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Allogeneic hematopoietic cell transplantation (alloHCT) has been used as cellular
immunotherapy against hematological cancers for more than six decades. Its
therapeutic efficacy relies on the cytoreductive effects of the conditioning regimen but
also on potent graft-versus-tumor (GVT) reactions mediated by donor-derived immune
cells. However, beneficial GVT effects may be counterbalanced by acute GVHD (aGVHD),
a systemic syndrome in which donor immune cells attack healthy tissues of the recipient,
resulting in severe inflammatory lesions mainly of the skin, gut, and liver. Despite standard
prophylaxis regimens, aGVHD still occurs in approximately 20–50% of alloHCT recipients
and remains a leading cause of transplant-related mortality. Over the past two decades,
advances in the understanding its pathophysiology have helped to redefine aGVHD
reactions and clinical presentations as well as developing novel strategies to optimize its
prevention. In this review, we provide a brief overview of current knowledge on aGVHD
immunopathology and discuss current approaches and novel strategies being developed
and evaluated in clinical trials for aGVHD prevention. Optimal prophylaxis of aGVHD would
prevent the development of clinically significant aGVHD, while preserving sufficient
immune responsiveness to maintain beneficial GVT effects and immune defenses
against pathogens.
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INTRODUCTION

For almost 6 decades, allogeneic hematopoietic cell
transplantation (alloHCT) has been the cornerstone of poor
risk hematological cancer therapy. Although novel
sophisticated cellular therapies (such as those with CAR T
cells) have emerged and appear to be occupying a growing
place in the modern therapeutic arsenal in hematology, their
long-term effects on disease control and survival are still unclear.
Therefore, alloHCT still remains standard of care in a variety of
high risk hematological disorders, often offering the only curative
option for these diseases (1). The persisting major role of
alloHCT in current medicine is documented by the constant
increase in the annual number of stem cell transplants performed
worldwide, with >19,000 alloHCT procedures in Europe and
associated countries in 2018 (701 centers in 50 countries) (2). In
adults, the most frequent indications for alloHCT remain acute
leukemia (more than 50% of all alloHCT), followed by
myelodysplastic syndromes and non-Hodgkin lymphoma (2).
In addition, an acceptable donor can currently be found for
almost all patients, mainly due to the recent development of
innovative platforms for alloHCT with HLA-haploidentical
family donors (mismatched for one of the two HLA haplotypes).

The therapeutic efficacy of alloHCT against hematological
cancers relies on the cytoreductive effects of the conditioning
regimen but also (and mainly) on potent graft-versus-tumor
(GVT) reactions, defined as immune-mediated reactions by
donor cells against tumor cells. However, beneficial GVT
effects may be counterbalanced by acute GVHD (aGVHD), a
systemic syndrome in which donor immune cells attack healthy
tissues of the recipient, resulting in severe inflammatory lesions
mainly of the skin, gut and liver. Despite more than 6 decades of
preclinical and clinical researches, the immunological
requirements necessary to achieve GVT effects without
promoting aGVHD have not been fully established.

Despite standard prophylaxis regimens, aGVHD occurs in
approximately 20–50% of transplanted patients and is a major
cause of treatment failure and mortality after alloHCT.
Therefore, the prevention of aGVHD after alloHCT represents
an unmet medical need in the modern era of cancer
immunotherapy and research must continue in this field. Here,
we provide a brief overview of criteria for aGVHD diagnosis and
grading as wel l as current knowledge on aGVHD
immunopathology. Then, we discuss current approaches and
novel strategies being developed and evaluated in clinical trials
for aGVHD prevention.
WHAT IS AGVHD? THE CLINICAL POINT
OF VIEW

GVHD is separated into two syndromes, historically defined
according to the time frame of occurrence of symptoms: acute
GVHD (aGVHD) occurring within the first 100 days after
transplantation and chronic GVHD (cGVHD) developing
thereafter. Although simple, this classification based only on
Frontiers in Immunology | www.frontiersin.org 2
empirical observations and did not rely on actual biological or
clinical bases. More recent classification systems have emphasized
differentiating a- and cGVHD based on pathophysiological
mechanisms and clinical manifestations (3, 4).

In 2018, a consortium of GVHD experts from the European
Society for Blood and Marrow Transplantation (EBMT), the
National Institutes of Health (NIH) and the Center for
International Blood and Marrow Transplant Research
(CIBMTR) reviewed the terminology and guidelines for
GVHD diagnosis and scoring (5). Clinically, aGVHD typically
presents with inflammatory lesions, the three main organs
involved being: the skin (erythematous and pruriginous
maculopapular skin rash), the gastro-intestinal (GI) tract
(nausea, vomiting, and anorexia with weight loss in the upper
tract; and/or watery or bloody diarrhea, crampy abdominal pain
and/or ileus in the lower tract), and the liver (cholestasis with
hyperbilirubinemia) (5, 6). Typical aGVHD is defined by the
presence of these exclusive inflammatory manifestations, without
any other sign consistent with cGVHD. Ideally, the diagnosis of
aGVHD should be confirmed by positive histological findings,
but this is not formally required (5). AGVHD can be categorized
as “classic aGVHD” in the setting of typical aGVHD
manifestations occurring less than 100 days after alloHCT or
donor lymphocyte infusion (DLI), and “late, recurrent or
persistent aGVHD” in patients with typical aGVHD signs
experienced later than 100 days after alloHCT/DLI (5, 7).

Grading aGVHD is essential because it is predictive of non-
relapse mortality and it guides therapeutic management.
Several scoring systems have been developed during the past
decades, including the original Glucksberg classification (first
established in the 1970s), the “Modified Glucksberg” or
“Keystone”, the IBMTR and the “MAGIC” scoring systems
(8–11). Each of them proposes a 4-grade scale, integrating the
individual stage of each target organ (skin, GI tract, and liver),
with or without the general Performance Status. Recently, the
EBMT−NIH−CIBMTR Task Force Consortium recommended
the MAGIC criteria as the most accurate and detailed clinical
criteria for diagnosis and grading the severity of aGVHD (5). A
web-application has also been developed based on this position
statement (eGvHDApp; https://www.uzleuven.be/egvhd) and
has been found to be helpful in improving aGVHD and
cGVHD scoring consistency and compliance with guidelines
(12, 13).

In addition to the typical manifestations of aGVHD in the
skin, GI, and liver, there is accumulated evidence that aGVHD
may also affect other tissues, including the cellular niches in the
bone marrow (BM), thymus and secondary lymphoid organs
(14). Although lesions in these organs are hardly clinically
detectable, they can severely impact outcome by impairing
hematopoiesis, compromising T- and B-cell reconstitution and
predisposing to the development of subsequent cGVHD (15). It
has also been suggested that aGVHD can cause damages to the
endovascular endothelium and can be the trigger of endothelitis-
related complications after alloHCT, such as transplant-
associated microangiopathy, diffuse alveolar hemorrhage,
idiopathic pneumonia syndrome (16). Finally, over the past
October 2020 | Volume 11 | Article 583564
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decade, experimental data (17, 18) and clinical case reports (19)
have gradually accumulated suggesting that the central nervous
system may also be a potential target of aGVHD. Although they
are not considered in current standard aGVHD diagnosis criteria
and grading systems, alloreactive lesions to these tissues can be
associated with significant morbidity.

Despite conventional prophylactic measures, it is estimated
that 20–50% of transplanted patients develop clinically significant
grades II–IV aGVHD after alloHCT. Known risk factors include
the stem cell source (G-SCF mobilized peripheral blood stem cells,
PBSC), the donor type (unrelated, female donor for a male
recipient), the degree of donor/recipient HLA-mismatch, the
intensity of the conditioning regimen (myeloablative regimen),
the occurrence of severe infections during the peri-transplant
period and administration of DLI (7, 20, 21).

The standard first-line of treatment for grades II–IV aGVHD
is high-dose systemic corticosteroids. However, aGVHD fails to
respond to steroids in approximately 30–50% of patients (the
risk increasing with increasing grade), therefore requiring
subsequent lines of immunosuppressive therapies (22, 23).
Outcomes of patients with steroid refractory aGVHD have
been dismal (up to 60–85% of non-relapse mortality at 2
years), partly due to aGVHD by itself, but also to cumulative
toxicity and increasing susceptibility to infections and relapse
incurred with additional immunosuppressive therapy (22, 24).
Hopefully, research is constantly developing in the field and two
recent large phase III studies have provided significant benefit in
efficacy outcomes with two novel strategies for the treatment of
steroid refractory aGVHD. First, Socie et al. reported better long-
term overall survival with inolimomab (an anti-CD25
monoclonal antibody) in comparison with anti-T cell globulin
(25). The second phase III study demonstrated higher response
rate with ruxolitinib (a JAK 1–2 inhibitor) compared to the
investigator's therapy of choice (26). Nevertheless, aGVHD
remains a severe complication and one of the major cause of
early post-transplant mortality (27).
WHAT IS AGVHD? THE IMMUNOLOGICAL
POINT OF VIEW

Despite significant improvements in the field over the past 20
years, the complex immunobiology of aGVHD still remains only
partially elucidated. Here, we present a simplified overview of the
main basic immunological concepts on aGVHD biology, with
the aim of providing readers with some clues for understanding
the rationale of both current and emerging preventive
approaches. For more detailed information about aGVHD
pathophysiology, readers are referred to several outstanding
reviews (6, 28–30).

Donor T Cells as Drivers, Amplificators,
and Effectors of aGVHD Responses
AGVHD after alloHCT mainly results from donor T-cell
alloreactivity against the recipient's tissues, as evidenced by the
low incidence of GVHD observed in patients transplanted with a
Frontiers in Immunology | www.frontiersin.org 3
T-cell depleted allograft (31). After alloHCT, transferred donor T
cells are able to recognize structurally dissimilar allogeneic
peptide/HLA complexes in the recipient, reacting against either
polymorphic HLA molecules (in case of alloHCT with HLA-
mismatched donor/recipient pair) and/or peptides (minor
histocompatibility antigens) presented by either shared or
dissimilar HLA molecules (in the setting of alloHCT with
HLA-matched or mismatched donor/recipient pair ,
respectively) (32–34).

In general, three types of signals are required to generate full
alloreactive T-cell responses after alloHCT (Figure 1) (6, 28–30,
35). The first triggering event that makes a donor T cell
alloreactive is the activation of its TCR by the peptide/HLA
complex (signal 1). TCR engagement leads in the activation of a
series of intracellular downstream signaling pathways that
ultimately result in the nuclear translocation of key
transcription factors such as nuclear factor-kappa B (NF-kB),
Adaptor-related Protein complex 1 (AP1), and nuclear factor of
activated T cell (NFAT), whose coordinated activity orchestrates
the complete activation of the T cell, its proliferation and its
synthesis of cytokines and cytokine receptors, such as IL-2 and
CD25 (the a subunit of the high affinity abg forms the IL-2
receptor) (36). Besides the basic biology, the blockade of one of
these TCR-downstream signaling pathways, namely the NFAT
calcium/calcineurin-dependent transduction pathway, was one
of the first strategies explored to repress alloreactive T-cell
activation after alloHCT in pioneered preclinical and clinical
studies (37) and is still currently universally used as a standard
approach for aGVHD prophylaxis (see below). Inhibition of the
NF-kB pathway was also demonstrated to be efficacious for
reducing proliferation, survival, cytotoxic functions and
production of cytokines in alloreactive T cells during aGVHD
(38–40).

Along with TCR activation, additional positive costimulation
(signal 2) is required to allow complete T-cell activation and
avoid anergy or apoptosis (41). Multiple T-cell positive
costimulatory molecules have been identified to play role in
aGVHD, such as CD28, inducible co-stimulator (ICOS), OX40,
and 4-1BB [nicely reviewed in (41, 42)] (Figure 1). Their cognate
ligands [namely B7 ligands (CD86 or CD80), B7-related protein-
1 (B7RP-1), OX40L and 4-1BBL, respectively] are highly
expressed at the surface of mature antigen presenting cells
(APCs). Among all of the T-cell costimulatory receptors, the
most extensively studied is CD28, which is constitutively
expressed at the surface of naive T cells. Another B7 receptor,
induced with T-cell activation, is cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4) that has similar structure to
CD28 and acts as a competitor for CD80 and CD86 ligation,
resulting in dowregulation of T-cell responses. Blockade of
CD28/B7 interactions has been shown to attenuate alloreactive
T-cell activation, induce tolerance to host alloantigens and to
reduce aGVHD in in vitro studies and animal models of alloHCT
(43–46). One of these approaches consists in using fusion
proteins of the Fc region of human immunoglobulin with the
extracellular domain of CTLA4 (CTLA4-Ig) (43, 45) and is tested
for aGVHD prevention in clinical trials (see below).
October 2020 | Volume 11 | Article 583564
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The third signal for sustained T-cell activation, acquisition of
effector functions and survival is provided by cytokines [signal 3,
nicely reviewed in the context of aGVHD in (42, 47)]. Among all,
IL-2 is a key cytokine for alloreactive T-cell proliferation and
survival. Produced by activated T cells, IL-2 acts through
paracrine and autocrine signaling, further providing a self-
activation loop. Among others, IL-2 receptor intracellular
signaling in T cells include JAK (janus kinase)/STAT (signal
transducers and activators of transcription) pathways (namely
JAK1 and JAK3/STAT5 in particular) (Figure 1) (48, 49). JAK1/
2 pathways are also involved in signal transduction downstream
the receptors of multiple other cytokines (such as IL-6, IL-12, ...)
and play major role in T-cell proliferation, polarization, and
metabolic reprogramming (49). Pharmacological inhibition of
JAK1/2 pathways was demonstrated to reduce aGVHD in
preclinical models (50) and to be efficacious for the treatment
of patients with steroid refractory-aGVHD (see above,
INTRODUCTION) (26). Mechanisms of JAK1/2 inhibition on
aGVHD reactions include at least decreased Th1 and Th17
differentiation, but also broad anti-inflammatory and
immunosuppressive effects on multiple immune cell types
[reviewed in (50)]. It is commonly accepted that pathogenic
Th1 and Th17 cells as well as their polarizing cytokines [IL-12
and interferon gamma (IFNg); IL-6, IL-1b, IL-21 and IL-23,
respectively] play important role during aGVHD (42, 47, 51).
Among all cytokines, IL-6 is the hallmark of pro-inflammatory
cytokines and increased systemic IL-6 levels were reported in
patients early after alloHCT (52, 53). IL-6 signaling in donor T
Frontiers in Immunology | www.frontiersin.org 4
cells is critical for the polarization of donor naive T cells towards
Th17/Tc17, but IL-6 also exerts many other effects (such as
several on DC and regulatory cells) (54, 55).

Mechanistic/mammalian target of rapamycin (mTOR) is
another key signaling kinase in T cells that integrate an array
of activating signals (including the three aforementioned signals
of T-cell activation) and environmental cues to regulate cell
survival, growth, proliferation, differentiation, and metabolism
(56). Inhibition of mTOR Complex 1 (mTORC1) has
demonstrated efficacy against aGVHD in preclinical models
(56–58) and has been explored as GVHD prevention in clinical
trials for several years (see below).

Over the past decade, it has become increasingly clear that
metabolic reprogramming of the T cell is required to enable the
transition from a naive T cell to a proliferative and differentiated
T cell that will drive immune effector functions and mediate
aGVHD. Studies have reported that effector T cells use multiple
metabolic pathways (glycolysis, oxidative phosphorylation, fatty
acid oxidation, glutaminolysis) to keep the pace with high energy
demands during aGVHD, (59, 60). Furthermore, the metabolic
demand of different T cell subsets is likely not identical.

A key event in the initiation phase of aGVHD is the
interaction of CD4+ and CD8+ donor T cells with activated
APCs (via cross-presentation for the latter) that provide the
three aforementioned signals. During the initiation phase of
aGVHD, most of the APCs are host-derived hematopoietic
APCs and host non-hematopoietic APCs (intestinal epithelial
cells, keratinocytes, myofibroblasts...) (61, 62). By expressing
FIGURE 1 | Signals 1, 2, 3 of T-cell activation and sites of action of several molecules used or tested in clinical trials for aGVHD prevention. Sites of action of current
approaches (blues circles) and developing strategies (orange circles) are presented. Beyond their effects on Teff, several of these molecules have also effects on other
cell types (see text). [adapted from (35)].
October 2020 | Volume 11 | Article 583564
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pattern recognition receptors (PRR) such as Toll-like (TLR) and
nucleotide oligomerization domain (NOD)-like receptors, innate
immune cells and some epithelial cells are able to detect danger
signals such as sterile DAMP (damage-associated molecular
pattern molecules, which are released from dying cells or
disrupted extracellular matrix) and PAMP (pathogen-associated
molecular patternmolecules, which can be released from invasive
bacteria, fungi or viruses at the epithelial surfaces). After
alloHCT, an increased number of DAMP and PAMP
molecules can be released as a consequence of cytotoxic
conditioning regimen or aGVHD [reviewed in (63)]. After
alloHCT, several studies have demonstrated that host exposure
to gut microbial flora and PAMPs due to disrupted intestinal
barrier can be an important initiating event in aGVHD reactions
(64–67). Mechanisms include the recruitment and activation of
host neutrophils (which further contribute to tissue damage and
inflammation) as well as inflammatory macrophages, dendritic
cells and non hematopietic APCs (which further prime T cells)
(61, 67–69).

Beyond T-cell activation and clonal expansion, T-cell
chemotaxis towards secondary lymphoid organs and target
tissues are also important in aGVHD immunobiology [nicely
reviewed in (70)]. For example, among the so-called "homing
receptors", the chemokine-receptor CCR7 and the L-selectin
(CD62L) are expressed at the surface of naive and central
memory T cells and direct them to secondary lymphoid
organs in which they can be primed and activated by
professional APCs. This raises the hypothesis that T cells may
contribute differently to aGVHD according to their
differentiation status, with naive CD4+ T cells being more
prone to cause aGVHD than (late) effector memory CD4+ T
cells (71, 72). In addition, T-cell migration towards GVHD
target organs is also crucial to cause aGVHD. Namely, the
chemokine receptor CCR5 is involved in T-cell migration
towards lymph nodes, the GI tract and the liver. Hence,
CCR5-chemotaxis blockade was reported to limit aGVHD in
some murine models (73, 74). Integrins also participate in T-
cell migration to target organs and the specific tissue expression
of some of themmay make their study interesting in the context
of aGVHD. Several mouse studies have indeed suggested that
a4b7 integrin on donor T cells was important for T-cell
migration into gut-associated lymphoid tissues and for the
development of GI aGVHD (75, 76).

After being primed by APCs in secondary lymphoid organs,
activated and differentiated donor T cells migrate to target
organs where they generate effector T cell (Teff) responses
(effector phase of aGVHD). Cytotoxic T cells can cause direct
target tissue cell death via diverse cytolytic pathways that
involve the release of granzyme B and perforin and the
expression of members of the tumor necrosis factor (TNF)
family (including FasL). Immune activation and tissue lesions
lead to a cytokine storm that further recruits multiple cellular
effectors (e.g. other T cells, neutrophils, and activated
macrophages) and brings molecular effectors (e.g. TNF-a,
IFN-g, complement molecules, reactive oxygen species, ...),
further intensifying tissue lesions and inflammatory responses
Frontiers in Immunology | www.frontiersin.org 5
(amplification phase) and thus leading to sustained aGVHD
reactions and severe end-organ damages.

Mechanisms Establishing Immune Cell
and Tissue Tolerance During aGVHD
As mentioned above, Teff cell activation and proliferation are
negatively regulated by co-inhibitory signals. In addition to these
T-cell intrinsic pathways, peripheral immune tolerance can also
be achieved by the intervention of several anti-inflammatory
molecules as well as tolerogenic cells. In the context of aGVHD,
all of these components can help restraining the destructive
machinery of immune cell and limiting tissue damages.

Numerous investigations have focused on regulatory T cells
(Tregs), which can exert multiple tolerogenic and anti-inflammatory
effects [nicely reviewed in (77–79)]. Tregs are characterized by the
expression of the master forkhead box protein 3 transcription factor
(FoxP3) and their constitutive expression of the surface receptor
CD25, the high affinity IL-2R a-chain (in contrast to Teff in which
CD25 expression starts upon the TCR activation) (80). Hence, in
steady-state conditions (low dose of IL-2), Tregs capture all the IL-2
molecules in the milieu, therefore quenching spurious activation of
Teff. There are several types of CD4+ Treg: (1) "natural thymus-
derived Treg" (nTreg or tTreg), generated from lymphoid precursors in
the thymus; and (2) "peripheral Treg" (pTreg), derived from the
differentiation of conventional naive T cells in secondary lymphoid
organs in the context of low-dose or tolerogenic antigen exposure
and upon IL-10 and TGF-b stimulation. pTreg can also be generated
in vitro and in this case are referred as “induced Treg” (iTreg).
Interestingly, preclinical studies in mice have shown that co-
transplanting high doses of CD4+ iTreg or infusing fewer freshly
isolated Treg from donor peripheral blood (likely containing a
mixture of t- and pTreg) several days prior to alloHCT in
lymphopenic conditions was effective for mitigating allogeneic
and human xenogeneic GVHD (81, 82). However, one issue with
Treg adoptive transfer could be their phenotypic and functional
instability in the context of prolonged inflammation (such as during
aGVHD), causing them to lose their immunosuppressive properties
and even acquire pro- inflammatory functions. Such observations
were made in mice (83, 84) but also with human Treg in the context
of xenogeneic GVHD (85).In comparison to tTreg, the expression of
FoxP3 is more unstable in iTreg, since they lack the locked-in gene
expression signature of transcription factors implicated in FoxP3
activity stabilization. Specifically, hypermethylation of FoxP3 gene/
promoter in iTreg was reported to destabilize their phenotype (86).
By contrast, phenotypic and functional stabilization of Treg cells has
been demonstrated with hypomethylating agents in a model of
xenogeneic GVHD (87).

Type 1 regulatory T cells (Tr1) are another subset of
suppressive peripheral T cells, still suppressing immune
response similarly to t- and pTreg but characteristically lacking
CD25 and Foxp3 lineage marker expression (88). Although if
this subpopulation has been only partly unraveled so far, Tr1-like
cells are being considered more and more important for immune
response homeostasis. Similarly to iTreg, Tr1-like cells can be
induced in vitro (88, 89), and a recent preclinical co-transfer
study has shown promising results for suppressing GVHD (89).
October 2020 | Volume 11 | Article 583564
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Other cell types that have been reported to exert immunoregulatory
properties during aGVHD, include invariant natural killer T cells
(iNKT), natural killer cells (NK), innate lymphoid cells (ILC),
tolerogenic dendritic cells, various myeloid suppressor
populations of hematopoietic [e.g., myeloid-derived suppressor
cells {MDSCs}, CD34+ regulatory monocytes] and stromal origin
[e.g., mesenchymal stromal cells (MSCs)] (90–92). In particular,
iNKT cells are under increased investigation, owing to their
reported suppressive activity against GVHD in preclinical
models (93, 94).

In addition to these tolerogenic immune cell subtypes, other
non-immune cells and components of the damaged organs can
also reveal protective properties in the context of aggression,
through several mechanisms including the up-regulation of anti-
inflammatory surface receptors, release of tolerogenic soluble
factors and activation of repairing mechanisms (a concept
known as “tissue-tolerance”). This concept has been described
in recent nice articles (95, 96). Among others, IL-22, keratinocyte
growth factor (KGF), R-spondin-1 (R-Spo1) and glucagon-like
peptide 2 (GLP-2) were reported to be protective against GI
manifestations of aGVHD (e.g. by preserving and/or enhancing
the regeneration of intestinal epithelial cells, intestinal stem cells
and/or Paneth cells) (97–101). Paneth cell secretion of
antimicrobial peptides (e.g. a-defensin) is also critical for
maintaining the GI microbial ecosystem (97).

There is also growing evidence that the commensal
microbiota at mucosal and cutaneous surfaces plays important
role in tissue homeostasis and immune tolerance after alloHCT.
This concept has been particularly studied at the intestinal
interface [nicely reviewed in (102)]. It was recently reported
that the bacterial and viral gut microbiota is altered (with loss of
diversity and dominance of some taxa) after alloHCT and that
such dysbiosis may be associated with aGVHD outcomes (103–
107). Regarding bacteria, low intestinal abundance of gut
commensals belonging to the Lactobacillales, Clostridiales and
Blautia genus was reported to be associated with and increased
incidence of lethal aGVHD and poor survival (104, 108).
Consistent with this, increased risk of aGVHD-related death
was also reported with the use of some anti-anaerobic or broad-
spectrum antibiotics in mice and in patients (104, 109–111).
However, most of the aforementioned studies were based on
associations, and the causations as well as the precise
mechanisms of how the microbiota can influence immune and
tissue tolerance post-allo-HCT remain to be determined. Recent
data suggested that an important way could be through
microbiota-derived metabolites (112, 113). A recent elegant
work has indeed highlighted significant variations in
microbiota-derived metabolites (especially aryl hydrocarbon
receptor ligands, bile acids and plasmalogens) at the onset of
aGVHD in patients (114). A significant reduction in fecal levels
of butyrate [a short-chain fatty acid (SCFA) generated by the
fermentation of non-digestible carbohydrates by certain
anaerobic commensal bacteria] in patients after alloHCT was
also alloHCT reported by another group (114). Interestingly, in a
mouse model, restoring butyrate levels, either by direct
administration of butyrate or by changing the composition of
Frontiers in Immunology | www.frontiersin.org 6
intestinal microbiota towards an increase in butyrogenic bacteria
(e.g. selected strains of Clostridia) mitigated aGVHD and
improved survival (115). Understanding the precise effects of
all these metabolites on host tissues and immunity is the subject
of intense current research, with some data already suggesting
various potential roles in enhancing the trophicity and
regenerative properties of the intestinal epithelium as well as in
modulating innate and adaptive immune responses (102, 112,
113). Overall, these findings highlight the likely major role of the
microbiome-metabolome axis in aGVHD, which may offer
potential new targeted strategies to explore for improving
aGVHD prophylaxis or treatment.
HOW TO PREVENT AGVHD AFTER
ALLOHCT? WHEN THE CLINICIAN MEETS
THE IMMUNOLOGIST

Conventional Strategies for aGVHD
Prevention
Currently, there is no standardized aGVHD preventive
approach. However, the backbone of most conventional
prophylactic regimens is based on T-cell immunosuppression,
by the pharmacological inhibition of their clonal expansion and
activation and/or by their direct depletion (116). Here, we
provide a short overview of the current standard regimens for
aGVHD prevention and briefly describe their biological
rationale. For detailed clinical considerations, readers are
referred to the recently published 2019 EBMT consensus
recommendations for aGVHD prophylaxis and treatment (117).

Since the mid-1980s (37), the most commonly adopted
GVHD prophylaxis regimens among patients given alloHCT
with BM or PBSC fromHLA-matched sibling or unrelated donor
consist in the combination of an anti-metabolite [either short
course of methotrexate (MTX) or mycophenolate mofetil
(MMF)] with a calcineurin inhibitor [CNI, either cyclosporin
A (CSA) or tacrolimus (FK506, tacro)]. The former (MTX or
MMF) delete proliferating T cells, while the second (CNI) blocks
TCR-induced T-cell activation (signal 1) by interfering with
NFAT nuclear translocation thereby reducing transcription of
IL-2 (Figure 1).

Several other alternative regimens have also been explored
with the aim of improving the control of aGVHD and/or
reducing drug toxicity. Among them, administration of mTOR
inhibitors [of which sirolimus (siro) is the most widely studied
molecule] has been tested for several years (Figure 1). Unlike
CNIs which, by reducing IL-2 production, limit Teff activation
but with a concomitant negative impact on IL-2-dependent Treg,
inhibition of the mTOR signaling pathway precludes the
activation of Teff while preserving Treg activity (which are less
dependent on the mTOR/Akt pathway) (58, 118). Several
randomized phase III trials have addressed the effects of siro
either as a substitution of MTX (tacro + siro vs. tacro + MTX) in
myeloablative TBI-based alloHCT (119) or in addition to the
standard prophylaxis (tacro + MMF + siro triplet regimen) after
October 2020 | Volume 11 | Article 583564
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non-myeloablative/RIC-alloHCT (120). Although these studies
provided encouraging results, clinical data and experience with
siro are still considered insufficient to recommend its routine use
as part of the prophylactic regimen (117). Moreover, a warning
has been issued with the use of siro after high dose busulfan-
based conditioning regimens due to the increased risk of
sinusoidal obstruction syndrome (121).

For almost two decades, in vivo T-cell depletion using
serotherapies with rabbit anti-T-cell globulin (ATG, ATG-
Thymoglobulin® or ATG-Grafalon®) (122–126) or alemtuzumab
(ALEM, an anti-CD52 monoclonal IgG1 antibody) (127) has also
been used to prevent GVHD. Both of these antibody preparations
have a long half-life in the human plasma and therefore, once
administered as part of the conditioning regimen, they exert their
biological effects for several weeks after the graft infusion and
induce profound depletion of both host and donor immune cells
(128, 129). Moreover, besides the pan T-cell depletion (Figure 1),
ATG and ALEM also mediated a variety of other immune effects
[detailed in other informative reviews (130, 131)]. Several large
randomized phase 3 trials have demonstrated the benefit on both a-
and cGVHD incidence of adding ATG to standard prophylaxis in
the setting of MAC-alloHCT with PBSC (122–126). In a related
approach, ex-vivo immune cell depletion of the graft (e.g. by
immunomagnetic positive selection of CD34+ stem cells or
ALEM in the bag) was also evaluated and proved to be effective
to prevent GVHD (132–134). However, a major concern with such
an approach is its negative impact on GVL effects and
immune recovery.

In recent years, there has been an exponential increase in the
number of haplo-alloHCT performed worldwide. This was
made possible thanks to the development of innovative
platforms for GVHD prevention in this peculiar high
alloreactivity setting. Among them, the advent of post-
transplant cyclophosphamide (PTCy) has revolutionized this
procedure and can be considered as one of the major advances in
the field of alloHCT over the past two decades (135–139). This
approach, designed by the John Hopkins University group in
Baltimore, consists in the administration of (one or) two boluses
of high dose cyclophosphamide (Cy, a nitrogen mustard
alkylating agent) shortly after alloHCT (day +3 and/or +4)
followed by MMF/tacro prophylaxis (starting from day +5).
The initial rationale of this strategy mostly assumed to be a
cytotoxic and selective depletion of highly proliferative Teff

(supposed to be the newly primed alloreactive T cell clones
during the first days after the graft infusion) (Figure 1), while
preserving resting hematopoietic stem cells and non-alloreactive
T cells (such as anti-infectious memory T cells) (135).
Additional researches further demonstrated that PTCy also
induces central tolerance by additional intrathymic clonal
deletion of alloreactive T cell precursors (140, 141). Moreover,
it was recently suggested that beyond these effects on Teff, PTCy-
mediated protection against GVHD also (and mainly) relies on
the promotion of Treg and the induction of tolerance (135, 141).
Treg are indeed less sensitive than Teff to the Cy cytotoxic effects
due to their higher expression of aldehyde dehydrogenase (the
major detoxifying enzyme for cyclophosphamide) (142). In
Frontiers in Immunology | www.frontiersin.org 7
murine PTCy haplo-alloHCT models, Kanakry et al. showed
that PTCy does not completely eliminate alloreactive Teff, but
instead alters T-cell response to alloantigens and induces the
rapid and preferential recovery and expansion of Treg (142).
Evidence for the pivotal role of Treg in PTCy-mediated immune
tolerance is also illustrated by the development of severe and
fatal GVHD when FoxP3+ Treg are depleted (143). Going back
to clinical studies, the pioneer pilot trial with the PTCy strategy
led by the Baltimore group reported a very low incidence of
grade III–IV aGVHD (10%) in patients transplanted with HLA-
haploidentical BM after non-myeloablative conditioning
regimen (138). Similar encouraging results were further
observed by numerous other groups, even using PBSC as the
stem cell source and more intensive conditioning regimens (139,
144). Beyond haplo-alloHCT, PTCy recently starts gaining
popularity in other settings, including HLA-matched sibling/
unrelated donor and HLA-mismatched unrelated donor
alloHCT (145). Recently, in a large multicenter phase III trial
comparing several novel immunosuppressive prophylactic
regimens (PTCy + tacro +MMF; tacro + MMF + bortezomib;
tacro + MMF + maraviroc) with the contemporary standard
tacro + MTX scheme after RIC-alloHCT, PTCy + tacro + MMF
appeared to be the most promising intervention, yielding the
best GvHD-free, relapse-free survival (GRFS) (146). It is
currently unknown whether another combination (i.e. MMF/siro)
can be as effective as MMF/CNI in addition to PTCy in haplo-
alloHCT, or even if PTCy can be safely used as a single agent after
HLA-identical sibling transplantation. It is the subject of
numerous investigations.

Developing Strategies for aGVHD
Prevention
The deeper understanding of aGVHD immunobiology has
facilitated the diversification of preventive strategies, and many
novel approaches are currently under investigation (6, 29, 116).
The concrete clinical goal of aGVHD prophylaxis after alloHCT
is to prevent or at least to significantly reduce the damage to
target tissues induced by alloreactive immune responses in order
to decrease the risk of clinically relevant organ dysfunction
leading to “clinical aGVHD”. To achieve this objective, the
current strategies being developed/under investigation for
limiting aGVHD after alloHCT can be categorized according
to three main areas of intervention: (1) limitation of donor-
derived immune cell alloreactivity, (2) promotion of immune
tolerance, and (3) modulation of the target tissue environment to
make it less prone to but rather more resistant to aGVHD
immunopathology and to improve regenerative properties.
Given the large number of strategies under development, it is
difficult to cover them all. Here, we have chosen to present some
of those which have already reached clinical trials and which
seem to be the most promising in our opinion (Table 1).

Strategies Aimed at Limiting Alloreactivity of Donor
Immune Cells (Mainly T Cells) Against Host Tissues
As donor Teff are main causative agents of aGVHD, huge efforts
have been made to optimize and refine donor Teff depleting
October 2020 | Volume 11 | Article 583564
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TABLE 1 | Developing strategies for aGVHD prevention.
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Developing strategies Ongoing clinical trial Main putative mechanisms of action

Ex vivo depletion of TCRab+/CD19+ donor cells
[phase I–II (147)]

NCT04088760 (phase II)
NCT02508038 (phase I)

X

Ex vivo depletion of CD45RA+ naive T cells
[phase II (148)]

X

Ex vivo photodepletion of anti-host reactive donor T cells
(Kiadis) [phase II (149)]

NCT02999854 (phase III) X X

Proteasome inhibitors (bortezomib)
[phase I–II (146, 150, 151)]

NCT03945591 (phase II)
NCT03082677 (phase II)
NCT01991301 (phase I)
NCT02145403 (phase I–II)

X X X X

a-CTLA-4 Ig (abatacept, belatacept)
[phase II (152–156)]

NCT02867800 (phase I)
NCT01743131 (phase II)
NCT04380740 (phase II)

X

Anti-IL-6 receptor antibody (tocilizumab)
[phase I–II (52, 53)]

NCT03434730 (phase II) X X

Janus kinases inhibitors
(anti-JAK1/2 ruxolitinib, and baricitinib; anti-JAK1 itacitinib)

NCT02806375 (phase I–II)
NCT04131738 (phase I)
NCT04127721 (phase II)
NCT03755414 (phase I)
NCT03320642 (phase I)

X X X

Demethylating agents (5-azacytidine, decitabine)
[phase I–II (157)]

NCT00813124 (phase II)
NCT01758367 (phase I–II)

X X X X X X X

Histone deacetylase inhibitors (vorinostat, panobinostat)
[phase I–II (158, 159)]

NCT03842696 (phase I–II)
NCT03842696 (phase I–II)
NCT02588339 (phase II)

X X X X X X X

CCR5 blocker (maraviroc)
[phase I–II (74, 146, 160)]

NCT02799888 (phase II) X

a4b7 integrin blocker
(vedolizumab)
(phase I–II) (161)

NCT03657160 (phase III) X

Low dose IL-2
[phase I (162, 163)]

NCT02659657 (phase II) X

Treg infusion
[phase I–II (reviewed in (164)]

NCT01795573 (phase I)
NCT03977103 (phase II)
NCT04013685 (phase I)

X

Mesenchymal stromal cells
[phase I–II (reviewed in (165))]

NCT02270307 (phase II–III)
NCT01045382 (phase II)
NCT04247945 (phase II–III)

X

iNKT cells
[agalCer, phase II (166) , TLI conditioning (129)]

NCT03605953
NCT00631072

X

(Continued)
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approaches, e.g. by selectively depleting specific T-cell
subpopulations. In particular, the selective depletion of
TCRab+ cells, of naive T cells, or even of activated alloreactive
T cells (e.g. with ex vivo photodepletion of anti-host reactive
donor T cells) has demonstrated encouraging results for aGVHD
prevention (147–149). Besides Teff depleting approaches,
strategies aimed at functionally interfering with Teff activation
(signal 1, 2 and/or 3, Figure 1), intracellular signaling pathways,
metabolism and homing properties are also developing as well as
gene editing approaches.

As described above, signal transduction downstream of TCR
activation (signal 1) in Teff occurs through multiple pathways
that result in the nuclear translocation of key transcription
factors, including NFAT, NF-kB and AP1. Blockade of the
NFAT calcium-dependent transduction pathway with CNI
(CSA or tacro) is universally used as standard GVHD
prophylaxis. Inhibition of the NF-kB pathway also recently
appeared as an interesting approach. Proteasome inhibitors,
such as bortezomib (BOR), have been shown to suppress NF-
kB activation (in part by reducing the degradation of its
inhibitory protein IkBa) and were reported to confer
protection against GVHD in mouse models (39). Moreover, by
reducing the degradation of many other intracellular proteins,
blocking the proteasome also has an impact on T-cell
chemotaxis, secretion of inflammatory cytokines, APC
functions and promote Treg (173). Based on these observations,
the early addition of short-course BOR (on days +1, +4, and +7
Frontiers in Immunology | www.frontiersin.org 9
after alloHCT) to standard tacro/MTX has been assessed in
phase I–II clinical trials and provided encouraging results (150).
However, in a large open-label three-arm phase 2 randomized
trial comparing conventional Tacro/MTX vs. BOR/Tacro/MTX
and vs. BOR/Tacro/Siro after UD RIC-alloHCT, BOR-based
regimens failed to show an improvement in day +180 aGVHD
incidence (32.6, 31.1 and 21%, respectively) (151). Similarly, in
another large prospective phase II study comparing several novel
prophylactic regimens with contemporary MTX/tacro controls,
the addition of BOR to standard MTX/tacro in RIC-alloHCT did
not result in lower aGVHD incidence (146). Combination of
BOR with other agents, such as PTCy, as well as use of other
proteasome inhibitors (carfilzomib, ixazomib) is currently under
investigation (Table 1).

Targeting costimulatory signals at the APC/T-cell interface
(signal 2) has also been investigated as aGVHD prophylaxis for
several years. Of all these strategies, the one that has reached the
more advanced stage of development concerns CTLA4-Ig
(abatacept, belatacept). Addition of abatacept to background
CNI-based aGVHD prophylaxis in the setting of alloHCT with
HLA-matched donor has produced promising results in phase I–
II clinical trials (152, 153). Addition of abatacept to the PTCy
platform is also under investigation in the setting of haplo-
alloHCT for non-malignant disorders (154, 155). Moreover,
unlike T-cell anergy, recent data have shown that NK cell
cytotoxicity is not altered, but even enhanced in the presence
of CTLA4-Ig. This makes the CTLA4-Ig approach an interesting
TABLE 1 | Continued
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Recombinant urate-oxidase
[phase I (167)]

– X

Alpha-1-antitrypsin NCT03805789 (phase II-III) X

Keratinocyte growth factor [phase I-II (168, 169)] – X

Probiotics and fecal material transplantation
[phase I-III (170–172)]

NCT03720392 (phase II) X

Prebiotics NCT02805075 (phase I)
NCT02763033 (phase II)

X
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strategy for reinforcing GVT effects while still limiting aGVHD
risks in the setting of HLA-mismatched donor (haplo)
transplantation. This hypothesis prompted several groups to
study the CTLA4Ig sequential primed donor lymphocyte (DLI)
infusion protocols after PTCy-based haplo-alloHCT as adoptive
immunotherapy in patients with advanced malignant disorders
(156). Of note, one issue with targeting CD80/CD86 with
CTLA4-Ig may be associated with concurrent undesired
blockade of tolerogenic CTLA4-dependent signaling to Treg

and APCs. Hence, CD28-specific inhibition is under
investigation in preclinical studies (44).

Different strategies that target signal 3 of T-cell activation by
blocking cytokines or their receptors were also tested in clinical
studies (42, 47). Among them, blockade of IL-2 signaling with
monoclonal antibodies binding to the IL-2 receptor a-chain
CD25 (e.g. basiliximab, daclizumab, inolimomab) was
unfortunately discouraged for controlling aGVHD since it was
reported to be associated with increased GVHD-related
mortality (174, 175). This is likely due to the negative impact
of IL-2 blockade on suppressive Treg since IL-2 is not only crucial
for Teff expansion but also for Treg homeostasis.

IL-6, TNF-a, and IL-1b are important pro-inflammatory
cytokines in aGVHD pathogenesis. Addition of Tocilizumab
(an anti-IL-6 receptor monoclonal antibody) to CNI/MTX
prophylaxis has been tested in phase I–II studies and has been
shown to be associated with a very low incidence of grades II–IV
aGVHD (<15%) (52, 53). However, these promising results have
to be confirmed in larger phase III studies. By contrast, inhibition
of TNF-a or IL-1b added to standard GVHD prophylaxis failed
to prevent aGVHD (176, 177). Several additional cytokines (such
as IL-12, IL-23, GM-CSF, etc.) have also been implicated in
aGVHD pathogenesis, and their inhibition should also be
evaluated in the future.

T cells respond to many inflammatory cytokines (including
IL-6) through JAK/STAT pathways. As described above, several
studies have shown that the inhibition of JAK1/2 pathways (i.e.
with ruxolitinib and baricitinib, two JAK1/2 inhibitors, or with
itacitinib, a selective JAK1 inhibitor) prevented aGVHD in
preclinical model (50) and was efficacious for controlling
steroid refractory-aGVHD in patients (26). Further ongoing
studies are investigating the use of this molecule and other
JAK1/JAK2 inhibitors for aGVHD prevention (Table 1).
Itacitinib, which inhibits JAK1 while sparing JAK2, is expected
to have reduced myelosuppressive activity compared to broader
specificity JAK inhibitors.

Encouraging results also come from epigenetic modifiers
[e.g. demethylating agents such as 5-azacytidine, decitabine,
histone deacetylase inhibitors (HDACi)] which can exert
pleiotropic effects on aGVHD reactions, not only on the fate
of Teff but also on other immune cells (such as Treg and DCs)
(157–159). For example, the addition of vorinostat (a HDACi)
to standard GVHD prophylaxis after alloHCT with HLA-
matched donors was examined in two phase 2 clinical trials
(158, 159). Both studies showed that vorinostat was well
tolerated and was associated with a low incidence of aGVHD
(grade II-IV aGVHD less than 25%, and grades III–IV less than
Frontiers in Immunology | www.frontiersin.org 10
10%). Additional advantages of such approaches lie in the fact
that, besides their immunomodulatory effects, these molecules
(demethylating agents and HDACi) can also exert anti-tumor
activity, therefore offering opportunities for mitigating GVHD
while enhancing anti-tumor effects.

Interfering with the homing of Teff towards target organs can
be viewed as an additional strategy for preventing aGVHD. A
phase I–II study indeed investigated the addition of maraviroc
(a CCR5 antagonist) to standard tacro/MTX after RIC-alloHCT
in adults and demonstrated a low incidence of visceral (GI and
liver) grades II–IV aGVHD (14.7%) (74). Similar encouraging
results were observed in pediatric patients (160). Nevertheless,
a recent multicenter phase II trial comparing several new
prophylactic regimens with contemporary MTX/tacro
controls in RIC-alloHCT showed that, when added to
standard MTX/tacro, maraviroc did not result in lower
GVHD rates compared to PTCy or BOR (146). The
redundant mechanisms in the signaling of chemokines/
chemokine receptors may be an explanation for the limited
effectiveness of strategies based on blocking just a single
chemokine receptor. Integrins also represent attractive
potential targets for novel preventive therapies against
GVHD. Low incidences of grades II–IV overall and lower-
intestinal aGVHD (19 and 14% at day 100, respectively) were
recently observed in a phase Ib study in which patients received
vedolizumab (an antibody directed againts a4b7 integrin) in
combination with standard tacro/MTX (161). A large phase III
randomized placebo control trial evaluating vedolizumab
added to standard aGvHD prophylaxis is currently recruiting
(NCT03657160, Table 1).

Finally, since T cells consume a lot of energy during aGVHD,
it can also be envisaged that targeting metabolic pathways and
subverting the use of T-cell energy could offer other potential
innovative preventive strategies to explore in the future. The
challenge will be to make these molecules specific enough to
avoid important toxicities.

Strategies Aimed at Promoting Immune Tolerance
Rather than trying to decrease the reactivity of the donor
immune cells, another way of preventing aGVHD after
alloHCT may be through the promotion of tolerance between
the donor immune cells and the recipient, by strengthening the
tolerogenic arm of the immune system. Indeed, cell-based
approaches to promote immune tolerance have shown
encouraging results. In our view, the most promising are Treg,
iNKT, and MSC-based therapies.

Early clinical trials with iTreg infusion in patients have
shown promising results for aGVHD prevention (178–180),
[reviewed in (164)]. Nevertheless, the major problem with the
clinical transfer of Treg is the difficulty of reaching a sufficient
number of Treg with good purity to infuse and of ensuring that
the transferred cells persist and retain their tolerogenic
properties in the inflammatory context of aGVHD (181).
Strategies aimed at promoting Treg proliferation in the donor
before Treg donation, for example by pretreating the donor with
TNF superfamily receptors DR3 agonists, have been reported to
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Vandenhove et al. aGVHD Prevention After alloHCT
be effective in murine models (182) but have not yet been
explored in humans. The scientific community is currently
focusing on examining approaches to promote in vivo Treg

expansion and stability within the recipient. In particular, the
high sensitivity of Treg to IL-2 (determined by their constitutive
expression of CD25) makes treatment with low doses of this
cytokine an interesting approach. A phase I–II study investigated
the administration of ultra-low dose IL-2 (100,000–200,000
IU/m2, 3 times/week) after alloHCT and reported promising
results in terms of safety and low incidence of aGVHD (0/
16 patients experienced grade II–IV aGVHD) (162). Another
study using a similar approach is underway in China
(NCT02659657, Table 1). However, in another trial
administration of low doses of IL-2 in addition to tacro/siro
for GVHD prophylaxis failed to prevent aGVHD despite
resulting in higher Treg levels (163).

As with iTreg, adoptive transfer of IL-10/TGF-b producing
Tr1 cells is gradually being seen as a new option for the
prevention of aGVHD. A pilot phase 1 clinical trial evaluating
the safety of Tr1 cell co-transplantation in pediatric patients in
an HLA-mismatched donors setting is currently being
planned (NCT03198234).

A high content of iNKT cells in the transplant has been
reported to be associated with a reduced risk of aGVHD in
clinical studies (183). Thus, protocols for promoting the
expansion of iNKT cells (e.g. through ex or in vivo
manipulations) appear as attractive novel strategies to explore
in order to prevent aGVHD. Clinical studies involving the ex vivo
expansion of iNKT cel l populat ions are underway
(NCT00631072, NCT03605953, Table 1). Recently, it was
reported that RGI-2001, a CD1-binding synthetic derivative of
alpha-galactosylceramide, activates and expands iNKT cells in
vivo (166). Conditioning regimens that foster the induction of
iNKT cells, such as total lymphoid irradiation, are also being
considered (129).

MSCs are multipotent progenitor cells that reside within the
BM microenvironnement and several other connective tissues
such as the adipose tissue, the umbilical cord, and placenta
membranes. Among a wide variety of functions, MSCs also have
a multiplicity of immunomodulatory and anti-inflammatory
properties, making them attractive candidates to consider as
cell-based therapies to prevent aGVHD. Moreover, MSCs are
hypoimmunogenic and can therefore be derived from third-
party HLA-mismatched donors. A number of preclinical studies
using various animal models have evaluated the effectiveness of
MSCs in alleviating GVHD. However, results were mixed, with
some studies reporting benefits (184), while others did not
(185). Several factors, including MSC tissue of origin (BM,
adipose tissue, cord blood, placental membranes), cell dose,
timing of infusion and pre-activated MSC status likely
influenced the results and caused heterogeneity between
studies. Pilot clinical studies have also suggested a potential
role for MSCs in preventing GVHD (186–188), [reviewed in
(165)]. Further studies are currently underway to more
precisely assess the impact of MSC co-transplantation on
aGVHD (Table 1).
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Strategies Aimed at Modulating Target Tissue
Environment
Beyond targeting Teff and promoting immune tolerance,
approaches aimed at controlling target tissue environment to
make it less pro-inflammatory and/or aimed at strengthening its
mechanisms of resilience, repair and regeneration (“tissue
tolerance”) may be considered as complementary strategies to
be exploited to mitigate aGVHD clinical severity.

Among others, molecules aimed at reducing danger signal
production (e.g. recombinant urate-oxidase, alpha-1-antitrypsin)
are currently under investigation (167, 189, 190).

Tissue-protective/regenerative approaches that promote the
healing of aGVHD-related tissue damages have also emerged as
promising complementary strategies to standard aGVHD
immuno-prophylaxis. As mentioned above, KGF, R-Spo1, IL-
22, and GLP-2 were reported to be protective during GI aGVHD
(97–101). To the best of our knowledge, among all these
molecules, only KGF has been tested to date in clinical trials
for aGVHD prevention. Two phase 1/2 randomized, double-
blind, placebo-controlled studies tested peri-transplant
palifermin (KGF) administration in combination with standard
prophylaxis (168, 169). Both of them failed to demonstrate
benefit in terms of reduction of severe grades III–IV aGVHD.
Clinical trials on IL-22 IgG2-Fc (NCT02406651) and GLP-2
(Teduglutide, NCT04290429) for the treatment of GI aGVHD
are underway, and it is plausible that these drugs will soon be
tested for aGVHD prophylaxis.

The accumulation of evidence on the involvement of the
commensal microbiota in intestinal tissue homeostasis and
immune tolerance post-alloHCT has also recently opened up
the concept of manipulating the gut microbiota as an innovative
approach to prevent aGVHD. Several strategies under study
include careful risk-balanced use of broad-spectrum antibiotics,
dietary or pharmaceutical interventions to limit growth of
noxious bacterial taxa [i.e. eviction of lactose (191) or enteral
immunoglobulin administration (192)] and direct transfer of
living microbial species using fecal material transplantation
(FMT) (170, 171) or selective transfer of microbial consortia
(probiotics) (172, 193, 194). Some of them have already reached
clinical trials (see Table 1). As such, FMT appears to be a
promising approach to improve microbiota diversity in
alloHCT patients and to limit aGVHD (170, 171). However,
considering the highly immunocompromised status of alloHCT
patients, safety of FMT should be carefully established in this
specific population, particularly regarding risk of bacterial
translocation, septicemia and norovirus infection (195, 196).
The modulation of the microbiome–metabolome axis with
prebiotic/postbiotic interventions is also under investigation.
Among others, the microbiota-derived SCFA butyrate appears
as an important metabolite for intestinal homeostasis and
immune tolerance after alloHCT. Interestingly, one approach
for stimulating microbial SCFA production could be via dietary
supplementation with non-digestible carbohydrates that can be
metabolized by selected commensal gut bacteria. Such strategy is
currently being explored in clinical trials in alloHCT patients
(Table 1). Among them, a phase II clinical trial is testing the
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safety and early efficacy for GVHD prevention of an oral dietary
supplement containing potato-based starch [which was reported
to increase microbial butyrate production in healthy volunteers
(197)] (NTC02763033). Besides SCFAs, roles of other microbial
metabolites (such as indole derivatives, peptides derived from
bile acids, aryl hydrocarbon receptor ligands, polyamine,
plasmalogens) would also be interesting to explore in the future.
CONCLUSION AND PERSPECTIVE

AGVHD is a severe complication after allogeneic stem cell
transplantation. It results from a highly deregulated immune
process, involving a complex network of multiple molecular and
cellular mediators and effectors causing end-organ damages
mainly to the skin, GI tract and/or liver. Despite prophylactic
measures, aGVHD still develops in about 20–50% of
transplanted patients, making it an unmet medical need in
alloHCT survivorship research. Improved understanding of the
pathology of aGVHD has led to the development of novel
strategies to optimize its prevention, with some of them
appearing particularly promising based on early data from
clinical trials. However, these and other new strategies that will
be developed in the future will have to be tested in prospective
phase 3 trials before they can become standard. Standardization
of aGVHD definition criteria and severity grading system using
the validated MAGIC criteria will be vitally important to
guarantee the quality, reproducibility and interpretation of
these future clinical studies.

Theoretically, it would be logical to think that the
combination of multiple approaches targeting several aGVHD
immunopathological pathways would ultimately provide a
complete suppression of aGVHD. However, the complete
abrogation of donor-derived immunity after alloHCT is
clinically irrelevant, as this would seriously compromise the
engraftment, anti-infectious immune reconstitution as well as
the beneficial GVT effects. The ideal step in the future would
rather be to provide a personalized risk-stratified aGVHD
prophylaxis regimen for each patient, reserving intensive
immunosuppressive regimens for patients at high risk for
aGVHD and avoiding excessive immunosuppression for those
at a low risk for aGVHD. To make this approach feasible, the
development of future algorithms to improve the accuracy of
aGVHD risk prediction will be an essential prerequisite.
Algorithms may be based on HLA disparities and other
factors, including predictive biomarkers, clinical predictive
Frontiers in Immunology | www.frontiersin.org 12
factors and genetic variants associated with increased risk of
aGVHD. Recipient and/or donor single nucleotide
polymorphisms (SNPs) for chemokines , cytokines ,
costimulatory molecules, and micro-RNAs (miRNAs) would
also likely allow transplant physicians to identify specific
immune profiles predictors of aGVHD in the future. However,
these analyses are not yet accessible for a routine assessment in
daily clinical practice.

Unlike immunosuppressive strategies, approaches aimed at
modulating the interactions between the host and gut microbiota
and/or promoting the regenerative properties of the target tissue
of aGVHD would likely not increase the risk of non-engraftment
or relapse after alloHCT and would therefore appear to be
interesting complementary approaches to combine with
classical GVHD immunosuppressive prophylaxis. At present,
little is known about the precise mechanisms of host–
microbiota cross-talk and about tissue-specific tolerance to
diseases, but it is a topic of growing interest and intense research.
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