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Results from registry studies suggest that harnessing Natural Killer (NK) cell reactivity
mediated through Killer cell Immunoglobulin-like Receptors (KIR) could reduce the risk of
relapse after allogeneic Hematopoietic Cell Transplantation (HCT). Several competing
models have been developed to classify donors as KIR-advantageous or
disadvantageous. Basically, these models differ by grouping donors based on distinct
KIR–KIR–ligand combinations or by haplotype motif assignment. This study aimed to
validate different models for unrelated donor selection for patients with Myelodysplatic
Syndromes (MDS) or secondary Acute Myeloid Leukemia (sAML). In a joint retrospective
study of the European Society for Blood and Marrow Transplantation (EBMT) and the
Center for International Blood and Marrow Transplant Research (CIBMTR) registry data
from 1704 patients with secondary AML or MDS were analysed. The cohort consisted
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mainly of older patients (median age 61 years) with high risk disease who had received
chemotherapy-based reduced intensity conditioning and anti-thymocyte globulin prior to
allogeneic HCT from well-matched unrelated stem cell donors. The impact of the
predictors on Overall Survival (OS) and relapse incidence was tested in Cox regression
models adjusted for patient age, a modified disease risk index, performance status, donor
age, HLA-match, sex-match, CMV-match, conditioning intensity, type of T-cell depletion
and graft type. KIR genes were typed using high-resolution amplicon-based next
generation sequencing. In univariable and multivariable analyses none of the models
predicted OS and the risk of relapse consistently. Our results do not support the
hypothesis that optimizing NK-mediated alloreactivity is possible by KIR-genotype
informed selection of HLA-matched unrelated donors. However, in the context of
allogeneic transplantation, NK-cell biology is complex and only partly understood. KIR-
genes are highly diverse and current assignment of haplotype motifs based on the
presence or absence of selected KIR genes is over-simplistic. As a consequence, further
research is highly warranted and should integrate cutting edge knowledge on KIR
genetics, and NK-cell biology into future studies focused on homogeneous groups of
patients and treatment modalities.
Keywords: KIR, KIR2DS1, KIR3DL1, hematopoietic stem cell transplantation, donor selection, unrelated donor
INTRODUCTION

To harness natural killer (NK) cells for graft-versus-leukemia
reactions by selecting donors based on KIR genotype information
could further improve outcome after allogeneic hematopoietic cell
transplantation (alloHCT). Evidence for the potential of allogeneic
NK cells to attack cancer cells comes from a series of clinical studies
demonstrating activity of haploidentical NK cell infusion or
transplantation for patients with relapsed or refractory acute
myeloid leukemia (AML) or myelodysplastic syndrome (MDS)
(1–5). NK cytotoxicity may be triggered by activating Killer
Immunoglobulin like Receptors (KIRs), which encounter their
cognate ligand on target cells, or by inhibitory KIRs, which do
not encounter their cognate ligands on target cells. KIR–KIR–ligand
interactions may elicit NK-alloreactivity also in the setting of HLA-
compatible related or unrelated donor transplantation. This was
supported by a series of retrospective registry studies which reported
associations between certain donor-patient KIR genotype patterns
and the risk of relapse after alloHCT (6–13).

The human KIR region has a complex architecture and
comprises 15 genes and 2 pseudogenes. Six KIR genes (KIR2DL1,
KIR2DL2/3, KIR2DL5, KIR3DL1, KIR3DL2, KIR3DL3) encode
inhibitory receptors with long (L) cytoplasmic tails, while six
genes encode receptors with short (S) activating cytoplasmic tails
(KIR2DS1, KIR2DS2, KIR2DS3, KIR2DS4, KIR2DS5, KIR3DS1).
Two pseudogenes are not expressed as proteins (KIR2DP1,
KIR3DP1). Four genes are present in most of the common
haplotypes and have been designated as “framework” genes
(KIR3DL3, KIR3DP1, KIR2DL4, KIR3DL2) (14, 15). KIR genes
exhibit substantial allelic diversity (16). Furthermore, KIR
haplotypes vary with respect to the presence or absence of specific
KIR genes and are subject to copy number variation (17, 18).
org 2
Additionally, when improved sequencing technology allowed for
allele-level resolution of KIR genes it became clear that absence/
presence typing was not sufficient to determine the functional status
of KIRs (18, 19). For example, the third most common allele of
KIR3DL1, KIR3DL1*004, accounts for 17% of all KIR3DL1 genes
but is not expressed on the cell surface. KIR3DL1 allotypes differ
with respect to their expression patterns (20). In the context of HIV
infection, certain subtype combinations of KIR3DL1 allotypes
together with their cognate ligand Bw4 were strongly associated
with the risk of progression to AIDS (21). Genetic information on
presence versus absence alone might thus lead to wrong conclusions
about function. However, individual KIR genes show extensive
sequence polymorphism with 1110 alleles currently named in
total (IPD-KIR Database, Release 2.9.0 as of July 2020) (22).
Allelic diversity across genes ranges from 16 alleles for KIR2DS3
and KIR2DS1 to 183 alleles for KIR3DL1. As a consequence, the
development of cutting edge typing technology that could generate
allelic and copy number results was critical to move the research
field forward (16).

Against this background we set out to validate an HLA-
matched unrelated donor selection algorithm for patients with
AML and MDS which was essentially aimed at reducing the
inhibitory potential of donor NK cells and increasing the
activating potential by donor selection based on information
on KIR2DS1 and KIR3DL1 (12, 13). We recently reported results
of a study in AML patients where we failed to replicate the
findings of the original report (23). Here, we present the data on
patients with MDS or secondary AML. Again, we were unable to
confirm the KIR3DL1/KIR2DS1- based donor selection
algorithm. In addition, we tested other major models to predict
the risk of relapse and death based on donor KIR
genotype information.
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METHODS

Inclusion Criteria
We conducted a joint study of the European Society for Blood
and Marrow Transplantation (EBMT) and the Center for
International Blood and Marrow Transplant Research
(CIBMTR) on the impact of KIR genotype information on
patient outcome after alloHCT for MDS or secondary AML.
This study used DNA samples from stem cell donors which were
stored at the Collaborative Biobank (www.cobi-biobank.de). All
stem cell donors had provided written informed consent when
they contributed a sample to the biobank. The study was
approved by the responsible Ethical Committee at the
Technische Universtität Dresden, Germany. Access to medical
data was approved by the Review Boards of the Chronic
Malignancies Working Party of EBMT, the Immunobiology
Working Committee of the CIBMTR and the National Marrow
Donor Program Institutional Review Board.

Patient inclusion criteria were first allogeneic HCT from an
unrelated donor between January 2008 and December 2017, a
diagnosis of Myelodysplastic Syndrome (MDS) or secondary
AML at HCT, and age above 18 years with an available donor
sample in the Collaborative Biobank.
Sample Identity
Donor information was mapped to the medical data of the
patient using the Donor ID as a key. In order to rule out
errors during the mapping process, all donor samples were
typed for HLA and KIR genes. Information on the HLA-
genotype was used to double-check sample identity by
comparing the typing result with the original typing results for
that donor and by checking HLA-compatibility with the
corresponding patient information. The HLA compatibility
between donors and recipients was assessed based on two-field
information for HLA-A, -B, -C, -DRB1 and -DQB1. Donor-
recipient pairs, whose HLA-compatibility could not be
confirmed, were excluded.
KIR Genotyping
Genotyping was performed using a high-resolution short-
amplicon-based next generation sequencing workflow. KIR
typing at the allele-level was based on sequencing of exons 3,
4, 5, 7, 8, and 9 and subsequent bioinformatic analysis as
described previously (16).
Classification Models Into KIR
Advantageous and Disadvantageous
Donors
HLA-C alleles were grouped in C1 and C2 ligands and HLA-B
alleles were grouped into Bw4-80I/Bw-80T/Bw6 epitope bearing
ligands based on information retrieved from https://www.ebi.ac.
uk/ipd/kir/ligand.html. Information on KIR3DL1 and KIR2DS1
and their cognate ligands was grouped according to publications
by Venstrom et al. (12) and Boudreau et al. (13). Further, we
Frontiers in Immunology | www.frontiersin.org 3
classified donors according to A versus B haplotype motifs using
definitions for haplotype assignment as provided by Cooley et al.
(10, 11). Finally, we calculated scores for selected additive models
which integrate information on KIR-ligand combinations of
donor-recipient pairs. We calculated the functional inhibitory
KIR count by assigning a score of 1 for donor KIR2DL1,
KIR2DL2, KIR2DL3, and KIR3DL1 when the cognate ligands
were exhibited by patient HLA molecules as described in the
original paper by Boelen et al. (24). As an extension of this count
we also calculated the weighted inhibitory score using the
published weights for functional KIR-ligand pairs as follows:
Inhibitory score = (1 if functional KIR2DL1) + (1 if strong
functional KIR2DL2 or 0.5 if weak functional KIR2DL2) + (0.75
if functional KIR2DL3) + (1 if functional KIR3DL1) (24).

The score developed by Krieger et al. integrates information
on inhibitory and activating KIR-ligand interactions (25). Two
versions exist, a non-weighted version which incorporates the
inhibitory missing KIR-ligand Score (IM-KIR Score) with
assigned scores per interaction, and a weighted version (w-KIR
Score). Both versions were calculated according to the original
publication (25).

Information Used for Risk Adjustment
MDS and sAML were grouped by adopting definitions from the
World Health Organization classification of myeloid neoplasms
and acute leukemia (26).

Using information on the genetic risk and disease stage at
transplantation from EBMT Minimal Essential Data Forms, we
calculated a simplified Disease Risk Index (DRI) for MDS and
sAML. For this purpose, cytogenetic risk was classified according
to the rules for the refined DRI (27) except for chromosome 17p
abnormalities which were assigned to the adverse risk group. For
patients with missing stage, disease or cytogenetic risk
information, DRI group was imputed based on largest
frequencies reported in the publication of the refined DRI. The
intensity of conditioning regimens was classified according to
working definitions of EBMT and CIBMTR (28).

Risk adjustment in the context of multivariable regression
models included information on patients’ performance status,
age, sex, CMV serostatus, disease risk index, conditioning
intensity, T-cell depletion, HLA-matcing, donor age, donor sex,
and donor CMV serostatus.

Primary Endpoint and Power
Considerations
Event-free Survival (EFS) was selected as primary endpoint and
death, relapse or progression (whichever occurred first) were
defined as events for EFS. The study was designed to validate the
effect of the classification of donor KIR2DS1 and KIR3DL1
information on predicting EFS as published by Boudreau et al.
(13). In sample size estimations for the comparison of strongly
inhibiting versus weakly inhibiting donor-patient KIR3DL1
HLA-B subtype combinations, we calculated that data from
approximately 1,700 patients were required to detect a 17%
reduction in EFS events with a two-sided type I error of 5% at
a power of 80%. Since we failed to validate this model in patients
January 2021 | Volume 11 | Article 584520
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with AML (23), we extended the scope of this study and also
evaluated alternative models for donor KIR genotype
classification. No formal adjustment of the type I error was
made for multiple testing for these exploratory analyses. The post
hoc power for each comparison was calculated with Schoenfeld’s
formula based on the given number of events and the reported
effect estimates, with a two-sided 5% type I error probability (29).

Statistical Analysis
Relapse or progression was selected as the major secondary
endpoint. Additional endpoints were Non-Relapse Mortality
and Overall Survival. Death without previous relapse or
progression was defined as non-relapse death. EFS and Overall
Survival (OS) probabilities were calculated with the Kaplan-Meier
estimator and between-group comparisons were performed with
the log-rank test. Relapse/progression and Non-Relapse Mortality
were considered as competing risks and univariable comparisons
built on cumulative incidence curves. Univariable comparisons for
these endpoints were performed with the Gray Test. All time-to-
event endpoints were evaluated in (cause-specific) multivariable
Cox proportional hazards regression models. Effect sizes were
reported as hazard ratios together with 95%-confidence intervals.
We performed subgroup analyses for the effect of KIR genotype-
based classifications in subpopulations defined by variations in
the transplant procedure which could have an impact on NK
alloreactivity, e.g. myeloablative conditioning versus reduced-
intensity conditioning/non-myeloablative conditioning, use of
Anti-Thymocyte Globulin (ATG) and of total body irradiation.

The proportionality assumption was checked for each
covariable for the main models analyzing Overall Survival and
relapse by means of plots of scaled Schoenfeld residuals and the
test of Grambsch and Therneau (30).
RESULTS

Patient Characteristics
Mapping of patients and donors resulted in 1,836 donor-
recipient pairs. Data from three donor-recipient pairs were
excluded because sample identity could not be confirmed.
Typing of 108 samples failed because the DNA quantity or
quality was too low for the workflow. No data on outcomes
was available for 21 patients. The final statistical analysis set thus
contained information on 1,704 patients.

The median age at allogeneic HCT was 61 years (range from
18 to 83 years). Indication for allogeneic HCT was secondary
AML for 28% of patients, MDS for 63% of patients and MDS/
MPN overlap syndromes in 9% of patients. Disease risk was
assessed as intermediate, high or very high in 41, 58, and 0.6%,
respectively. Patient and donor pairs were 10/10 matched in 79%
of pairs, whereas a one locus mismatch was reported for 20% of
pairs. Myeloablative, reduced-intensity and non-myeloablative
conditioning regimens were used in 31, 56, and 11% of patients,
respectively. Anti-Thymocyte globulin was administered as
GVHD-prophylaxis in 56% and Alemtuzumab in 9% of
Frontiers in Immunology | www.frontiersin.org 4
patients. Thirty five percent of patients received no T-cell
depletion, and 1% received an ex vivo T-cell depleted graft.
Peripheral Blood Stem Cells (PBSC) and Bone Marrow (BM)
were used as graft source in 93 and 7% of patients, respectively.
Further details and the distribution of patient characteristics are
given in Table 1.

For the whole cohort, 2-year probabilities were 48% (95%-CI:
46–51%) for OS, 42% (95%-CI: 39–44%) for EFS, 29% (95%-CI:
27–32%) for relapse incidence and 29% (95%-CI: 27–32%) for
Non-Relapse Mortality. In total, 451 relapses and 450 non-
relapse deaths were recorded. Altogether, 780 deaths were
reported, including 330 deaths after relapse.

KIR—Ligand Models
First, models integrating information on activating or non-
activating KIR2DS1 and various degrees of KIR3DL1-mediated
inhibition were tested for their ability to predict the risk of
relapse and EFS (12, 13). Basically, these models were built on the
idea that strong inhibitory KIR-ligand interactions increase the
risk of relapse while activating KIR-ligand interactions reduce it.
The results of multivariable modelling are summarized in
Table 2. Detailed information on the set of factors used for
risk adjustment is provided in Supplemental Table 1. No
significant differences for the risk of relapse were found for the
respective KIR3DL1/HLA-B subtype combinations and
KIR2DS1/C1C2 epitope combinations. Notably, in contrast to
the original publications for these models, neither patients whose
donors had non-inhibiting KIR3DL1-Ligand interaction (HR
1.08, 95%CI 0.86–1.36; p=.5) nor patients with activating
KIR2DS1-Ligand interaction (HR 1.11, 95%CI 0.87–1.16;
p=0.9) showed a lower risk of relapse. Cumulative incidence
curves for relapse and Kaplan-Meier plots for EFS are shown in
Figures 1 and 2 for the respective groups of patients.
Haplotype Motif-Based Prediction
Next, we tested models which utilize information on the different
composition of KIR haplotypes with respect to activating and
inhibitory KIR genes. The KIR A haplotypes are more conserved
and contain largely inhibitory KIR genes, whereas the B
haplotypes display greater variation in gene content and may
include a variety of activating receptors. Some studies suggested
that patients whose donors had two B haplotypes had a lower risk
of relapse compared to patients whose donors had two A
haplotypes (9–11). In our data we did not find a significant
impact of telomeric or centromeric KIR haplotype A versus B
motifs. Compared to patients, whose donors had centromeric
KIR A/A motifs, patients, whose donors had centromeric KIR B/
Bmotifs, even tended to a greater risk of relapse (HR 1.19, 95%CI
0.88–1.62; p=.3). Cumulative incidence curves for relapse and
Kaplan-Meier plots for EFS are shown in Figure 3 for the
respective grouping of patients according to centromeric donor
KIR haplotypes. In contrast to the model, we also found a trend
for a greater risk of relapse (HR 1.29, 95%CI 0.85–1.96; p=0.2)
for patients with telomeric KIR B/B donors compared to
telomeric KIR A/A donors. Table 2 summarizes the results.
January 2021 | Volume 11 | Article 584520
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TABLE 1 | Patient and treatment characteristics.

Parameter Total Cohort

N (%)

Patient Numbers 1704 (100)
Patient Sex Male 1009 (59)

Female 695 (41)

Age at HCT
[years]

Median 61
IQR 53 – 66
Range 18 – 83

Registry EBMT 1208 (71)
CIBMTR 496 (29)

Disease MDS 1076 (63)
MDS/MPD 155 (9)
sAML, tAML 473 (28)

Disease Risk Intermediate 706 (41)
High 987 (58)
Very High 11 (1)

Karnofsky Status 90-100% 1075 (63)
80% 428 (25)
≤80% 157 (9)
Missing information 44 (3)

T-cell Depletion No T-cell depletion 590 (35)
Anti-thymocyte globulin 946 (56)
Alemtuzumab 145 (9)
ex vivo T cell depletion 23 (1)

Conditioning Intensity Myeloablative 522 (31)
Reduced 949 (56)
Non-myeloablative 191 (11)
Missing information 42 (2)

Conditioning TBI-based 235 (14)
Chemotherapy-based 1268 (74)
Missing information 201 (12)

Donor Age [years] Median 28
IQR 23 – 36
Range 18 – 60

HLA-Match 10/10 matched 1346 (79)
9/10 (DQB1 mm) 71 (4)
9/10 (A,B,C or DRB1 mm) 277 (16)
≤8/10 matched 10 (1)

Patient–Donor Sex Constellation Male–male 767 (45)
Male–female 242 (14)
Female–male 439 (26)
Female–female 256 (15)

Patient–Donor CMV Serostatus Negative–negative 540 (32)
Negative–positive 114 (7)
Positive–negative 545 (32)
Positive–positive 477 (28)
Missing information 28 (2)

Graft Source PBSC 1587 (93)
Bone Marrow 117 (7)

Year of HCT 2008 – 2012
2013
2014
2015
2016
2017

11
140
408
480
491
174

(1)
(8)
(24)
(28)
(29)
(10)
Frontiers in Immunology | www.frontiersin.org 5
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IQR, interquartile range; EBMT, European Society for Blood and Marrow Transplantation; CIBMTR, Center for International Blood and Marrow Transplant Research; AML, acute myeloid
leukemia; sAML, secondary AML; tAML, therapy-related acute myeloid leukemia; MDS, myelodysplastic syndrome; HLA, human leukocyte antigen; mm, mismatch; CMV,
cytomegalovirus; TBI, total body irradiation; PBSC, peripheral blood stem cells; HCT, hematopoietic cell transplantation.
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Additive Models
Finally, we tested models which integrate information on
inhibitory or activating KIR-ligand interactions using a scoring
system. Boelen et al. developed an inhibitory score which takes
Frontiers in Immunology | www.frontiersin.org 6
information on functional inhibitory KIR-ligand interactions
into account and demonstrated uniform effects of the score on
the progression of HIV, HCV, and HTLV infections (24). In the
context of these viral infections, high inhibitory scores were
A B

FIGURE 1 | Patients were grouped by their donors’ KIR3DL1/HLA-B subtype combinations (strong inhibiting versus non-inhibiting/weak inhibiting) in terms of
relapse incidence (A) and event-free survival (B). The p-values have been calculated by the Gray Test (CIR) and the log-rank test (EFS).
TABLE 2 | Impact of donor KIR genotype models on relapse incidence and event-free survival.

Classifier N % Relapse Incidence Event-free Survival Endpoint - Power

HR (95%-CI) p HR (95%-CI) p HR for CIR; 1-b (a=0.05)

KIR3DL1/HLA-B subtype combinations
Strong inhibiting KIR3DL1 423 (25) 1 1
Weak-inhibiting KIR3DL1 431 (25) 0.92 (0.71–1.21) 0.6 0.92 (0.76–1.11) 0.4 HR 0.75 (13); 0.64
Non-inhibiting KIR3DL1 837 (49) 1.08 (0.86–1.36) 0.5 1.03 (0.87–1.21) 0.7 HR 0.84 (13); 0.71

KIR2DS1/C1C2 epitope combinations
KIR2DS1 neg 1043 (61) 1 1
KIR2DS1 pos/C1+ 564 (33) 1.11 (0.91–1.35) 0.3 1.00 (0.87–1.16) 0.9 HR 0.69 (12); 0.95
KIR2DS1 pos/C2/C2 97 (6) 1.29 (0.87–1.90) 0.2 1.08 (0.81–1.44) 0.6 HR 1.51 (12); 0.50

KIR haplotype motif-based models (10)
Cen A/A 798 (47) 1 1
Cen A/B 735 (43) 1.17 (0.96–1.43) 0.13 1.05 (0.92–1.21) 0.5 HR 0.87 (10); 0.28
Cen B/B 171 (10) 1.19 (0.88–1.62) 0.3 0.86 (0.68–1.08) 0.2 HR 0.34 (10); 1.00
Tel A/A 1006 (59) 1 1
Tel A/B 619 (36) 1.06 (0.87–1.29) 0.6 1.01 (0.87–1.16) 0.9 HR 0.70 (10); 0.95
Tel B/B 79 (5) 1.29 (0.85–1.96) 0.2 1.07 (0.79–1.46) 0.7 HR 0.52 (10); 0.82
“neutral” KIR-score (B ≤ 1) 1173 (69) 1 1
“better” KIR-score (any other) 360 (21) 1.13 (0.90–1.43) 0.3 1.01 (0.85–1.19) 0.9 HR 0.70 (10); 0.96
“best” KIR-score (Cen-B/B) 171 (10) 1.14 (0.85–1.53) 0.4 0.84 (0.66–1.05) 0.1 HR 0.52 (10); 1.00

Additive inhibitory KIR - Ligand Model (24)
Count Functional iKIR (cont.) 1704 (100) 0.91 (0.80–1.03) 0.12 0.90 (0.83–0.99) 0.02 §not applicable
Count Functional iKIR ≤1 444 (26) 1 1
Count Functional iKIR >1 1260 (74) 0.76 (0.61–0.93) 0.01 0.80 (0.69–0.93) 0.004
Inhibitory Score (cont.) 1704 (100) 0.96 (0.86–1.07) 0.4 0.95 (0.88–1.02) 0.15
Inhibitory Score (Cutoff ≤ 1.75) 711 (42) 1 1
Inhibitory Score (Cutoff>1.75) 993 (58) 0.92 (0.76–1.11) 0.4 0.87 (0.76–0.99) 0.04

Additive inhibitory/activating KIR – Ligand Model (25)
w-KIR-Score (cont.) 1704 (100) 1.04 (0.87–1.24) 0.6 1.01 (0.89–1.14) 0.9 HR 0.44 (25); 1.00
IM-KIR-Score (cont.) 1704 (100) 1.00 (0.85–1.17) 1.0 1.00 (0.89–1.11) 1.0 HR 0.44 (25); 1.00
January 2021 | V
N, number; HR, hazard ratio; p, p-value; neg, negative; pos, positive; cen, centromeric; tel, telomeric; iKIR, inhibitory Killer Immunoglobulin like Receptors; cont, continuous; w-KIR-Score,
weighted KIR-Score; IM-KIR-Score, inhibitory-missing KIR-ligand Score CIR, cumulative incidence of relapse; Hazard ratios were calculated in (cause-specific) multivariable Cox regression
models stratified by registry (CIBMTR or EBMT), and adjusted for patient age, donor age, diagnosis, disease risk index, Karnofsky performance status, conditioning intensity, T-cell
depletion, sex match, CMV match, HLA-match, and stem cell source. The p-value of the Wald Test is reported. The power was calculated according to Schoenfeld’s formula (29).
§The various models of Boelen et al. have not been evaluated in the context of allogeneic HCT. No estimates for the effect size were available. Therefore, we did not perform power
assessments for this model.
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mainly associated with protective effects. The weighted
inhibitory score did not predict the risk of relapse in our study.
However, the functional inhibitory KIR count was significantly
associated with the risk of relapse (HR 0.76, 95%CI 0.61–0.93;
p=0.01) and EFS (HR 0.8, 95%CI 0.69–0.93; p=0.004), when
dichotomized at a cutoff of 1. This comparison indicated that
A B

DC

FIGURE 3 | The upper panels show the cumulative incidences of relapse of patients
telomeric KIR motifs (B). The lower panels show event-free survival of patients group
KIR motifs (D). The p-values have been calculated by the Gray Test (Cumulative Incid
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donor genotypes encoding more functionally relevant inhibitory
KIR were associated with a lower risk of relapse.

The score proposed by Krieger et al. integrates information on
potential inhibitory KIR-ligand interactions and activating KIR-
ligand interactions (25). Neither the simple score nor the
weighted score predicted the risk of relapse or EFS in our cohort.
A B

FIGURE 2 | Patients were grouped by their donors' KIR2DS1 status (activating versus non-activating) in terms of Relapse Incidence (A) and Event-free Survival (B).
The p-values have been calculated by the Gray Test (Cumulative Incidence of Relapse) and the log-rank test (Event-free Survival).
grouped according to centromeric KIR motifs (A) and grouped according to
ed according to centromeric KIR motifs (C) and grouped according to telomeric
ence of Relapse) and the log-rank test (Event-free Survival).
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Subgroup Analyses
We also calculated KIR haplotype motif-based models for four
major subgroups: patients with secondary AML, patients with
MDS, patients who had received myeloablative conditioning and
patients who had received non-myeloablative or reduced-
intensity conditioning. In a series of exploratory analyses we
tested the main haplotype motif-based classifications for these
subgroups. Results are shown in Supplemental Table 2A. The
effects of centromeric and telomeric KIR haplotype B/B motifs
compared to haplotype A/Amotifs pointed in different directions
for patients with secondary AML (HR 0.7, 95%–CI 0.4–1.33) and
patients with MDS (HR 1.48, 95%–CI 1.03–2.11). The estimated
effects for donor KIR haplotype motifs for patients who had
received reduced-intensity or non-myeloablative conditioning
also differed slightly from patients who had received
myeloablative conditioning. Further, we performed subgroup
analyses in patients with at least one C1 epitope, thereby
excluding C2/C2 patients, which showed essentially in the
same pattern of results (Supplemental Table 2B).
DISCUSSION

We investigated the potential of donorKIR genotype information to
predict the risk of relapse after HLA-compatible unrelated
allogeneic HCT in a large cohort of patients with secondary acute
myeloid leukemia (sAML) or a myelodysplastic syndrome (MDS).
To date, few studies have analysed the impact of KIR genotype on
the course of the disease for patients withMDS or sAML after HLA-
compatible alloHCT (6, 31, 32). Since patient numbers in these
studies were small, no meaningful subgroup analyses for patients
with MDS or sAML were performed. Therefore, our results should
be discussed in the context of studies on patients with AML.

This study was designed as a validation study for the
KIR2DS1/KIR3DL1-based prediction model in patients with
MDS and sAML. This model claims that the risk of relapse
could be reduced by increasing the activating potential through
preferentially selecting unrelated donors with activating
KIR2DS1 and by minimizing the inhibitory potential mediated
through selecting KIR3DL1/HLA-B subtype combinations with
minimal or no inhibitory potential (12, 13). We were not able to
validate this model for patients with MDS or sAML. Although
not statistically significant, unrelated donor-patient pairs with
activating KIR2DS1 even had a slightly higher actual risk of
relapse indicated by a hazard ratio of 1.11 (Wald test, p=0.3)
compared to patients whose donors where KIR2DS1 negative.
Contrary to the previously observed effects, donor-patient pairs
with non-inhibiting KIR3DL1/HLA-B subtype combinations also
had the highest actual risk of relapse with a hazard ratio of 1.08
(Wald test, p=0.5) in multivariable cause-specific Cox regression
modelling (see Table 2 and Figure 1). In summary, our study did
not align with the pattern of results originally reported. In a
recently published study where we attempted to validate the
proposed model for patients with AML, the observed data also
failed to confirm the proposed prediction model (23). Together,
in these two studies data from 3926 patients with AML or MDS
were analysed whose HLA-compatible unrelated donors had
Frontiers in Immunology | www.frontiersin.org 8
been typed for KIR genes at the allele-level. However, it should
be noted that patient characteristics and transplant procedures of
the original cohorts differed substantially compared to the
patients whose data were analysed here. In our contemporary
validation studies the median patient age was approximately 20
years higher compared to the original cohort and more patients
were matched for HLA-A, -B, -C, -DRB1, and DQB1 with their
unrelated donors. Patients had predominantly received
chemotherapy-based reduced-intensity conditioning instead of
Total Body Irradiation (TBI)-based myeloablative conditioning,
ATG for the prophylaxis of Graft versus Host Disease (GvHD)
instead of ex vivo T-cell depletion, and had been transplanted
with Peripheral Blood Stem Cells (PBSC) instead of bone
marrow as graft source (12, 13). All factors reflect changes in
clinical practice between the past cohorts and this contemporary
cohort. Although little is known about the impact of different
procedural choices on NK cell reconstitution after alloHCT,
these factors could change NK cell mediated alloreactivity.

In order to comprehensively re-assess the work on outcome
prediction after alloHCT based on the donor KIR genotype, we also
evaluated alternative models. Genotypes can be categorized based
on the absence and presence of certain activating and inhibiting KIR
genes according to their content of centromeric and telomeric
haplotype A and B motifs (33). Haplotype B motifs occur at
lower frequencies in the Caucasian population and harbour more
activating KIR genes (18). In larger studies, the presence and
number of centromeric haplotype B motifs in the donor genome
have been associated with a reduced risk of relapse after HLA-
compatible unrelated allogeneic transplantation for AML (9–12).
An updated and extended analysis was recently published by
Weisdorf et al. (34). In a large contemporary cohort of AML
patients the authors were able to demonstrate a beneficial impact
of KIR haplotype B donors in the subgroup of C1/C1 or C1/C2
patients who had received reduced-intensity conditioning. In a strict
sense, the attempt to validate their findings on the impact of
haplotype B motifs on the risk of relapse after myeloablative
conditioning therefore failed (11). Other groups have reported
conflicting results which even indicated a protective effect of KIR
haplotype A from smaller registry studies (35–37). In this study, we
did not find a protective effect in univariable and multivariable
comparisons for centromeric or telomeric KIR haplotype B versus A
motifs in a contemporary cohort of patients with MDS of equal size
(see Table 2 and Figure 3). Even, when we restricted the analyses to
those subgroups, who had shown the greatest effects of KIR
haplotype B donors, i.e. C1-positive patients who had received
reduced-intensity conditioning, we did not observe significant
effects in the predicted direction (Supplemental Table 2B).

Of note, in our exploratory analyses we observed opposite effects
of donor KIR haplotype B motifs for patients with MDS versus
secondary AML (see Supplemental Table 2A). For example, in
MDS donor centromeric KIR haplotype B motifs appeared to be
disadvantageous (HR, 1.48, p=0.03 for KIR cen B/B versus KIR cen
A/A) whereas in secondary AML it appeared to be advantageous
(HR, 0.73, p=0.3 for KIR cen B/B versus KIR cen A/A). Stringaris
et al. reported that patients with MDS and KIR haplotype A show a
more aggressive course of their disease (38). This would be in line
with our results for patients with secondary AML but not with
January 2021 | Volume 11 | Article 584520
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MDS. Nevertheless, we would like to caution against over-
interpreting this signal. Reduced expression of HLA class I
molecules which represent important KIR-ligands was not
different in a recent study analysing samples from MDS and
secondary AML for features which might explain escape from
immune surveillance (39). Moreover, the group of patients with
secondary AML was relatively small (N=473) in our study compared
to the group of patients with MDS (N=1231) and it is possible that
unknown confounders produced this difference. On the other hand,
the different effect directions of KIR haplotypes in different types of
diseases require careful consideration for future analyses.

Results from the exploratory subgroup analyses also revealed
some differences for the estimated effects of KIR haplotype motifs
in the context of reduced-intensity or non-myeloablative
conditioning versus myeloablative conditioning, albeit not in a
systematic way. Most important, the observed differences were
not in line with what has been reported recently by Weisdorf
et al. (34) and may be due to random effects.

The current assignment of the putative KIR haplotypes A and B
as proposed by Uhrberg et al. in 1997 does not integrate allele-level
information. With KIR genotyping at allele-level, KIR gene
haplotypes based only on absence/presence information appear
over-simplistic and may no longer represent a suitable grouping
algorithm (40–42). While we found no impact of the classification
into putative KIR haplotypes A and B, improved assignments based
on KIR allele groups have the potential to reflect functional
information of distinct KIR haplotypes more precisely.

A logical extension to the investigation of single KIR KIR-
ligand combinations is creating additive models which integrate
information on multiple KIR genes together with the
corresponding ligands. One such additive model had been
composed to predict NK-cell mediated control of chronic viral
infections. The score is based on the number of functional
inhibitory KIRs and predicts the progression of HIV, HCV,
and HTLV-1 infections (24). The crude score of this model
predicted the risk of relapse and EFS also in our data (see Table
2). In multivariable Cox regression analyses unrelated patient-
donor pairs with an inhibitory KIR count of greater than 1 had a
24% lower risk of relapse (Wald-test, p=0.01) and a 20% lower
risk (Wald-test, p=0.004) for events defining EFS compared to
the patients with a single or no functional inhibitory KIR KIR-
ligand combination. This association suggested that NK cells
which were educated by multiple KIR–KIR–ligand interactions
exerted stronger NK-mediated alloreactivity. Downregulation of
HLA class I molecules on the malignant target cells would then
be a necessary trigger for activation. Although down-regulation
of class I molecules to escape T-cell attack is a common feature of
cells infected by viruses and cancer cells, this mechanism was not
found to be a major immune escape strategy after alloHCT.
Recent data suggest that the primary immune escape mechanism
after alloHCT starts by down-regulation of HLA-class II
molecules (43, 44). The observed beneficial impact of a higher
inhibitory KIR count is therefore not supported by the currently-
favoured concept of immune escape of malignant cells after
allogeneic transplantation (45). On the other hand, due to a lack
of a humanized animal model which recapitulates graft versus
leukemia effects, the basic biological principles of NK cell
Frontiers in Immunology | www.frontiersin.org 9
mediated allo-reactivity remain uncertain. Thus, the jury is still
out, on whether donors with more or less functionally inhibitory
KIRs may exert stronger graft-versus leukemia reactions after
HLA-compatible unrelated alloHCT. The testing of integrated
scores which reflect a conclusive biological concept in large
registry studies may further inform our understanding of NK
biology and more research in this regard is warranted. However,
since the functionally inhibitory KIR count was tested here as
part of a series of exploratory analyses without keeping stringent
control of the family-wise type I error rate, we do not
recommend application of the functionally inhibitory KIR
count for donor selection in the context of stem cell
transplantation based on the current data.

From a conceptual point of view the integration of information
on donor KIRs and patient KIR-ligands in one unifying score is
appealing. Very likely, an optimal score for the prediction of
relapse after matched unrelated donor alloHCT will be complex
and may contain first- and second-order interactions. Weights for
single factors must be defined carefully. Mathematically step-
functions may be more appropriate to predict threshold-
dependent NK cell activation or inhibition than linear functions.
However, given the stochastic expression of KIRs on NK cells
composing the individual repertoire, the breadth of a potential NK
response may also be impacted. This would weigh an argument in
favour of linear or monotonous relations. To address these
challenges in model-building, machine learning algorithms may
become necessary tools. Given recent successes in the use of
artificial intelligence in medical science and the complexity of KIR
genetics and NK biology in the transplant context, this area of
research appears to be especially appealing for the application of
these new techniques (46).

Critical resources required to answer the question on whether
the donor KIR genotype can be used to predict patient outcome
after HLA-compatible unrelated alloHCT, are i) access to donor
samples donated for research at biobanks, ii) collaborative efforts to
pull together large datasets and sample sizes necessary to apply
machine learning tools or other complex statistical models, iii)
access to affordable allele-level KIR typing, iv) stringent statistical
testing strategies to keep control of the family-wise type I error and
to validate findings in independent datasets, and finally v) active
research groups committed to advancing the understanding of NK
biology in the context of alloHCT (47, 48). The European Society for
Blood and Marrow Transplantation (EBMT), the Center for
International Blood and Marrow Transplant Research (CIBMTR),
the National Marrow Donor Program (NMDP) and DKMS are
committed to answering this question and can provide critical
resources. A large collaborative effort of these institutions to come
to a conclusive answer is currently underway.

In summary, despite availability of KIR genotype information
for more than 3 million potential stem cell donors, no KIR-based
algorithm for unrelated donor selection has entered clinical
practice. After more than 20 years of research, the impact of
donor KIR genotype information on the outcome after unrelated
donor alloHCT is still not clear. This large study of patients with
MDS and secondary AML adds to the growing body of data by
showing that the KIR KIR-ligand combinations, KIR2DS1-C2
and KIR3DL1-Bw4(80I/T) and putative haplotype motif based
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models have no impact on the risk of relapse and mortality after
unrelated donor alloHCT. However, with larger studies and
intergroup collaborations on the horizon, high-throughput
allelic resolution of KIR genes at hand and increasing experience
in dealing with high-dimensional data, the chances are good that
the question on whether KIR genotype information can be used
for donor selection will be resolved in the next couple of years.
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