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The interplay between cellular stress and immune response can be variable and
sometimes contradictory. The mechanisms by which stress-activated pathways
regulate the inflammatory response to a pathogen, in autoimmunity or during cancer
progression remain unclear in many aspects, despite our recent knowledge of the
signalling and transcriptional pathways involved in these diseases. In this context, over
the last decade many studies demonstrated that cholesterol metabolism is an important
checkpoint for immune homeostasis and cancer progression. Indeed, cholesterol is
actively metabolized and can regulate, through its mobilization and/or production of
active derivatives, many aspects of immunity and inflammation. Moreover, accumulation
of cholesterol has been described in cancer cells, indicating metabolic addiction. The
nuclear receptors liver-X-receptors (LXRs) are important regulators of intracellular
cholesterol and lipids homeostasis. They have also key regulatory roles in immune
response, as they can regulate inflammation, innate and adaptive immunity. Moreover,
activation of LXRs has been reported to affect the proliferation and survival of different
cancer cell types that show altered metabolic pathways and accumulation of cholesterol.
In this minireview we will give an overview of the recent understandings about the
mechanisms through which LXRs regulate inflammation, autoimmunity, and cancer,
and the therapeutic potential for future treatment of these diseases through modulation
of cholesterol metabolism.
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INTRODUCTION

Cholesterol metabolism is deeply linked to different aspects of immunity and inflammation. It is
generally thought as an exogenous player on immunity during disease, as in the case of pathologic
cholesterol overloading of foam cells in atherosclerosis or more in general in hypercholesterolaemia.
However, increasing evidences have recently changed this view by demonstrating that a number of
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immune receptors and transcription factors such as Toll-like
Receptors (TLRs), C-X-C motif chemokine receptor 2 (CXCR2),
Stimulator of IFN genes (STING) and retinoic acid-related orphan
receptor-gt (ROR-gt) are profoundly regulated by sterols (1–7).
Moreover, regulation of intracellular cholesterol homeostasis
controls lymphocyte proliferation and adaptive immune
responses (8).

In this review we will discuss recent literature regarding aspects
of lipid and cholesterol metabolism in tissues homeostasis,
providing to the readers a synthetic overview of the main
connections and regulatory interactions between cholesterol
cellular metabolism and the activity of LXRs in the context of
inflammation, autoimmunity and cancer. LXRs are transcription
factors able to regulate specific gene networks implicated in
cholesterol and lipid metabolism both in homeostatic and
pathological conditions. Moreover, LXRs can mediate anti-
inflammatory activities and modulate the immune response,
promoting the expression of mediators which have a role in the
control of inflammatory disorders and in the response to microbial
infection. In a different scenario, accumulation of cholesterol has
been also described in many types of cancer cells indicating
metabolic addiction. This further expands the possible
implications of its dysregulation in cancer progression (9, 10),
configuring cholesterol as an important metabolic determinant.
LXRs play relevant roles in cancer biology and in anti-
tumor immune responses, opening new therapeutic possibilities
(Figure 1) and (Table 1).
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LXRS: A LINK BETWEEN LIPID
METABOLISM AND IMMUNE RESPONSE

LXRs are transcription factors belonging to the nuclear receptors
(NRs) superfamily. They are master regulators of cholesterol and
lipid intracellular homeostasis (47). There are two isoforms of LXRs,
LXRa (NR1H3), and LXRb (NR1H2) (48, 49) that share extensive
sequence homology [(77% identity in both the DNA binding
domain (DBD) and ligand binding domain (LBD)]. Despite this
similarity, they have rather different expression patterns (50);
indeed, the expression of these NRs depends on the cell type and
tissues analyzed, with LXRa more expressed in liver, intestine,
adipose tissue and cells of the myelomonocytic lineage, while LXRb
is expressed more ubiquitously (51). Thus, their transcriptional role
seems to be determined by their relative expression levels in specific
tissues or cells, although important differences have also been
identified in vivo between the two isoforms (52).

Different studies in vitro and in vivo have characterized
a number of cholesterol derivatives including oxysterols,
oxidized forms of cholesterol and cholesterol precursors (e.g.,
desmosterol) as LXR activators, able to bind with different
affinities to the LXR LBD (47, 53, 54). When these endogenous
ligands, or synthetic pharmacological agonists, trigger activation
of LXRs, they heterodimerize with retinoid X receptors (RXR)
and bind to target gene promoters on LXR-responsive-elements
(LXREs), canonical binding sites composed of a repeated 6-mer
sequence (5’-AGGTCA-3’) separated by four nucleotides (55).
FIGURE 1 | Schematic representation of LXRs activators and the different effects on regulated genes and pathways involved in cholesterol and lipid homeostasis,
regulation of immune system and cancer proliferation and progression. When these ligands trigger the activation of LXRs, they heterodimerize with RXR and bind to
target gene promoters on LXR-responsive-elements, regulating the transcription and expression of specific target genes.
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To activate target gene transcription, unliganded LXRs and co-
repressors such as nuclear receptor corepressor 1 (NCoR1) and
silencing mediator of retinoic acid and thyroid hormone receptor
(SMRT), bound to LXREs, have to be displaced from chromatin
to allow the binding of transcriptional co-activators [i.e., nuclear
receptor co-activator 1 (NCOA1) and activating signal co-
integrator 2 (ASC2)], leading to transcription (17).

Recent findings suggest that LXRs may be also recruited de novo
to the promoter of target genes when triggered by ligands (18).

Once activated, they regulate the expression of genes involved in
lipid and glucose metabolism (51, 56). In this context, LXRs are
master regulators of cholesterol sensing; they counteract aberrant
cellular sterol overload by upregulating the expression of sterol
transporters such as the ATP binding cassette (ABC) family
members ABCA1 and ABCG1, together with the transcription
factors sterol regulatory element-binding protein 1c (SREBP1c)
and carbohydrate-response element-binding protein (ChREBP)
that regulate critical lipogenic pathways. Moreover, the activation
of LXRs also induces the expression of inducible degrader of
the LDL-receptor (IDOL), which is able to reduce the expression
Frontiers in Immunology | www.frontiersin.org 3
of low-density lipoprotein receptor (LDLR)s on the cell surface and
the uptake of LDL/cholesterol particles (57).

Besides the regulation of cholesterol homeostasis, genetic and
pharmacological studies have pointed out the role of LXRs as an
important link between lipid metabolism, regulation of immune cell
function and inflammation (58). Indeed, these NRs can both
promote and repress the expression of specific immune regulatory
gene networks (59). As discussed below, LXRs can induce anti-
inflammatory activities in macrophages and Dendritic Cells (DCs)
and represent a critical link between cholesterol metabolism,
proliferation and migration of activated T and B lymphocytes (8,
15, 21, 28, 60–65), thus playing an important role in the control of
inflammatory, autoimmune and infectious diseases.
LXRS, CHOLESTEROL,
AND INFLAMMATION

Different pathways link inflammation to cholesterol metabolism
and LXRs activity. Alteration of cellular cholesterol homeostasis
TABLE 1 | Activities of LXR in inflammation, autoimmunity, and cancer.

LXR, Inflammation, and Autoimmunity

LXR/cholesterol-mediated responses Immune mechanisms Experimental models

Cholesterol enrichment in macrophage plasma membrane
promotes the activity of TLRs (11, 12).

Cholesterol crystals uptake in macrophages
activate NLRP3/inflammasome, and the
pro-inflammatory cytokines IL-1b and IL-18 (13).

Atherosclerosis susceptibility (14).
Atherosclerosis plaque (13).

Upregulation of ABCA1 and ABCG1 on engulfed apoptotic cells
(15, 16).
Differentiation of M2 macrophages (15, 16).

Prevention immune system anomalous activation
(15, 16).

Efferocytosis (15, 16).

Transrepression: LXR binds to the NCoR-SMRT co-repressor
preventing signal-dependent clearance from the promoter of pro-
inflammatory genes (17, 18).

Transcriptional repression of NF-kB, AP-1, STAT1.
Inhibition of primary cytokine production (17, 19, 20).
Repression of pro-inflammatory cytokine maturation to
their active form (e.g., IL-18) (21).

Inflammation and autoimmune diseases
(atherosclerosis, dermatitis,
neuroinflammation, lupus and arthritis)
(22–23).

Indirect activity on inflammation: induction of lcPUFAs (e.g.,
omega 3 fatty acid) (24).

Decrease of transactivation mediated by NF-kB of
inflammatory genes (24).

Inflammation control.

LXRa maintains BBB integrity and its activation modulates the
pro-inflammatory response in astrocytes/microglia (25–27).
Activation of LXR leads SREBP-1 to act on IL-17 promoter (28).

Reduced production of the pro-inflammatory cytokines
IL-17 and IFN-g and reduced
expression of IL-23R (28, 29).

Demyelinating disease (30).

Activation of LXR by pharmacologic agonists or ligands present in
synovial fluid.

Decreased pro-inflammatory cytokines production in CIA
models (23, 31–32).
Enhanced TLR-driven cytokines and chemokines
secretion in RA synovitis (33–34).

Rheumatoid Arthritis (35).
CIA models (23, 31–32).

LXR activation mediates anti-inflammatory effects in colon epithelial
cells (36).
Lack of LXR induces colitis in DSS
and TNBS murine models.

LXR activation can suppress Th1 and Th17
polarization in vitro and promote the differentiation of gut
associated Tregs (37).

Intestinal bowel disease (36, 37).

LXR and Cancer

LXR-mediated cellular response Immune mechanisms Cancer models and LXR activity

Induction of cholesterol efflux and reduction of its uptake with
consequent reduced tumor cell proliferation and survival (38–39).
Reduced expression/activity of cell-cycle regulators (SPK2) (40),
higher expression of cell-cycle inhibitors (p21, p27) and decreased
phospho-RB protein levels (41, 42).
Delayed progression of androgen-dependent tumors towards
androgen independence (41, 42).

Decrease MDSCs through the induction of ApoE and
potentiate activation of cytotoxic lymphocytes (43).
Oxysterols impairs DC migration through the inhibition of
CCR7 (44).
Activation of LXRa in macrophages stimulates
phagocytosis of dying cancer cells (45).
LXR upregulates the expression of the
NKG2D ligands MICA and MICB in MM and improved
NK cell cytotoxicity (46).

Glioblastoma multiforme
(38–39)
Non-small-cell lung
carcinoma (NSCLC) (9)
Prostatic carcinoma (9)
Ovarian cancer (9)
Colon cancer (9)
Mammary and Skin cancer (9)
Multiple Myeloma (46)
Nove
The implications of direct LXR-mediated actions and regulation of cholesterol metabolism in the control of inflammatory diseases and cancer progression. This table summarizes the
different experimental models and the roles of LXR in these pathologic conditions.
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can both enhance or reduce innate receptor signalling and
inflammasome activation. Cholesterol enrichment in macrophage
plasma membrane promotes the activity of TLRs as in the case of
the TLR4-MD2 and TLR4-CD14 complexes activated in response
to lipopolysaccharide (LPS) (11, 12). On the other hand, the
activation of the reverse cholesterol transport (RCT) mediated by
ABCA1 and ABCG1 transporters limits the formation of
cholesterol-enriched lipid rafts in the plasma membrane and/or in
the endosomal system. This inhibits MyD88-dependent TLRs
trafficking by selective reduction of free cholesterol content and
suppresses macrophage inflammatory responses (66). This
mechanism has been elegantly demonstrated in mouse models
deficient for ABCA1 and ABCG1, shown to accumulate
cholesterol in peritoneal macrophages and to exhibit enhanced
inflammatory responses to TLR agonists (11). In line with these
observations, in a model of atherosclerosis susceptibility, pathogens
can interfere with macrophage cholesterol metabolism through
inhibition of the LXRs. Here, the activation of TLR-3 and -4 by
microbial ligands has been shown to repress the expression of
selected target genes including ABCA1 in macrophages, as clearly
shown in aortic tissue in vivo, with a mechanism connected to
reduced cholesterol efflux from macrophages regulated by
interferon regulatory factor-3 (IRF3)-mediated inhibition of LXRs
on their target promoters (14). Activation of efferocytosis is also
associated to the activity of LXRs, which results in the efflux of free
cholesterol derived from engulfed apoptotic cells by upregulating
ABCA1 and ABCG1 transporters. This mechanism, together with
the LXR-mediated alternative (M2) macrophage differentiation, can
prevent aberrant activation of the immune system (15, 16).
Moreover, the removal of apoptotic cells helps avoiding
autoimmunity, as shown in murine models of lupus-like
autoimmunity where treatment with LXR agonists ameliorated
disease progression (15, 67). In a different context, increased
cellular content of cholesterol can trigger cholesterol crystal
formation, as shown in atherosclerotic plaques. In this disease
model, cholesterol crystals uptake or formation in macrophages
has been shown to activate NLR family pyrin domain containing 3
(NLRP3)/inflammasome with the secretion of the pro-
inflammatory cytokines interleukin-1b (IL-1b) and IL-18 and to
promote the progression of atherogenesis (13).

As shown for other NRs, LXRs are anti-inflammatory; they
can inhibit the transcriptional induction of pro-inflammatory
genes mediated by critical transcription factors as NF-kB, AP-1
or STAT-1. In this regard, pharmacological activation of LXRs
has been shown to ameliorate the severity of the inflammatory
response in murine models of atherosclerosis (22),
neuroinflammation (30, 68), dermatitis (22, 69), lupus (67) and
arthritis (23), inhibiting primary cytokine production.
Mechanistically, studies using LXR agonists in macrophages
have shown that, depending on the LXR isoform, these NRs
can repress the induction of pro-inflammatory genes through a
molecular mechanism known as “transrepression”. Here, after
histone deacetylase-4 (HDAC-4)-dependent conjugation of LXR
with small ubiquitin-related modifier (SUMO)-2/3 at specific
lysine residues in the LBD, LXR becomes able to bind to the
NCoR-SMRT co-repressor, thus preventing signal-dependent
Frontiers in Immunology | www.frontiersin.org 4
clearance from the promoters of pro-inflammatory genes
(17, 19). With a different mechanism, LXRs can inhibit
Interferon-g-induced genes in astrocytes, where LXRa and
LXRb are SUMO-conjugated by HDAC4 or by protein
inhibitor of activated STAT1 (PIAS1), respectively, and
interact with phosphorylated signal transducer and activator of
transcription-1 (STAT-1) preventing its binding to gene
promoters (20). Furthermore, LXRs activation can repress pro-
inflammatory cytokine maturation to their active form as
demonstrated for IL-18 and can induce specific endogenous
inhibitors (i.e., IL-18BP) (21).

In addition to direct transrepression activity on pro-
inflammatory genes, LXRs can mediate other important
integrated mechanisms contributing to the control of
inflammation. LXRs can induce the synthesis of long-chain
polyunsaturated fatty acids (lcPUFAs) such as omega 3 fatty
acids. The presence of lcPUFAs can decrease transactivation
mediated by NF-kB of inflammatory genes, modifying histone
acetylation in their regulatory regions (24). Moreover, lcPUFAs
have been shown to increase the production of eicosanoids and
selected pro-resolving lipid mediators (70, 71). Interestingly,
increased LXRs activity can also induce macrophage
polarization toward a more pro-resolving phenotype, directly
upregulating the expression of MER proto-oncogene Tyrosine
Kinase (MERTK), a receptor that promotes the synthesis of
mediators implicated in inflammation resolution (15, 72).
Furthermore, as demonstrated in hepatic inflammation models,
induction of the polyunsaturated phospholipids (PLs) remodeling
enzyme lysophosphatidylcholine acyltransferase 3 (Lpcat3) by
LXRs increases the formation of PLs and decreases membrane
saturation, counteracting endoplasmic reticulum stress induced
by fatty acids in hepatocytes, improving hepatic metabolic stress
and inflammation by modulating aberrant c-Src activation (73).
An additional consideration that can add a layer of complexity is
that LXRs are highly expressed by haematopoietic stem cells
(HSCs) and myeloid progenitor cells. In these cells, activation of
LXRs can increase the ABCA1/ABCG1/apolipoprotein E
(APOE)-mediated cholesterol efflux, which is able to reduce
their proliferative responses to IL-3 and GM-CSF, thus
indirectly modulating the production of inflammatory cells (74).
LXRS AND AUTOIMMUNITY

The activity of LXRs and cholesterol metabolites is implicated in
the control and progression of several autoimmune diseases.

Altered lipid profiles have been associated with poor outcome of
multiple sclerosis (MS) (75–80), an autoimmune disease
characterized by inflammatory cell infiltrates and demyelination
(81, 82). In this regard, obesity, among other environmental factors,
has been described as a risk factor for MS in several epidemiological
studies (83–86). In animal models of experimental autoimmune
encephalomyelitis (EAE), the most common experimental model
for human inflammatory demyelinating disease, selected agonists of
LXRs (e.g., T0901317) have been shown to improve the severity of
central nervous system inflammation (30). In line with this
November 2020 | Volume 11 | Article 584303
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evidence, the activity of LXRa is indispensable for maintaining
blood-brain barrier (BBB) integrity and its immune quiescence.
Indeed, in a model of EAE, the specific knockout of LXRa in brain
endothelial cells has been shown to increase BBB permeability and
endothelial inflammation (25). Morover, activation of LXRs using
agonists in vivo has been shown to repress the production of
the pro-inflammatory cytokine IL-17 (28), together with IFNg
and IL-23R expression (29). Noteworthy, Th17 cell differentiation
is modulated by LXRs via induction of sterol regulatory element-
binding protein 1c (SREBP-1c), which is able to bind to the E-box
element on the IL-17 promoter and to physically interact with the
aryl hydrocarbon receptor (AHR), inhibiting its transcriptional
activity (28). Interestingly, the activity of LXRs mediated by
oxysterols can also modulate pro-inflammatory responses in
microglial and astrocytes (26, 27) possibly contributing to
ameliorate inflammation.

LXRs have also been hypothesized as a possible therapeutic
target for rheumatoid arthritis (RA), a chronic autoimmune
disorder characterized by infiltration of inflammatory
leukocytes in the synovial compartment, which causes cartilage
and bone damage (87). Initial conflicting reports have described
both protective and promoting actions of LXRs-mediated
pathways in murine models of inflammatory arthritis. LXR
agonists such as T0901317 or GW3965, attenuated the
symptoms, decreasing the production of pro-inflammatory
cytokines in different murine collagen-induced arthritis (CIA)
models (23, 31, 32, 88) and suppressed inflammatory gene
expressions in RA fibroblast-like synoviocytes (35). By
contrast, other reports described increased inflammation and
cartilage destruction mediated by ligand activated LXRs
(TO901317 or GW3965) in CIA models and found that LXR
pathways are significantly upregulated in RA synovial
macrophages. Interestingly, in these models the activity of both
LXR isoforms was required in control mice to induce the
progression of inflammation, in respect to single LXRa-/- or
LXRb-/- mice (33), thus implying overlapping and exclusive
effects in these models. Moreover, activation of LXRs by
ligands present within synovial fluids enhanced TLR-driven
cytokine and chemokine secretion, suggesting a novel
mechanism that can promote RA synovitis (33, 34, 89).

In a different scenario, both LXR subtypes are expressed in
human and murine colon and were described to mediate anti-
inflammatory effects in colon epithelial cells (36). Furthermore,
in a murine experimental model of intestinal bowel disease
(IBD), it was reported that LXR-deficient mice were more
susceptible to dextran sodium sulphate (DSS) and 2,4,6-
trinitrobenzenesulfonic acid (TNBS)-induced colitis. In this
regard, the activation of LXRs can suppress Th1 and Th17
polarization in vitro, lowering the expression of their secreted
pro-inflammatory cytokines and promoting differentiation of
protective gut-associated regulatory T cells in mice, where
systemic LXR activation was obtained by oral treatment with
the LXR agonist GW3965 (37). These data confirmed a dual
role of LXR in the control of inflammation by the suppression
of pro-inflammatory T cells and the parallel induction of
regulatory T cells.
Frontiers in Immunology | www.frontiersin.org 5
LXRS AS REGULATORS OF LIPID
METABOLISM, CANCER PROGRESSION,
AND ANTITUMOR IMMUNITY
Genes involved in cholesterol homeostasis are often mutated or
dysregulated in cancer cells (10, 90). A higher intracellular
cholesterol level due to an enhanced uptake by LDLRs, a
decreased efflux by ABC transporters and the upregulation of
de novo synthesis can sustain the metabolic need for cancer cell
proliferation (90–93), and accumulation of cholesterol has been
described in many types of tumors (9, 49, 91–93).

Cells usually obtain cholesterol via different mechanisms
including direct synthesis via the transcriptional activity of
SREBPs, which promote the transcription of enzymes involved
in cholesterol and fatty acid biosynthesis [i.e., 3-hydroxy-3-
methylglutaryl-coenzyme A reductase (HMG-CoA) reductase]
(94, 95). In this regard, the recent use of HMG-CoA inhibitors
(Statins) to block the mevalonate pathway and cholesterol de
novo biosynthesis showed promising results (96). However,
cancer cells often gain selective proliferative advantage by
enhancing LDLR-mediated uptake of exogenous cholesterol
(38), rendering these therapies often unsuccessful. Perhaps, one
of the best characterized examples of cancer cholesterol
addiction is glioblastoma multiforme (GBM). The treatment of
these cancer cells with LXR agonists induced degradation of
LDLR and increased apoptosis in glioblastoma cells expressing
mutant epidermal growth factor receptor (EGFR), where tumor
growth and survival is strongly dependent on SREBP-1-mediated
lipogenesis (38). Moreover, triggering of LXRs increases cellular
cholesterol efflux by ABCA1, lowering its levels and inducing
severe GBM cell death. Accordingly, LXR agonists (e.g., LXR-
623) prolonged survival of mice models bearing GBM, indicating
that targeting cholesterol metabolism may be a promising
strategy in the treatment of this cancer (39, 97).

Pharmacological studies on various types of cancer models
such as prostatic carcinoma, colon, mammary and skin cancer
have shown that the activation of LXRs generates anti-
proliferative effects due to the destruction of growth signalling
pathways and to the activation of pro-apoptotic signals (9). LXRs
can reduce the expression/activity of cell-cycle regulators, as
shown for S-phase Kinase associated protein (SPK2) in cancer
cell lines (40) and, at the same time, are able to induce the
expression of cell-cycle inhibitors as demonstrated for p21 and
p27 (cyclin-dependent kinase inhibitors) in prostate and ovarian
cancer cells, with a concomitant reduction in phospho-RB
protein levels (41, 98). Moreover, in mouse models, activation
of LXRs delayed the progression of androgen-dependent tumors
towards androgen independence (41, 42).

In addition to these direct activities on cancer cell metabolism
and survival, in the last few years experimental evidences have
highlighted the importance of LXRs in anti-tumor immune
responses. In this context, the role of LXR activation is still
controversial. Several tumors can produce oxysterols that play an
essential role in cholesterol homeostasis by activating LXRs (99,
100), and many of these metabolites can have antiproliferative
activity in cancer cells (101). However, oxysterols can also inhibit
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the expression of CCR7 on DCs, a chemokine receptor critical
for the migration of DCs to tumor-draining lymph nodes (44).
Circulating and tumor-derived oxysterols have been also described
to recruit pro-tumor neutrophils and to increase neo-angiogenesis
and immunosuppression in a CXCR2-dependent and LXR-
independent manner (6, 102). This highlights the capability
of selected oxysterols to regulate a broad range of pro-tumor
activities—depending on the LXR isoform expressed by
the tissue from which tumor cells originate and on the
surrounding microenvironment. Moreover, in breast cancer, 27-
hydroxycholesterol has been shown to act as an estrogen receptor
agonist inducing tumor growth and metastasis (103). On the other
hand, LXRs were reported to control cancer cell growth by inducing
LXRb-dependent pyroptosis of cancer cells and the activation of
LXRa in macrophages, promoted the phagocytosis of dying cancer
cells (45). More recently, in different mouse cancer models treated
with specific LXRs agonists (i.e., RGX-104), has been observed a
slower tumor growth which correlated with a decreased expansion
of myeloid derived suppressor cells (MDSCs); these data were also
validated in cancer patients, in a multicentre dose escalation phase 1
trial (43). Moreover, RGX-104 also partially abrogated the
immunosuppressive effects of radiotherapy in a murine model of
Non-Small-Cell Lung Carcinoma (NSCLC) (104). Mechanistically,
Frontiers in Immunology | www.frontiersin.org 6
the induction of ApoE, a transcriptional target of LXR, can induce
MDSC depletion by triggering the low-density lipoprotein receptor-
related 8 (LRP8) receptor on these cells, and potentiate activation of
cytotoxic lymphocytes. In these settings, activation of LXRs together
with PD-1 inhibition, improved the efficacy of cytotoxic T
lymphocyte (CTL) and natural killer (NK) cells from cancer
patients (43). In a different scenario, LXRs activation could
upregulate MHC class I polypeptide-related sequence-A (MICA)
and MICB expression in multiple myeloma cells, two ligands of the
NK cell-activating receptor NK group 2 member D (NKG2D), by
enhancing MICA promoter activity and inhibiting MICB
degradation in lysosomes, thus improving NK cell-cytotoxicity (46).
CONCLUSION

The implication of cholesterol metabolism in the control of
inflammatory diseases and cancer progression is the object of an
interesting and controversial debate. Our increasing knowledge of
the different roles mediated by LXRs in lipid homeostasis supports
the idea that lipid metabolism and inflammation are closely
connected and that their crosstalk is crucial for the evolution of
different inflammatory diseases and, more in general, in the
FIGURE 2 | Summary of the most relevant pathways regulated by LXRs in the context of cholesterol homeostasis, inflammation, autoimmunity and tumor
progression. These NRs act in a cell-, tissue- and context-dependent manner. In addition, many LXR-dependent and -independent pleiotropic effects mediated by
oxysterols, produced in inflamed or tumoral microenvironments, add an additional level of complexity to these regulatory pathways. ABC, ATP binding cassette;
AHR, aryl hydrocarbon receptor; APOE, apolipoprotein E; CTL, cytotoxic T lymphocyte; DC, dendritic Cell; DSS, IDOL, inducible degrader of the LDL-receptor; IRF3,
interferon regulatory factor 3; LBD, ligand binding domain; PUFA, long-chain polyunsaturated fatty acid; LDLR, low-density lipoprotein receptor; LRP8, low-density
lipoprotein receptor-related 8; MDSC, myeloid derived suppressor cells; MERTK, MER proto-oncogene tyrosine kinase; NK, natural killer; SREBP-1, sterol regulatory
element-binding protein 1; TLR, Toll-like receptor.
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regulation of the immune response. The involvement of specific
pathways regulated by LXRs during tumor progression and the
possibility to pharmacologically modulate LXR activity, as an
additional weapon for cancer therapy and for immunotherapy,
have opened new therapeutic possibilities in this context.
However, the activities of these NRs are often cell-, tissue-, and
context-dependent, which makes it difficult to fully characterize
their effects in disease conditions and to optimize specific
therapeutic interventions in inflammatory disorders or in cancer
therapy. In addition, many LXR-dependent and -independent
pleiotropic effects of oxysterols produced in inflamed or tumoral
microenvironments have been described in recent years, adding
additional levels of complexity to these regulatory pathways
(Figure 2). Another important issue is whether synthetic ligands
that uncouple the anti-inflammatory and anti-cancer effects of
LXRs from their role in cholesterol homeostasis can be developed.
This is particularly important also in the context of different
metabolic disorders with increased risk of developing diseases
such as type 2 diabetes or cardiovascular disease, where beneficial
effects of LXRs have been described (105). At the moment,
different synthetic LXRs agonists have been optimized; however,
their clinical application is limited by undesirable hyperlipidemic
Frontiers in Immunology | www.frontiersin.org 7
effects and other adverse side effects encountered in the central
nervous system (106–111). The future development of isoform-
and/or tissue-specific LXR modulators and the possibility to target
LXR-interacting co-factors involved in LXR transcriptional
activation will open new therapeutical possibilities for treating
these diseases.
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