

Rheumatoid
arthritis

TLR2 Synovial fibroblast
synovial tissue, DC

HSP60, HSP70, gp96, HMGB1,
biglycan, serum amyloid A

Production of IL-1b and TNF-a
Secretion of GCP-2, RANTES, MCP-2

(56–58, 60)

TLR3 Synovial fibroblasts dsRNA Induction of IL-6, MMP-3, MMP-13, IFN-b,
CXCL10, CCL5

(61–63)

TLR4 Synovial fibroblast,
synovial tissue,
macrophage,
DC

HSP22, HSP60, HSP70, EDA
fibronectin, fibrinogen, low
molecular weight hyaluronic acid,
HMGB-1, biglycan, S100A8

Production of TNF-a and IL-6
Development of MMP-mediated cartilage damage
and osteoclast formation
Induction of cell efflux, chondrocyte death,
proteoglycan depletion, cartilage destruction, bone
erosion

(58–60, 63, 65)

TLR5 Synovial macrophage,
PBMC

Flagellin Production of TNF-a
Monocyte infiltration and osteoclast maturation

(64)

TLR7 Synovial fibroblast, DC,
macrophage

ssRNA/IgG complex Induction of TNF-a (64)

TLR8 Synovial membrane
cultures,

ssRNA/IgG complex Induction of TNF (66)

Systemic lupus
erythematosus

TLR4 Plasma cell,
macrophage, monocyte,
renal tissue

Anti-dsDNA antibody, Autoantibody production
Development of glomerulonephritis
Activation of NLRP3 inflammasome
Secretion of IL-1b
Induction of TNF-a, IL-6, IL-23, IL-10

(76, 81)

TLR7 B cell, plasmacytoid DC snRNA-Ag complex Release of IFN-a (71–74, 80, 82)
TLR9 B cell, spleen monocytes snRNA-Ag complex Induction of type I IFN and TNF-a

Regulation of autoantibody production via TLR7
(75–79)

Sjögren syndrome TLR2 Minor salivary gland, salivary
gland epithelial cells, PBMC

Biglycan, decorin Production of IL-17 and IL-23 (84, 85)

TLR4 Minor salivary gland, salivary
gland epithelial cells, PBMC.
Splenocyte

Biglycan, decorin Production of IL-17 and IL-23
Production of salivary IL-6, MCP-1, TNF-a

(84)

TLR7 PBMC, plasmacytoid DC – Induction of IFN (86)
TLR9 Minor salivary gland, salivary

gland epithelial cells, PBMC,
B cell

– Release of IL ‐8, IL-15, MCP ‐1, IL-6, IL ‐2R (86)

Systemic sclerosis TLR4 Fibroblast, skin tissue Fibronectin, tenascin-C Collagen production
Fibroblast differentiation

(88, 89)

TLR9 Fibroblast, skin tissue Mitochondrial DNA and CpG
oligonucleotide
immune complexes composed
of CXCL4 and microbial DNA

TGF-b production and fibroblast activation
Activation of plasmacytoid DC
IFN-a production

(90, 91),

Antiphospholipid
antibody
syndrome

TLR2 Embryonic fibroblast,
monocyte

anti-beta2-glycoprotein 1 IgG Induction of MCP-1, ICAM-1, IL-6
Inhibition of endothelium-dependent relaxation
Induction of tissue factor expression

(93)

TLR4 Endothelial cells, trophoblast,
macrophage, monocyte

anti- beta2 glycoprotein 1,
anti-cardiolipin

Activation of inflammasome
Secretion of IL-8, MCP-1, GRO-a, and IL-1b
Inhibition of endothelium-dependent relaxation
Induction of tissue factor expression

(92, 96, 97)

TLR7 Monocytes, plasmacytoid DC ssRNA Induction of IL-1b and caspase-1 (95)
TLR8 PBMC, Monocytes,

plasmacytoid DC
IgG from the patient with APS Secretion of TNF-a (94, 95)

Gout TLR2 PBMC, Macrophage,
Chondrocyte

MSU crystals Activation of inflammasome
Induction of IL-1b and TNF-a

(98, 99, 102)

TLR4 PBMC, Macrophage MSU crystals, S100A8 and
S100A9

Stimulation of IL-1b secretion (98, 100, 101),
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DAMP, damage-associated molecular pattern; DC, dendritic cell; PBMC, peripheral blood mononuclear cell; TLR, toll like receptor; IL, interleukin; TNF, tumor necrosis factor; GCP,
granulocyte chemotactic protein; MCP, monocyte chemoattractant protein; RANKLE, receptor activator of nuclear factor kappa-B ligand; HSP22, heat shock protein B8; MMP, matrix
metalloproteinase; ICAM, intercellular adhesion molecule; CXCL, CXC motif chemokine; CCL, Chemokine C-C motif ligand; TGF, transforming growth factor; MSU, monosodium urate.
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mediated cytokine and chemokine response (124). Therefore, an
elevated IL-6 level may upregulate TLR signaling in systemic JIA
and AOSD.

Serum Amyloid A and TLRs
SAA is synthesized in response to inflammatory stimuli, and
induces IL-b product ion by activat ing the NLRP3
inflammasome; this is involved in the pathogenesis of systemic
JIA and AOSD. Circulating SAA levels were higher in JIA
patients, and correlated with the disease activity of JIA (125).
A SAA gene polymorphism study revealed that one T allele of
rs12218 is associated with disease susceptibility in AOSD
patients (126). SAA plays a role in sterile inflammation
through activation of TLR2 or TLR4 and their signal pathways.
The activation of TLR2 or TLR4 signaling by SAA might
contribute to the inflammation seen in systemic JIA and
AOSD, although further research on this is needed.
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TLR AND THEIR LIGANDS AS
BIOMARKERS OF SYSTEMIC JIA
AND AOSD

Few studies have evaluated the role of TLRs as biomarkers of
systemic JIA and AOSD. Moreover, only a few studies have
evaluated the utility of serum levels of their ligands as biomarkers,
because cell surface TLR levels are difficult to evaluate. TLR4 ligands,
such as S100A8/A9, S100A12, HMGB1, and NET molecules, have
become reliable biomarkers for diagnosing and evaluating disease
activity in systemic JIA and AOSD. The serum level of the TLR4
ligand S100A8/A9 was correlated with disease activity (based on
acute-phase reactants and subjective assessments), and an elevated
level during clinical remission was predictive of further disease flares
in systemic JIA patients (20). S100A8/A9 was superior to C-reactive
protein (CRP) for differentiating systemic JIA from other
autoinflammatory syndromes and systemic undifferentiated
FIGURE 1 | Overview of TLR signaling and the endogenous DAMP pathway in systemic JIA and AOSD. Regarding the role of TLR and its ligands in the
pathogenesis of systemic JIA and AOSD, current evidence suggests that endogenous ligands, such as S100A8, S100A9, and S100A8/A9, and HMGB1, interact
with and stimulate the TLR4 pathway. Activated TLR4 and TLR7 induce NLRP3 inflammasome activation and the secretion of IL-1b in systemic JIA and AOSD.
November 2020 | Volume 11 | Article 583513
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recurring fever syndrome (127). The serum S100A8/A9 level was
correlated with the drug response, suggesting its utility for
monitoring disease activity in subclinical systemic JIA (20).
Similarly, the serum levels of S100A8 and S100A9 were elevated in
patients with AOSD, and were correlated with markers of disease
activity, including the systemic disease score (21). Furthermore, the
sensitivity and specificity of S100A8/A9 for differentiation of AOSD
were 63 and 80.1%, respectively (128). Data on the role of S100A12
as a biomarker are similar to those on S100A9/A9 in systemic JIA
and AOSD patients. Serum S100A12 levels were elevated in active
AOSD patients relative to HCs and correlated with systemic
inflammatory markers, such as ESR, CRP, and ferritin (114). The
S100A12 levels were also elevated in patients with systemic JIA
compared to patients with infection and HCs (113). The sensitivity
and specificity of S100A12 for distinguishing between infection and
systemic JIA were 66 and 94%, respectively. One study investigated
whether patients with systemic JIA at risk of relapse could be
identified using biomarkers, and found that the best single
biomarker for predicting flare was S100A12 (129). These data
suggest that serum S100A8/A9 and S100A12 levels are good
biomarkers for diagnosing systemic JIA and AOSD, predicting
relapse, and evaluating disease activity. The utility of serum
HMGB1 as a biomarker of systemic JIA and AOSD is limited. The
HMGB1 level was higher in patientswithAOSD than inHC, butwas
weakly correlated with the CRP level and systemic score (24). The
HMGB1 level was also higher in patients with systemic JIA than in
HC, and was associated with serositis and hepatosplenomegaly (25).
Another study found positive correlations of the serum level of
HMGB1 with ESR, CRP, and a2 globulin in patients with JIA,
including systemic JIA. In a NET study, patients with AOSD had
higher levels of cell-free DNA and NET-DNA complexes, and their
neutrophils released more NETs, compared to HCs (130). The
serum levels of cell-free DNA, MPO-DNA, and a-defensin were
significantly increased in patients with AOSD compared to HCs
(121). Furthermore, these levels were correlated with the levels of
several disease-activity markers, and neutrophil elastase and MPO-
positive inflammatory cells were detected in the lymph nodes and
skin of patients with active AOSD.

One study evaluated the frequencies of TLR7-expressing pre-
mDCs and mDCs by flow cytometry in patients with AOSD and
SLE, as well as in HC (51). The levels of TLR7 signaling
molecules were elevated and positively correlated with disease
activity in patients with AOSD.

CONCLUSION AND FUTURE
PERSPECTIVES

We have reviewed the roles of TLRs and their ligands, as PRRs
and DAMPs, in aggravating inflammation, including sterile
inflammation, in two rheumatic diseases (systemic JIA and
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AOSD). TLRs and their ligands contribute to inflammation in
patients with systemic JIA and AOSD. The levels of DAMPs,
such as S100 proteins, HMGB1, and MPO-DNA complex, are
elevated in the blood of patients with active AOSD or systemic
JIA, suggesting that they aggravate inflammation by activating
TLR4 in inflammatory cells. Furthermore, the TLR4 ligands
S100A8/A9 and MPO-DNA complex have potential as
biomarkers for diagnosis and disease activity in patients with
systemic JIA and AOSD.

Although the triggers of inflammation are unknown, viral or
bacterial infection, as well as environmental factors, could act as
danger signals promoting TLR activation. This could in turn lead
to the activation of neutrophils and macrophages, and to the
production of proinflammatory cytokines such as IL-6 and
DAMPs, via activated neutrophils and macrophages. This
would sustain sterile inflammation in systemic JIA and AOSD.
However, some questions remain to be resolved. The first
concerns whether TLR signaling is triggered, or occurs due to
the loss of inhibitory signals, during initial inflammation. The
second concerns which subset of patients is more likely to
develop systemic JIA or AOSD even after being exposed to
similar environmental factors or viral/bacterial infections.
Therefore, further studies should determine the genetic factors
associated with onset or exacerbation of the initial TLR
responses. The third question concerns whether the TLR–TLR
ligand response is associated with chronic features of systemic
JIA and AOSD; this is currently unclear, despite the known link
between initial acute inflammation and TLR responses. Further
basic and clinical research, including large, multicenter,
prospective studies, is needed to confirm the role of TLRs and
their ligands in systemic JIA and AOSD. The current findings
enhance our understanding of the pathogenesis of systemic JIA
and AOSD, and will facilitate the development of diagnostic and
prognostic biomarkers, as well as novel therapeutics targeting
TLR signaling in systemic JIA and AOSD.
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Alcocer-Varela J, Gómez-Martıń D. The role of low density granulocytes and
NETosis in the pathogenesis of adult-onset Still’s Disease. Clin Exp
Rheumatol (2019) 37(Suppl 121):74–82.

121. Ahn MH, Han JH, Chwae YJ, Jung JY, Suh CH, Kwon JE, et al. Neutrophil
Extracellular Traps May Contribute to the Pathogenesis in Adult-onset Still
Disease. J Rheumatol (2019) 46:1560–9. doi: 10.3899/jrheum.181058
Frontiers in Immunology | www.frontiersin.org 12
122. Hsieh CW, Chen YM, Lin CC, Tang KT, Chen HH, HungWT, et al. Elevated
Expression of the NLRP3 Inflammasome and Its Correlation with Disease
Activity in Adult-onset Still Disease. J Rheumatol (2017) 44:1142–50.
doi: 10.3899/jrheum.161354

123. Strippoli R, Carvello F, Scianaro R, De Pasquale L, Vivarelli M, Petrini S, et al.
Amplification of the response to Toll-like receptor ligands by prolonged
exposure to interleukin-6 in mice: implication for the pathogenesis of
macrophage activation syndrome. Arthritis Rheumatol (2012) 64:1680–8.
doi: 10.1002/art.33496

124. Caiello I, Minnone G, Holzinger D, Vogl T, Prencipe G, Manzo A, et al. IL-6
amplifies TLR mediated cytokine and chemokine production: implications
for the pathogenesis of rheumatic inflammatory diseases. PLoS One (2014) 9:
e107886. doi: 10.1371/journal.pone.0107886

125. Cantarini L, Giani T, Fioravanti A, Iacoponi F, Simonini G, Pagnini I, et al.
Serum amyloid A circulating levels and disease activity in patients with
juvenile idiopathic arthritis. Yonsei Med J (2012) 53:1045–8. doi: 10.3349/
ymj.2012.53.5.1045

126. Yashiro M, Furukawa H, Asano T, Sato S, Kobayashi H, Watanabe H, et al.
Serum amyloid A1 (SAA1) gene polymorphisms in Japanese patients with
adult-onset Still’s disease. Med (Baltimore) (2018) 97:e13394. doi: 10.1097/
MD.0000000000013394

127. Aljaberi N, Tronconi E, Schulert G, Grom AA, Lovell DJ, Huggins JL, et al.
The use of S100 proteins testing in juvenile idiopathic arthritis and
autoinflammatory diseases in a pediatric clinical setting: a retrospective
analysis. Pediatr Rheumatol Online J (2020) 18:7. doi: 10.1186/s12969-020-
0398-2

128. Guo Q, Zha X, Li C, Jia Y, Zhu L, Guo J, et al. Serum calprotectin–a
promising diagnostic marker for adult-onset Still’s disease. Clin Rheumatol
(2016) 35:73–9. doi: 10.1007/s10067-015-3108-6

129. Gerss J, Roth J, Holzinger D, Ruperto N, Wittkowski H, Frosch M, et al.
Paediatric Rheumatology International Trials Organization (PRINTO).
Phagocyte-specific S100 proteins and high-sensitivity C reactive protein as
biomarkers for a risk-adapted treatment to maintain remission in juvenile
idiopathic arthritis: a comparative study. Ann Rheum Dis (2012) 71:1991–7.
doi: 10.1136/annrheumdis-2012-201329

130. Hu Q, Shi H, Zeng T, Liu H, Su Y, Cheng X, et al. Increased neutrophil
extracellular traps activate NLRP3 and inflammatory macrophages in adult-
onset Still’s disease. Arthritis Res Ther (2019) 21:9. doi: 10.1186/s13075-018-
1800-z

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Jung, Kim, Suh and Kim. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication in
this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.
November 2020 | Volume 11 | Article 583513

https://doi.org/10.1002/art.27654
https://doi.org/10.1038/nm.2150
https://doi.org/10.1002/art.24349
https://doi.org/10.3899/jrheum.091120
https://doi.org/10.1002/art.24137
https://doi.org/10.3899/jrheum.140651
https://doi.org/10.1371/journal.pone.0115828
https://doi.org/10.3892/ijmm.2017.2987
https://doi.org/10.3389/fimmu.2018.02995
https://doi.org/10.1136/ard.2004.026930
https://doi.org/10.1186/1546-0096-11-9
https://doi.org/10.1186/1546-0096-11-9
https://doi.org/10.3899/jrheum.181058
https://doi.org/10.3899/jrheum.161354
https://doi.org/10.1002/art.33496
https://doi.org/10.1371/journal.pone.0107886
https://doi.org/10.3349/ymj.2012.53.5.1045
https://doi.org/10.3349/ymj.2012.53.5.1045
https://doi.org/10.1097/MD.0000000000013394
https://doi.org/10.1097/MD.0000000000013394
https://doi.org/10.1186/s12969-020-0398-2
https://doi.org/10.1186/s12969-020-0398-2
https://doi.org/10.1007/s10067-015-3108-6
https://doi.org/10.1136/annrheumdis-2012-201329
https://doi.org/10.1186/s13075-018-1800-z
https://doi.org/10.1186/s13075-018-1800-z
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

	Roles of Interactions Between Toll-Like Receptors and Their Endogenous Ligands in the Pathogenesis of Systemic Juvenile Idiopathic Arthritis and Adult-Onset Still’s Disease
	Introduction
	Toll-Like Receptors and Their Ligands
	Roles of TLRs and Their Endogenous Ligands in Sterile Inflammation
	Roles of TLRs and Their Ligands in Rheumatic Diseases
	Roles of TLR and Their Ligands in the Pathogenesis of Systemic JIA and AOSD
	Interaction of S100 Proteins and TLR4
	Interaction of HMGB1 and TLR4
	NLRP3 Inflammasome and TLR7
	IL-6
	Serum Amyloid A and TLRs

	TLR and Their Ligands as Biomarkers of Systemic JIA and AOSD
	Conclusion and Future Perspectives
	Author Contributions 
	Funding
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


