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Trillions of symbiotic microbial cells colonize our body, of which the larger part is present in
the human gut. These microbes play an essential role in our health and a shift in the
microbiome is linked to several diseases. Recent studies also suggest a link between
changes in gut microbiota and neurological disorders. Gut microbiota can communicate
with the brain via several routes, together called the microbiome–gut–brain axis: the
neuronal route, the endocrine route, the metabolic route and the immunological route.
Helicobacter is a genus of Gram-negative bacteria colonizing the stomach, intestine and
liver. Several papers show the role of H. pylori in the development and progression of
neurological disorders, while hardly anything is known about other Helicobacter species
and the brain. We recently reported a high prevalence of H. suis in patients with
Parkinson’s disease and showed an effect of a gastric H. suis infection on the mouse
brain homeostasis. Here, we discuss the potential role of H. suis in neurological disorders
and how it may affect the brain via the microbiome–gut–brain axis.
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INTRODUCTION

The human microbiota contains trillions of symbiotic microbial cells that live in and on our body of
which the vast majority are present in the human gut (1–4). These commensal microbes perform
several functions essential to our health and survival, including food digestion (5, 6), activation of
certain drugs (4), prevention of infections (7–9), and they might play a role in the maturation of our
immune system (10, 11).

Already for a few decades, changes in the gastrointestinal microbiota have been associated with a wide
range of health problems including rheumatoid arthritis, inflammatory bowel diseases, asthma, and
cancer, et cetera (12–17). Moreover, it has been shown that gastrointestinal changes are able to influence
neurological disorders such as depression, anxiety, Alzheimer’s disease, Parkinson’s disease, andmultiple
sclerosis (MS) (18–29). Recently, it became clear that the gut microbiome can signal to the brain via
several pathways, together called the microbiome–gut–brain axis (30–34). In general, communication
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betweenmicrobiota and the brain is divided into four categories: the
neuronal route (enteric nervous system and vagus nerve), the
endocrine route (e.g. cortisol), the metabolic route (e.g. short
chain fatty acids (SCFAs) and tryptophan), and the
immunological route (e.g. cytokines and immune cells) (35, 36).
Bacteria can also affect the composition of the gut microbiota,
thereby indirectly affecting gut-brain signaling [Cryan and
Dinan (35)].
HELICOBACTER PYLORI AND
NEUROLOGICAL DISORDERS

A gastric spiral-shaped, Gram-negative microorganism, calledH.
pylori, colonizes the stomach of more than half of the world’s
human population albeit with large geographical variations. Next
to gastritis, peptic ulcer disease, mucosa-associated lymphoid
tissue (MALT) -lymphoma, and adenocarcinoma, H. pylori
infection has also been associated with neurological diseases.

Even though both innate and acquired immune responses are
activated in individuals infected with H. pylori, the host is unable to
eradicate the bacteria, leading to a chronic lifelong infection (37, 38).
To escape the host’s immune response and to survive in the hostile
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conditions found in the stomach, H. pylori has developed several
strategies, including manipulating innate immune receptors and
inhibiting effector T-cell responses (39, 40). The mechanism to
evade the immune system depends on the presence or absence of
certain bacterial virulence factors (39). The evoked immune response
by the host can lead to the local secretion of various inflammatory
mediators, such as interleukin (IL) 8, -6, -1b, -10, and -12, tumor
necrosis factor (TNF) and interferon (IFN) g, whichmight reach the
circulation causing a systemic effect (41, 42). The persistence of
noticeable local and systemic concentrations of these pro-
inflammatory factors can induce neuroinflammation and -toxicity
(41). Next to this, H. pylori infection leads to the release of several
neurotransmitters, such as acetylcholine, adrenaline, noradrenaline,
serotonin, and dopamine (43, 44). Moreover, H. pylori infection
might lead to axonal/neuronal damage, production of free radicals,
and changes in neuropeptide expression, such as vasoactive intestinal
peptide (VIP) and c-fos (43). Lastly, H. pylori infection is associated
with changes in the composition of the gastrointestinal microbiome
(43, 45). These changes, illustrated inFigure 1A, can potentially alter
the outcome of neurological disorders.

Indeed, seropositivity for H. pylori has been associated with
poor cognition (46), neurologic impairment (47), and
cerebrovascular disease (48) and is recognized as a significant
A B

FIGURE 1 | Changes at the microbiome–gut–brain axis during Helicobacter pylori and Non-H. pylori Helicobacter (NHPH) infection. (A) H. pylori is associated with
persistent local inflammation, which might lead to systemic inflammation, characterized by increased levels of free radicals, cytokines and chemokines in the blood. Infection
also leads to the release of several neurotransmitters, such as acetylcholine, adrenaline, noradrenaline and dopamine, but also increased levels of neuropeptides, such as
vasoactive intestinal peptide (VIP) and c-fos. Moreover, H. pylori can lead to blood–brain barrier breakdown and axonal/neuronal damage. (B) H. suis is associated with
inflammation of the stomach, associated with loss of the gastrointestinal barrier function, leading to leakage of TLR4 ligands into the blood. This leads to the breakdown of
the blood-CSF barrier, combined with microgliosis and cognitive decline. H. suis-induced changes in the pH possibly leads to changes in the gastrointestinal microbiome.
Moreover, lower levels of glutamate are present, which could influence the production of several neurotransmitters. Higher levels of IL-17 can block hippocampal
neurogenesis while IFN-g and lymphotoxins could lead to demyelination. BBB, blood–brain barrier; CSF, cerebrospinal fluid; IL, interleukin; IFN, interferon.
January 2021 | Volume 11 | Article 584165

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
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risk factor for the development of dementia (21, 49). Next to an
association of H. pylori with Parkinson’s disease (50), it has also
been shown that infection with H. pylori increases the risk of
developing Parkinson’s disease (41, 51, 52). Moreover, it has
been shown that eradication of H. pylori improves the motor
symptoms associated with Parkinson’s disease (53, 54).
Interestingly, H. pylori might influence the bioavailability of L-
3,4-dihydroxyphenylalaline (L-DOPA), the most common
treatment for Parkinson’s disease (52, 55).

H. pylori might also play a role in Alzheimer’s disease as
discussed in a review by Doulberis et al. (56). H. pylori infection is
associated with mild cognitive impairment, a prodromal phase of
Alzheimer’s disease (57, 58) andwithAlzheimer’s disease itself (59).
Higher levels of neuro-inflammation have been found in
Alzheimer’s disease patients infected with H. pylori, which
correlated with cognitive decline (60, 61), whereas eradication of
H. pylori improved the cognitive and functional abilities (62, 63).

In multiple sclerosis (MS), however, H. pylori is found less in
patients compared to control ones (64) and infection is even
thought to be beneficial (65). Lower clinical signs were found in
mice infected with H. pylori compared to control animals (66).
THERE IS MORE IN THE STOMACH THAN
HELICOBACTER PYLORI

Since the description ofH. pylori, many other gastric species in the
genusHelicobacterhave beendescribed. These gastric non-H.pylori
Helicobacter (NHPH) species have been reported in the stomach of
various hosts, including pigs, dogs, cats, and non-human primates
and some of them have a zoonotic potential (67, 68). The most
prevalent gastric NHPH species in humans is Helicobacter suis
which naturally colonizes the stomach of pigs and non-human
primates (67, 68). The bacterium is of zoonotic importance,
infecting 0.2–6% of the human population, causing gastritis,
peptic ulcers, and MALT lymphoma (67). However, since some
infections with this microorganism remain subclinical, their true
prevalence in humans is probably underestimated (67).
Furthermore, these spiral-shaped bacteria are not always found in
the human stomach after investigation of a small biopsy sample due
to their focal and patchy colonization pattern (67, 69–71). Like H.
pylori, H. suis may lead to a life-long infection, associated with a
tolerogenic immune response (24, 72).

In literature, hardly any data is available on the association
between an infection with NHPH species and neurological
disorders. Indeed, there are no papers describing the association
ofNHPHwith neurodegenerative or -immunological disorders like
amyotrophic lateral sclerosis, spinocerebellar degeneration, acute
disseminated encephalomyelitis, and Guillain-Barré syndrome.
One study showed that mice infected with Helicobacter felis
display both gastric and neuroinflammation (73). In another
study, a remarkable high presence of H. suis DNA (27%) was
found in gastric biopsies from idiopathic Parkinson’s disease
patients compared to a control group without clinical symptoms
of Parkinson’s disease (2%) (74). This was not the case for other
zoonotically important gastric NHPH species. Additionally,H. suis
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DNA was found in a blood sample of a patient simultaneously
affected by Parkinson’s and Alzheimer’s disease. After eradication
of the H. suis infection, the patient’s gastric and neurological
symptoms improved remarkably (74). Moreover, H. suis infection
in Parkinson’s patients has recently been linked with higher
mortality (75). To our knowledge, there are no other papers
describing a role for H. suis in neurological disorders. Here, we
will discuss several possible waysH. suismight influence the brain.
These changes are summarized in Figure 1B.
HELICOBACTER SUIS AND THE
MICROBIOME–GUT–BRAIN AXIS

In the first part, inflammatory changes in the stomach and how
they might affect the brain via the systemic circulation are
discussed. In the second part, changes due to virulence factors
of H. suis and the effect on the microbiome are discussed.

Inflammatory Changes and
Gastrointestinal Barrier Functioning
Infection with H. suis in pigs and mice is associated with increased
inflammation in the stomach, characterized by the higher
expression of IL-8, -10, -1b, and -4, keratinocyte chemoattractant
(KC), lipopolysaccharide-induced CXC chemokine (LIX), and
macrophage inflammatory protein (MIP2) depending on the host
(72, 76–78). This leads to the infiltration of B- and T-cells and
macrophages in mice, inducing a Th2 response.

Gastritis is accompanied by mucosal edema (67) and gastric
epithelial cell death (79), all of which could compromise the
integrity of the gastrointestinal barrier. The gastrointestinal barrier
consists of two layers: the epithelial cell layer, connected by tight
junctions, and a mucus layer. In pigs, significant downregulation of
claudin 18 (CLDN18) was found in the stomach of H. suis infected
animals (72). In a recent mouse study, we found increased
permeability of the gastrointestinal barrier after H. suis infection,
accompanied by increased expression of mucine 13 (Muc13) and
aberrant localization of zonula occludens 1 (ZO1) (77). This further
progressed to systemic inflammation, characterized by the leakage
of TLR4 ligands into the blood, affecting the brain homeostasis via
the blood–cerebrospinal fluid barrier (77). Next to TLR4 ligands,
also IL1b was found in the serum of H. suis-infected mice, which is
shown to induce inflammatory gene expression in the hippocampus
and hypothalamus associated with sickness behavior (80). As
discussed below, also other molecules that are observed in the
stomach uponH. suis infectionmight affect the brain when reaching
the systemic circulation due to a leaky gut.

Next to the Th2 response, also a Th17 response has been
associated with H. suis infection in the different hosts (mice,
gerbils, pigs, and humans), characterized by the presence of Th17
cells and/or increased levels of IL-17 in the stomach (76, 78, 81,
82). IL-17 is known to block adult hippocampus neurogenesis
(83) and is linked to depression in MS (84). In gerbils, but not
mice, also increased levels of IFN-g were found in the stomach of
H. suis infected animals (81). IFN-g is shown to be a regulator of
the neural precursor pool in the non-inflamed brain (85) but is
January 2021 | Volume 11 | Article 584165
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also linked with demyelination due to the reduced proliferation
and viability of oligodendroglial cells (86, 87).

H. suis is also associated with increased levels of lymphotoxin
(LT)-a and -b in the stomach ofmice (88). These cytokines are not
only involved in the generation of follicular dendritic cells (89), but
also regulate neuronal and glial lineage differentiation (90).
Lymphotoxins have been shown to play a role in MS, causing
demyelination due to oligodendrocyte toxicity (91). Blocking
lymphotoxin in experimental autoimmune encephalomyelitis
(EAE), a mouse model of MS, reduces disease symptoms, which
is accompanied with lower levels of the chemokine CXCL13 (92).
This chemokine plays a role in the recruitment of B-cells and its
expression is increased in the stomach afterH. suis infection in both
pigs, mice, and gerbils (72, 81), as are other chemokines such as C-
X-C motif chemokine receptor (CXCR) 7, 15 and 4, C-C motif
chemokine ligand (CCL) 19 and 21, and C-X-C motif chemokine
ligand12 (CXCL12) (88). InMS,higher levels ofCXCL13havebeen
observed in B-cell aggregates in the inflamed meninges (92) and
correlate with demyelination, neural cell loss, and rapid disease
progression (93). Thus, higher levels of CXCL13 caused by aH. suis
infection can potentially lead to accelerated disease progression.

Changes Due to Virulence Factors,
Metabolism and Microbiome
H. suis affects the presence of glutamine and glutathione by its
virulence factor g-glutamyl transpeptidase (GGT), in this way
damaging epithelial cells (81, 82, 94). Glutamine and glutathione
are not only important for the health of gastrointestinal tissue
(95), they are also precursors for the neurotransmitters
glutamate, aspartate, and g-amino butyric acid (GABA), which
are important neurotransmitters. Depletion of glutamine, caused
by H. suis infection, could thus lead to changes in these
neurotransmitters, affecting gut–brain signaling.

Urea is converted byH. suis to ammonia by the presence of urease
(96, 97). High levels of ammonia are linked to encephalopathy,
associated with neuropsychiatric and neurological symptoms (98,
99).Although it is unlikely that anH. suis infection leads tohigh levels
of ammonia, the continuous exposure of slightly higher levels could
also interfere with normal brain functioning.

Parietal cells are also affected by H. suis-associated inflammation.
This leads to changes in the expression and functioning of H+/K+-
ATPase and subsequent changes in pH, which is associated with
more fluid gastric content (72). These changes can subsequently
influence the gastric microbiota. Indeed, more Fusobacterium
gastrosuis was found in H. suis infected pigs (100). Infection with
Frontiers in Immunology | www.frontiersin.org 4
H. felis, another NHPH known to infect humans, is associated with a
decrease in Lactobacillus and an increase in Clostridium,
Bacteroidetes, Prevotella, Eubacterium, Ruminococcus, Streptococcus,
and E. coli in the stomach (94, 101). Lactobacillus has been shown to
secrete acetylcholine, which is important in regulating memory,
attention, and learning, and has therapeutic effects in mental
illnesses, reducing anxiety and depression (102). Lower numbers of
Lactobacillus due toH. suis could thus possibly affect mood. Increased
levels of Clostridium has been linked to autism (103), indicating that
increased presence of Clostridium in H. suis-infected animals might
affect brain homeostasis.
CONCLUSION

Numerous studies have been published about the possible effect
of a H. pylori infection on neurological diseases, while other
Helicobacter species have hardly been studied. However, recent
studies report on a possible link between H. suis infection and
Parkinson’s disease. Here, we describe several possible pathways
in the microbiome–gut–brain axis which could be influenced by
H. suis infection. Altogether, this highlights the importance of
gaining more insights in the role of non-Helicobacter pylori
Helicobacter species in neurological diseases.
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