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Lifelong blood production is maintained by bone marrow (BM)-residing hematopoietic
stem cells (HSCs) that are defined by two special properties: multipotency and self-
renewal. Since dysregulation of either may lead to a differentiation block or extensive
proliferation causing dysplasia or neoplasia, the genomic integrity and cellular function of
HSCs must be tightly controlled and preserved by cell-intrinsic programs and cell-extrinsic
environmental factors of the BM. The BM had been long regarded an immune-privileged
organ shielded from immune insults and inflammation, and was thereby assumed to
provide HSCs and immune cells with a protective environment to ensure blood and
immune homeostasis. Recently, accumulating evidence suggests that hemato-immune
challenges such as autoimmunity, inflammation or infection elicit a broad spectrum of
immunological reactions in the BM, and in turn, influence the function of HSCs and BM
environmental cells. Moreover, in analogy with the emerging concept of “trained
immunity”, certain infection-associated stimuli are able to train HSCs and progenitors to
produce mature immune cells with enhanced responsiveness to subsequent challenges,
and in some cases, form an inflammatory or infectious memory in HSCs themselves. In
this review, we will introduce recent findings on HSC and hematopoietic regulation upon
exposure to various hemato-immune stimuli and discuss how these challenges can elicit
either beneficial or detrimental outcomes on HSCs and the hemato-immune system, as
well as their relevance to aging and hematologic malignancies.

Keywords: hematopoietic stem cells, BM environment, inflammation, infection, immune-memory
CELLULAR HETEROGENEITY IN EARLY HEMATOPOIESIS AND
THE BM NICHE IN STEADY STATE

Lifelong replenishment of all mature blood and immune cells is sustained by a rare population of
hematopoietic stem cells (HSCs) through a hierarchically organized lineage commitment program.
In steady-state, the adult HSC pool is relatively quiescent but upon cell cycle entry, a stepwise
specification of long-term reconstituting HSCs to progressively multi-, oligo- and uni-potent
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hematopoietic progenitors (HPCs) restricted to the myeloid,
lymphoid, and megakaryocyte-erythroid lineages supply the
total blood cell pool (1). This program shows flexibility and
durability to sudden hematopoietic perturbations such as blood
loss or inflammation and reflects strict control over HSC self-
renewal versus differentiation, as exhaustion or an imbalance in
either will readily amount in hematopoietic failure and/or
hematologic malignancies. The section will review current
findings on HSC heterogeneity and its contribution toward
steady-state hematopoiesis and briefly, cover essential concepts
of the BM niche relevant later in the text for understanding the
impact of a perturbed or stressed BM environment on HSCs.

The recent advancement in single-cell-based techniques and
analysis (e.g., single-cell transplantation, RNA/ATAC-
sequencing) has been revealing in terms of HSC biology in
both native and stress hematopoiesis (2). The traditional
roadmap of hematopoiesis, where HSCs were once assumed
homogeneous with identical differentiation ability is currently
being reassessed. The HSC population is in fact heterogeneous as
clarified from single-cell transplantation and lineage-tracing
experiments with certain HSC subsets being biased toward
either myeloid or lymphoid lineages.

A large pool of multipotent progenitors (MPPs) rather than
HSCs has been thought to drive steady-state hematopoiesis.
Supportive of this are several publications that utilize lineage-
tracing of genetically-labeled HSCs and barcoding via
transposon tagging (3, 4). In contrast, Sawai et al., report of
Pdzk1ip1-GFP-labeled HSCs as the ultimate source of
continuous lymphopoiesis and myelopoiesis under steady-state
conditions, which can be accelerated by a systemic interferon
response (5). Chapple et al., utilize two independent HSC tracers,
Krt18 and Fgd5 to likewise support this model, and additionally
report a robust HSC contribution toward platelet and myeloid
lineages (6). Although with no lineage bias as described in the
previous study, Lu et al., similarly claim all donor-derived HSC
clones regenerate the blood homogeneously under homeostasis,
while in perturbed or conditioned states, a small fraction of
engrafted HSC clones will dominantly expand and exhibit
lineage bias (7). While this issue remains unresolved, the
heterogeneity of HSCs nonetheless adds an additional layer of
complexity in understanding HSC biology and requires
consideration when interpreting functional readouts of steady-
state and stress hematopoiesis , including infection
and inflammation.

In addition to the well-established HSC immunophenotypes,
lineage-Sca-1+c-Kit+ (LSK), endothelial protein C (EPCR) (8),
and the SLAM family proteins (9) used for the isolation of
phenotypic hematopoietic stem and multipotent progenitors
(HSPCs), others have been described to reflect HSC function
by enriching for distinct lineage bias upon transplantation.
Recently, Neogenin-1 (NEO1) was identified to distinguish
NEO1+ HSCs primed toward myelopoiesis at the cost of
lymphopoiesis from NEO1- HSCs that show a balanced
differentiation into both myelopoiesis and lymphopoiesis (10).
NEO1+Hoxb5+ HSCs expand with age while NEO1-Hoxb5+ HSC
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counts remain unchanged as in young mice. Additionally, in
vWF-GFP reporter mice, the megakaryocytic gene involved in
platelet aggregation encoding von Willebrand factor (vWF) (11)
was found to be expressed in ~60% of phenotypically defined
HSCs (LSKCD150+CD48-CD34-) with a higher expression of
Mpl, encoding the thrombopoietin (TPO) receptor essential for
megakaryocyte (Mk) and platelet production (12). This platelet-
primed HSC subset with myeloid bias gives rise to lymphoid-
biased HSCs, and thus are considered higher up in the
hierarchical tree (11). The deficiency of Mitofusin 2, a
regulator for mitochondrial fusion and tethering to the
endoplasmic reticulum, results in reduced differentiation
potential toward the lymphoid lineages (13). Several reports
claim that platelet-biased HSCs residing at the apex of the
HSC hierarchy are a major contributor of daily platelet
production (14, 15). Indeed, a population of stem-like Mk-
committed progenitors, primed but quiescent during steady-
state and activated only during acute inflammation to
replenish the depleted platelet pool has also been reported
(16). Lineage skewing of HSCs toward platelets has been
similarly observed in the BM of aged mice, where
dysfunctional aged macrophages with an enhanced
inflammatory signature fail to efficiently clear presiding
apoptotic cells. The resulting increase in IL-1b is thought to
induce the observed megakaryocytic HSC bias (17). Mks as a
distinct lineage segregated from other hematopoietic lineages is
so far implicated from several studies. HSC subtypes briefly
noted here have been ably reviewed by Yamamoto et al., in which
they discuss how emerging concepts of HSC heterogeneity
presented via recent platelet and red blood cell lineage analyses
may require a redefining of the “stemness” concept (18).

HSCs reside within the BM niche, a myriad of cellular,
molecular and physical components of the BM microenvironment
that maintain HSCs through the release of certain niche factors
(19, 20). The perivascular niche has been well-described and is
comprised of endothelial cells (ECs) and CXCL12 abundant
reticular (CAR) cells, leptin receptor (LepR)+ cells, and nestin+

cells, with the latter three showing considerable overlap and
high expression levels of stem cell factor (SCF) and CXCL12.
Niche constituents are crucial in regulating HSC identity as
demonstrated by several deletion studies. For example, SCF
deletion in LepR+ cells and ECs eliminates quiescent and
transplantable HSCs from the BM (21). Depletion of Mks (22,
23) and periarteriolar NG2+ stromal cells (24) results in HSC
proliferation and are likewise thought to promote HSC
quiescence. Interestingly, lineage-biased HSCs appear to
occupy distinct BM microenvironments. Recently, myeloid-
biased vWF+ HSCs were found to be enriched in Mk niches,
while lymphoid-biased vWF- HSCs were situated near
quiescence-regulating arteriolar niches (25). Similar to HSCs,
niche components are heterogeneous and form complex
microenvironments with multiple inputs from cellular
constituents. Together, a combination of cells coordinates the
maintenance of the hematopoietic system both during steady-
state and under perturbed situations.
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INFLAMMATION-STRESSED EARLY
HEMATOPOIESIS

Inflammation is the physiological reaction of the body to tissue
injury or foreign insult and triggers a protective response
involving blood and immune cells, vessels, and various
molecular mediators. This is best illustrated in the case of
infection; immune cells at local sites are activated through self
or non–self-antigen recognition, and subsequent waves of innate
and acquired immunity are coordinated to ensure host defense
(26). In contrast to secondary lymphoid organs primarily tasked
with immune activation, primary lymphoid organs including the
BM had been long regarded immune-privileged with only minor
exposure to the immune response. BM-residing HSCs and
memory immune cells were thus assumed exempt from immune
insults that can cause cell exhaustion or death, and reserved for
prospective life-threatening invasions. HSCs were considered
safely shielded in a dormant state through transcriptional and
epigenetic regulators and their role in the initiation and resolution
of inflammatory insults was presumed minimal.

Recent findings however highlight the dynamic response of
HSCs toward inflammation. HSCs directly sense inflammation
through their extracellular and intracellular receptors, rapidly lose
quiescence and proliferate in response to an external milieu of
inflammatory factors and infectious agents. Common inflammatory
signals reported to impact primitive hematopoiesis include
interferon (IFN)-a (27–29), IFN-g (30, 31), tumor necrosis factor
(TNF)-a (32), transforming growth factor (TGF)-b (33), interleukin
(IL)-1 (34), IL-6 (35, 36), andmacrophage colony-stimulating factor
(M-CSF) (37); infectious agents include pathogen-associated
molecular patterns (PAMPs) derived from microbes and danger-
associated molecular patterns (DAMPs), both of which are
recognized by pattern recognition receptors (PRRs). The
activation of respective downstream signaling pathways in HSCs
may result in their mobilization, proliferation, or differentiation to
boost immune cell production (38, 39). Infection restricted to
peripheral tissues/organs is primarily dealt with by immune cells
at local sites that will get activated, consumed, and ultimately
replenished by HSPCs (Figure 1). In the case of a systemic
microbial spread due to severe infection or sepsis, HSPCs in the
BM are activated to proliferate and drive myelopoiesis at the
expense of lymphopoiesis. This is known as emergency
myelopoiesis and involves the de novo generation and release of
immature and mature neutrophils from the BM (38, 40).

Inflammatory cytokines are major regulators of stress
hematopoiesis (39) (Table 1). Essers et al., reported that IFN-a
produced by plasmacytoid dendritic cells (DCs) upon TLR9
activation (49) activated dormant HSCs and caused their entry
into the cell cycle. During chemotherapy, the proliferative
capacity of HSCs is likewise enhanced upon stimulation with
IFN-a. The proliferative stress ensued with 5-fluorouracil (5-FU)
treatment caused a profound reduction of WT HSCs, while
IFNRa− /− HSCs were mostly unaffected (27). IFN-g
upregulation during Mycobacterium avium infection similarly
activated HSCs and resulted in their increased cycling and
proliferation (30). However, the effect of IFNs on HSCs can be
Frontiers in Immunology | www.frontiersin.org 3
diverse, as described in the case of the tick-borne pathogen
Ehrlichia infection, where a robust production of IFNa/b
impaired hematopoiesis through HSPC depletion and enforced
HSPC quiescence (50). IL-1 produced by several cell types such
as macrophages, ECs, and epithelial cells (51) directly stimulated
HSCs and skewed their differentiation potential toward myeloid
lineages through activation of PU.1, a transcription factor
regulating the myeloid differentiation program (34). Likewise,
upon LPS challenge, M-CSF secreted from ECs, macrophages, or
fibroblasts was found to affect PU.1, and HSCs with higher PU.1
levels were primed toward myeloid differentiation (37). TNF-a
mainly secreted by macrophages, T cells, and natural killer cells
(52) promotes HSC survival and simultaneously, their myeloid
differentiation via an NF-kB-PU.1-dependent mechanism (32).
An alternative pathway in response to bacterial infection, driven
by intermediate lineage-committed HPCs via osteoblast-derived
IL-7, which is a crucial cytokine for lymphopoiesis has also been
reported (48).

The effects of transient cytokine stimulation on HSC regulation
is overall beneficial in fighting infection, but can also be detrimental
when sustained by impairing HSC function as reported in the cases
of chronic Mycobacterium avium infection (53), IFN-a (27) and
LPS challenges (54), and IL-1 receptor stimulation (34). These
detrimental effects may stem from the accumulation of DNA
damage and double-strand breaks induced by various HSC
activators (55). While the TGF-b presented by non-myelin
Schwann cells is essential for steady-state HSC maintenance (33),
continuous TGF-b stimulation in vitro appears to reduce HSC cell
division and suppress their reconstitution ability (56). Interestingly,
the proliferation of lymphoid-biased HSCs but not myeloid-biased
HSCs, as defined by the Hoechst dye efflux efficiency or “side
population” was suppressed (57). Upregulation of TGF-b was
found upon Trypanosoma cruzi infection (58), which suggests
chronic infection may also differentially impact the function of
HSCs. Collectively, these findings illustrate how HSCs respond to
various cytokine stimulations by adjusting their proliferative
capacity as well as their differentiation program. The duration
and/or magnitude of the stimulation are possible determinants for
the cellular fate of HSCs (i.e., self-renewal, differentiation,
or apoptosis).

Toll-like receptors (TLRs) are a family of transmembrane
receptors that serve as the first-line innate immune sensor for a
variety of infection-derived PAMPs and DAMPs (59). The TLRs
primarily expressed on HSPCs are TLR2 and TLR4; both bind to
bacterial ligands and induce their myeloid differentiation (60).
Lymph-duct circulating HSPCs also express TLRs and differentiate
into myeloid cells upon their ligation (61), indicating that TLR
expression may serve as a means of immuno-surveillance, to sense
infection at local sites and increase hematopoietic production upon
need. Alternatively, the expression of bacteria-sensing receptors on
HSPCs evolved to deal with life-threatening infections in the
devastating case innate immune cells ever fail in combat and
systemic bacterial infiltration follows. A proof-of-principle study
involved an acute challenge with lipopolysaccharide (LPS), a gram-
negative bacterial component recognized by TLR4, and subsequent
activation of quiescent HSCs to proliferate and differentiate into
November 2020 | Volume 11 | Article 585367
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myeloid cells (60–62), while upon repetitive stimulation or chronic
LPS challenge, HSC numbers increase but their reconstitution
capacity decrease, somewhat recapitulating HSC aging (54, 63,
64). The elicited downstream pathway appears bacterial species-
dependent, as Pseudomonas aeruginosa, a gram-negative bacteria
induced HSC expansion through TLR4 (65), whereas
Staphylococcus aureus, a gram-positive bacteria showed similar
HSC expansion but through a TLR-independent pathway (66).
Live Salmonella Typhimurium induced proliferative stress in HSCs,
albeit through TLR4-dependent and -independent mechanisms
(54). Besides bacteria, the fungus Candida albicans also expanded
HSC-containing LSK cells of the BM via TLR2 and prompted their
differentiation into granulocytes, monocytes, macrophages and
DCs (67). Of note, upon TLR2 and TLR4 activation, HSPCs
were also capable of secreting IL-6, a particularly important
regulator of myelopoiesis in an auto- and paracrine manner (36).
Finally, sustained increase in Sca-1+ HSPCs is a hallmark of
bacterial and viral infections as described above, but also
Frontiers in Immunology | www.frontiersin.org 4
parasitic infections as well, as demonstrated in the malaria
mouse model elicited by the Plasmodium berghei sporozoite, via
direct HSC and progenitor proliferation (68).

Apart from invading pathogens, commensal bacteria or the
microbiota can also regulate hematopoiesis. Microbiota
depletion by antibiotics pretreatment induced atrophy of the
thymus and spleen, and suppressed hematopoiesis in the BM by
reducing HSC, MPP, and CLP numbers in a Stat1-dependent
manner, and not via TLR signaling (69). Similarly, germ-free
(GF) mice showed lower HSC, MPP, and CLP counts, and a
selective functional defect in GMP and myelopoiesis (70). This
phenotype was reversible and could be rescued with
administration of the nucleotide-binding oligomerization
domain (NOD) 1 ligand which activated mesenchymal stem
cells (MSCs) to produce the inflammatory cytokines, IL-7, IL-6,
TPO, SCF, and Flt-3. These results suggest peptidoglycan (PGN),
the NOD1 ligand derived from the microbiota modulates daily
hematopoiesis (71). Recently, CX3CR1+ monocytes were found
FIGURE 1 | Bacteria-induced activation of HSPCs. Steady-state hematopoiesis (upper): Hematopoietic stem and progenitor cells (HSPCs) self-renew and differentiate into
myeloid progenitors (MPs) and common lymphoid progenitors (CLPs) to produce mature cells. The divisional manner of HSPCs toward either self-renewal or maturation
(myelopoiesis/lymphopoiesis) is tightly controlled to sustain lifelong hematopoiesis. Hematopoiesis under infection (lower): Bacterial components reach the bone marrow (BM)
via systemic blood circulation to activate pattern recognition receptors (PRRs) such as toll-like receptors (TLRs) expressed on HSPCs and promote their proliferation. Bacteria-
associated molecules reach the BM and can alternatively activate TLRs and NOD1/2 on endothelial cells or mesenchymal stromal cells (MSCs), leading to the secretion of
inflammatory cytokines such as G-CSF and IL-6. These secreted cytokines promote granulopoiesis by acting on HSPCs. Cytotoxic T lymphocytes (CTLs) respond to bacterial
infection and produce inflammatory cytokines such as IFNs, which migrate to the BM and activate corresponding receptors expressed on HSPCs. This results in reduced
HSPC self-renewal and enhanced myelopoiesis. Severe bacterial infection such as sepsis rapidly ablates osteoblasts and induces lymphopenia due to lack of osteoblast-
derived IL-7. CX3CR1+ mononuclear cells (MNCs) sense bacteria-derived molecules such as bacterial DNA via endolysosomal TLRs and secrete the inflammatory cytokines,
IL-1, IL-6, and TNF, which control the expansion of hematopoietic progenitors, and shift the hematopoietic program toward myelopoiesis. Taken together, bacterial challenges
induce HSPC activation and myelopoiesis directly and indirectly at the expense of lymphopoiesis.
November 2020 | Volume 11 | Article 585367
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to co-localize with HSPCs near blood vessels in the steady-state
BM. These monocytes sensed commensal bacteria-derived
molecules via their endolysosomal TLRs (TLR-3, -7, and -9) to
produce tonic levels of the inflammatory cytokines, IL-1b, IL-6,
and TNF-a and control proliferation and myeloid differentiation
of HSPCs (70). Thus, microbiota-derived molecules circulate the
blood in both physiological and pathological conditions (72),
reach the BM, and are captured by specific hematopoietic and
non-hematopoietic cells to fine-tune hematopoiesis.
INFLAMMATION-STRESSED BM
MICROENVIRONMENT

Upon tissue insult, various BM cells have been reported to influence
either HSCs or hematopoiesis, including adipocytes (73),
endothelial vessels (74), osteocytes (75), neurons (76),
macrophages (77) and Schwann cells (33) among others. The BM
microenvironment has likewise been investigated at single-cell
resolution during homeostasis and under stress hematopoiesis
(78). The necessity of stromal cells for efficient HSC expansion
and maintenance under perturbed conditions has become apparent
from studies by several groups. Co-transplantation of
CD73+CD105-Sca1+ BM stromal cells with donor-derived HSCs
after irradiation resulted in efficient repairing of the damaged niche
and improved HSC expansion (79). The transplanted stromal cells
were localized within clusters of HSCs, indicating the efficient
expansion of HSCs following their transplantation relied on local
interactions with stromal cell progenitors. Guo et al., reported the
importance of Jagged-2 induction in vascular niches after
Frontiers in Immunology | www.frontiersin.org 5
myeloablation for HSPC expansion and reacquisition of HSPC
quiescence (80). Recently, a subset of apelin+ ECs was shown to be
critical not only for the maintenance of steady-state hematopoiesis
but also after myeloablative injury. Apelin+ ECs expanded
substantially and mediated the regeneration of the vascular niche
and subsequent hematopoietic reconstitution after BM
transplantation via pleiotrophin (81). Thus, reciprocal interactions
between the niche and HSCs are vital in determining efficient
hematopoietic reconstitution under stressed conditions.

Infection-induced HSPC activation is mediated by a combination
of direct and indirect pathways involving PRRs such as TLRs and
NODs expressed on hematopoietic and non-hematopoietic cells
(Tables 2 and 3). In particular, granulocyte-colony stimulating
factor (G-CSF) secreted from TLR4-expressing ECs is essential and
sufficient to activate GMPs and drive emergency myelopoiesis (43).
Escherichia coli infection rapidly mobilized HSCs to the spleen via
two innate immune sensors, nucleotide-binding oligomerization
domain (NOD)-like receptor 1/2 and TLR4, both of which are
expressed on radio-resistant cells, presumably stromal cells. Their
activation synergistically induced G-CSF secretion for efficient HSC
mobilization and neutrophil differentiation (84). LPS challenge also
drives vascular remodeling in the BM, proliferation of ECs and
increase in their permeability, and accompanies HSPC proliferation
and neutrophil mobilization from the BM (85). Del-1 is an
extracellular matrix protein expressed by cellular components of
the HSC niche, including ECs and CAR cells. Del-1 deficiency
attenuated emergency myelopoiesis and HSPC expansion both in
steady-state and in response to LPS and G-CSF injections (86).
Intravital BM imaging revealed parasitic Trichinella spiralis infection
dramatically increased HSC motility within the BM and their
migration to other BM spaces (87). Parvovirus B19 caused
TABLE 1 | The role of inflammatory cytokines or chemokines on steady-state and stress hematopoiesis.

Cytokines Which cells produce Effect on HSC function Reference

SCF Endothelial cell, MSC HSC maintenance Morrison Nature 2014 (20)
CXCL12 Endothelial cell, MSC, CAR cell
Thrombopoietin (TPO) Hepatocyte Decker Science 2018 (41)
Transforming growth factor b (TGF-b) Schwann cell Yamazaki Cell 2011 (33)
Fms-like kinase 3 (Flt-3) Ubiquitous Myeloid differentiation Gabbianelli Blood 1995 (42)
Interferon (IFN)-a Plasmacytoid dendritic cell (DC) Impaired HSC reconstitution capacity Esser Nature 2009 (27)

HSC exhaustion Sato Nat Med 2009 (28)
Pietras J Exp Med 2014 (29)

IFN-g T cell Impaired HSC reconstitution capacity Baldridge Nature 2010 (30)
Impaired HSC maintenance de Bruin Blood 2013 (31)

Granulocyte colony-stimulating factor
(G-CSF)

MSC, endothelial cell Myeloid differentiation Boettcher J Immunol 2012 (43)
Boettcher Blood 2014 (44)

Granulocyte-macrophage colony-
stimulating factor (GM-CSF)

MSC, endothelial cell, macrophage, T
cell

Weisbart Nature 1985 (45)
Shi Cell Research 2006 (46)

Macrophage colony-stimulating factor
(M-CSF)

Endothelial cell, macrophage, fibroblast Mossadegh-Keller Nature 2013 (37)

Interleukin (IL-1) Macrophage, Endothelial cell
Epithelial cell

Pietras Nat Cell Biol 2016 (34)

Interleukin (IL-3) T cell Suda J Cell Physiol 1985 (47)
IL-6 Ubiquitous

HSPC (LSK)
Zhao Cell Stem Cell 2014 (36)

IL-7 Osteoblast Decrease of CLPs and induction of
lymphopenia

Terashima Immunity 2016 (48)

TNF-a Macrophage, T cell, natural killer cell Myeloid differentiation Yamashita Cell Stem Cell 2019 (32)
Novembe
The table summarizes the role of chemokines and cytokines upon steady-state or stress hematopoiesis. SCF, stem cell factor; MSC, mesenchymal stem cell; CAR cell, CXCL12-abundant
reticular cell; TNF, tumor necrosis factor.
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transient erythroid aplasia by infecting MSCs and upregulating their
expression of IL-6 and TNF-a (88). Treatment with IFN-a or pI:C, a
ligand for TLR3 and a mimetic of viral infection modulates
hematopoiesis via hematopoietic- but also niche-expressed IFN-a
receptor. Both challenges increased EC proliferation in the BM partly
through vascular endothelial growth factor (VEGF) (89). Taken
together, these findings indicate bacterial, viral, or parasitic
infections can induce HSPC activation also through niche-
dependent pathways.
CHEMOTHERAPY- AND IRRADIATION-
INDUCED INFLAMMATION

Similar to naturally occurring infections, quiescent HSCs are
recruited to actively divide and regenerate the hematopoietic
Frontiers in Immunology | www.frontiersin.org 6
system in response to artificial BM ablating agents, such as
irradiation or chemotherapy. Here, HSC activation is likely
caused by a transient surplus of systemic cytokines that occur
after irradiation- or chemotherapy-induced BM suppression.
Cytokine levels in the serum or BM, including SCF and TPO
were elevated due to their reduced consumption by surrounding
hematopoietic cells (90, 91). Specifically, the elevation of TPO,
SCF, IL-3, FLT3, and CXCL12 after lethal irradiation protected
HSPCs from apoptosis and improved the survival of irradiated
mice (92). Other cytokines of note include TNF-a, IL-1b, and IL-
6 detected in the serum (93) and additionally IL-1a, IFN- a/b,
and GM-CSF in several cell types (94). Thus, not only local but
also systemic cytokine levels determine the fate of HSCs post
BM suppression.

Low mitochondrial membrane potential in steady-state HSCs
is maintained by extracellular adenosine supplied by surrounding
TABLE 2 | Pattern recognition receptors expressed by hematopoietic cells that regulate steady-state and stress hematopoiesis.

Receptors Ligands Cell type Species Signaling Function Reference

TLR2 Candida albicans LSK (Lin−Sca-1+c-kit+) Mouse TLR2-Myd88/
Dectin1

Differentiation into DCs Yanez PLoS One 2011 (67)

Pam3CSK4 Lin− Mouse TLR2-ROS Differentiation into macrophages
with lower levels of inflammatory
cytokines

Yanez Eur J Immunol 2013
(82)CD34+ Human

TLR2/4/9 Pam3CSK4 Common dendritic cell
progenitor (CDP)

Mouse CXCR4 down-
regulation and
CCR7 up-
regulation

DC expansion in inflamed lymph
nodes and support of DC
homeostasis

Schmid Blood 2011 (83)
LPS
CpG

TLR4 LPS of Pseudomonas
aeruginosa

LSK (Lin−Sca-1+c-kit+) Mouse TLR4 Dysfunctional HSC expansion Rodriguez Blood 2009 (65)

LPS HSC (CD150+CD48-LSK) Mouse TLR4 Increased HSC number but
decreased HSC reconstitution
potential

Esplin J Immunol 2011 (64)

LPS HSC (CD150+CD48-LSK) Mouse TLR4-Id1 Increased HSC number but induced
HSC dysfunction

Zhao PLoS One 2013 (63)

LPS HSC
(CD150+CD135−CD34−CD48−

LSK/
CD150+CD34−CD48−CD41−

LSK)

Mouse TLR4-TRIF-
ROS-p38

Proliferative stress-induced HSC
dysfunction

Takizawa Cell Stem Cell
2017 (54)Salmonella

Typhimurium

TLR3/7/9 bacterial DNA CX3CR1+MNC Mouse TLR3/7/9 Inflammatory cytokine production by
CX3CR1+ MNCs induced MPP
expansion and steady-state
myelopoiesis

Lee Blood 2019 (70)
November 2020 |
The table summarizes the role of pattern recognition receptors expressed in hematopoietic cells upon steady-state or stress hematopoiesis. TLR, Toll-like receptor; DC, dendritic cell;
Pam3CSK4, Pam3Cys-Ser-(Lys)4; ROS, reactive oxygen species; LPS, lipopolysaccharide; CCR, CC chemokine receptor; CXCR, CXC chemokine receptor; MNC, mononuclear cell;
CX3CR1, CX3C chemokine receptor 1; HSC, hematopoietic stem cell; MPP, multipotent progenitor.
TABLE 3 | Pattern recognition receptors expressed by non-hematopoietic cells that regulate steady-state and stress hematopoiesis.

Receptors Ligands Cell type Signaling Species Function Reference

TLR4 LPS Non-hematopoietic cell TLR4 not IL-1R Mouse G-CSF-mediated emergency myelopoiesis Boettcher J Immunol
2012 (43)

Endothelial cell TLR4-Myd88 Boettcher Blood 2014
(44)

TLR4 LPS Non-hematopoietic cell G-CSF up-regulation and
CXCL12 down-regulation

Mouse G-CSF-induced HSC mobilization to spleen Burberry Cell Host
Microbe 2014 (84)NOD1/2 PGN

NOD1 PGN MSC NOD1 Mouse Regulation of steady-state hematopoiesis via
cytokine production by MSCs

Iwamura Blood 2017 (71)
V

The table summarizes the role of pattern recognition receptors expressed in non-hematopoietic cells upon steady-state or stress hematopoiesis. TLR, Tol- like receptor; LPS, lipopolysaccharide;
G-CSF, granulocyte-colony stimulating factor; NOD, Nucleotide-binding oligomerization domain-containing protein; PGN, peptidoglycan; MSC, mesenchymal stem cell.
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myeloid progenitors, known to possess an anti-inflammatory
effect (95). After 5-FU administration, the ablation of
surrounding myeloid progenitors will result in low adenosine
and consequently high mitochondrial activity and reactive
oxygen species (ROS) production in HSCs. This is essential for
initiating HSC cellular division and hematopoietic repopulation
(95), but contradicts with a previous study claiming the negative
regulation of ROS on HSC maintenance (96), and high
mitochondrial membrane potential with reduced hematopoietic
repopulating ability in steady-state and IFN-a-stimulated HSCs
(97). Thus, the response of activated HSCs toward ROS is context-
dependent and markedly differs from quiescent HSCs in steady-
state. This is further evidenced in HSCs with enhanced
mitochondrial activity and ROS levels possessing more
potential for rapid regeneration of Mks and platelets after 5-
FU administration (98). Here, TPO injection enhanced
mitochondrial activity in HSCs and primed their differentiation
toward the Mk-lineage. Not only are Mks a rich source of
inflammatory cytokines and chemokines released upon acute
injury and inflammation, but they can also cooperate with
neutrophils to trap invading pathogens (99, 100). Among the
cytokines, C-X-C motif ligand 4 (CXCL4) (22) has been reported
to increase hematopoietic recovery of 5-FU-induced BM
suppression (101). Fibroblast growth factor 1 (FGF1) supplied
by Mks also contributed to the expansion of HSCs after
chemotherapeutic stress by counteracting TGF-b inhibitory
signaling (23). Furthermore, Mks help expand endosteal niche-
residing osteoblasts after irradiation through the secretion of
platelet-derived growth factor (PDGF)-BB, and thereby support
hematopoietic recovery (102). Taken together, HSC-generated
Mks and platelets serve as an essential source of hematopoietic
recovery factors that regulate HSCs directly and indirectly through
the BM niche.

Since BM injury induced by irradiation or chemotherapy
affects not only hematopoietic cells but also non-hematopoietic
cells within the BM, the reconstruction of the niche may well be
key for a successful hematopoietic recovery. Angiopoietin-1
supplied from osteoblasts protects HSCs from BM suppression
(103). Of note, angiopoietin-1 secreted by LepR+ stromal cells can
also negatively influence hematopoietic regeneration after
irradiation (104). Adipocytes are an additional BM niche
component found to proliferate extensively after irradiation or
chemotherapy to promote hematopoietic regeneration by
supplying SCF to HSCs, which under normal circumstances is
provided by LepR+ cells and ECs (73). Other factors besides SCF,
including adiponectin (105) and leptin (indirectly via
adipogenesis) can support HSC proliferation after irradiation
(106). Moreover, a radio-resistant CD105-CD73+NGFRhi

stromal subset expressing high levels of hematopoietic cytokines
was found to support hematopoietic regeneration after irradiation
(107). Co-transplantation of MSCs overexpressing PDGF-b
improved the engraftment of transplanted HSCs via enhanced
HSC self-renewal and expansion (108). Niche regeneration
precedes HSC regeneration after irradiation, and by enlarging
the niche pool, a better environment to facilitate HSC engraftment
can be achieved. Thus, BM niches are also affected by BM injury,
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and these alterations contribute to the regeneration of the
hematopoietic system.

Since irradiation or chemotherapy damages the DNA of
hematopoietic cells, molecules relevant for the DNA damage
and repair machinery play a key role in hematopoietic recovery.
For instance, histone deacetylase 8 (HDAC8), which modulates
p53 activation contributes to HSC survival by blocking apoptosis.
HDAC8-deficiency showed hematopoietic failure and increased
lethality after the administration of 5-FU (109). Similarly,
deficiency of the growth arrest and DNA-damage-inducible
protein (Gadd45a), a key tumor suppressor showed efficient
recovery of the hematopoietic system through enhanced
proliferation of HSPCs, although at the expense of their
genomic integrity (110). These phenotypes are attributed to a
decrease in HSPC apoptosis due to a greater resistance to DNA
damage. Additionally, deficiency of Rap1, a member of the
shelterin proteins decreased double-strand DNA break repair
through the non-homologous end-joining pathway, and
consequently HSC survival after irradiation or chemotherapy
(111). Thus, the ability of HSCs to respond efficiently to
DNA damage is one of several factors that determines
HSC survival under stress conditions. However, since excess
resistance to DNA damage will increase the risk for pathogenesis,
particularly in the case of Fanconi anemia (55) and
leukemogenesis (110), an appropriate balance is required for a
healthy hematopoietic recovery.

After BM injury, HSCs and their niches respond to a damaged
BM environment by calling for an alternate response compared
to steady-state conditions, which may continuously adjust until a
return to quiescence. These serial changes may well dictate the
appropriate and balanced supply of stem cells and differentiated
cells, and the efficient regeneration of the hemato-immune
system and BM niche. Further studies are needed to clarify
such possibilities.
IMMUNE-MEMORY IN HSPCS

Host immune responses can be divided into a rapidly reacting
innate response that is relatively non-specific, and a slowly
developing adaptive response that is highly specific to the
antigens of invading pathogens. After clearance of an infection,
the latter can form a type of immunological memory, ensuring a
swift and robust response against future infections and lifelong
immune protection. The concept of immunological memory was
restricted to adaptive immunity but has since been extended to
include innate immunity in the last decade. Indeed, various
innate immune cells (i.e., monocytes, macrophages, natural
killer (NK) cells) show a long-term adaptation of increased
reactivity upon secondary stimulation, a state termed trained
immunity (112). Epigenetic reprogramming such as histone
modifications and chromatin reconfigurations established
during a previous challenge is the basis for trained immunity.
Upon stimulation with the TLR2 ligand b-glucan, epigenetic
profiling of monocyte to macrophage differentiation has been
especially revealing in terms of trained immunity signatures (113).
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b-glucan pre-exposed macrophages produced more
inflammatory cytokines such as TNF-a and IL-6 after a
secondary challenge with tripalmitoyl glyceryl cysteine, a TLR2
ligand compared to naive macrophages. In contrast, LPS pre-
exposure induced immune-tolerance in macrophages. Epigenetic
marks in the promoter (ACp1) and distal elements (Ace1) of
H3K27ac were altered by b-glucan, whereas LPS exposure
induced changes in a small subset of the dynamic distal
regulatory elements (Ace5) of H3K27ac. A shift in cellular
metabolism is also a key driver of trained immunity, as is the
case for b-glucan trained monocytes, from oxidative
phosphorylation to aerobic glycolysis via the mTOR-HIF1a
pathway (114). This metabolic switch may enable rapid cytokine
and metabolite production to combat intruding pathogens and is
not restricted to glycolysis but also glutaminolysis, accumulation of
fumarate (115), the mevalonate pathway and cholesterol
synthesis (116).

The paradox that short-lived myeloid lineages (monocytes
and DCs) with a turnover of every 5 to 7 days retain trained
immunity features lasting several months to years served as a
motive for investigating long-lived HSPCs and their potential to
be trained (117). Recent studies report trained immunity in
HSPCs after acute/chronic stimulation by inflammatory
cytokines and pathogen-derived agents, such as LPS, b-glucan,
Frontiers in Immunology | www.frontiersin.org 8
or BCG (Figure 2A). Relevant epigenetic, metabolic and key
signaling pathways that activate or exhaust stem cell activity will
be described here (Figure 2B).

b-glucan stimulation induced expansion of the myeloid-
biased CD41+ HSC and MPP subset of the BM that persisted
well after transplantation (117). A metabolic shift toward
enhanced glycolysis, the mevalonate pathway and cholesterol
synthesis in HSPCs was observed. Initial exposure to b-glucan
enhanced the response of HSPCs to a secondary systemic LPS
challenge by expansion of the LSK and MPP population and an
elevated DNA damage response (lower g-H2AX levels) (117).
Kaufmann et al., similarly reported cell expansion and enhanced
myelopoiesis of BCG-educated HSCs andMPPs in the BM via an
IFN-g-mediated pathway. These trained HSCs generated
epigenetically-modified macrophages with better protection
against Mycobacterium tuberculosis infection (118). Primary
LPS stimulation likewise elicited trained immunity in HSCs,
enabling a faster and more robust response against a secondary
Pseudomonas aeruginosa infection (119). Here, a single LPS
challenge induced HSC expansion 1 day post injection, which
returned to homeostatic levels within 5 days. Transcriptome
analysis revealed significant gene expression changes 1 day post
injection but a return to normal expression patterns after 4
weeks. Analysis of chromatin opening/closing sites showed
A B

FIGURE 2 | The concept of trained immunity in HSPCs and reported stressors for its induction. (A) A one-time exposure to an immunological challenge drives
proliferation and differentiation of HSPCs to enhance host immunity. A primary challenge by innate immune insults such as BCG, b-glucan or a Western-type diet
induces epigenetic or metabolic changes at the cellular level in HSPCs, and activates them directly via cell intrinsic changes or indirectly via cytokine production such
as IL-1b and GM-CSF. A secondary challenge such as LPS re-stimulation enhances overall immune response, cytokine production and myelopoiesis (trained
immunity). Due to memory formation, HSPCs respond better to a secondary challenge and produce more reactive immune cells that can exert robust immune
responses against the infection. A hypothetical scheme of immune-tolerance is shown. Immune-tolerance induces immune suppression upon a secondary challenge,
which impairs HSPC function and their potency to differentiate into myeloid cells. As a result, immune responses decline and renders the host more susceptible to
infection. (B) The schematic figure summarizes findings published in previous reports and highlights the role of inflammation on trained HSPCs. Several types of
inflammation-causing components including b-glucan, a Western-type diet and BCG affect HSPCs at the intracellular level. These factors induce metabolic and
epigenetic changes such as enhanced glycolysis and cholesterol biosynthesis, histone modifications, changes in cell cycle state and an increase in DNA damage.
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newly created open chromatin regions in HSPCs (CD135-LSKs)
relevant for the immune response and myeloid differentiation,
which were retained 4 weeks post injection. These open
chromatin regions were significantly lost in HSCs deficient in
TLR4 and C/EBPb, a mediator of TLR signaling, and
demonstrated LPS-TLR4-C/EBPb-mediated epigenetic memory
formation in HSCs (119). Thus, trained immunity confers a
protective outcome on HSPCs and ultimately host defense by
enhancing the reactivity of mature cells derived from “trained
HSPCs” toward a secondary infectious challenge.

Constitutive stimulation by inflammation or infection can
also result in immune-tolerance, a state of reduced reactivity
(Figure 2A). LPS pre-exposure induced immune-tolerance
in monocytes by inactivating epigenetic marks in lipid
metabolism and phagocytosis-related genes; these were
partially reverted upon b-glucan stimulation (120). Similarly,
BCG vaccination induced H3K4me3 activation in human
monocytes via the upregulation of IL-1b, a key mediator of
trained immunity (121). Given that HSPCs chronically
stimulated by IL-1b prior to transplantation showed
compromised hematopoietic regeneration possibly due to
immune-tolerance (34), the induction of trained immunity or
immune-tolerance may depend on cell type and/or the duration
of the signal, and possibly metabolic adaptability. Recently, a
“sterile” Western-type diet was reported to trigger trained
immunity in the Ldlr−/− atherosclerosis mouse model through
proliferation and functional reprogramming of GMPs into
activated and potentially harmful monocytes (122).
Hypercholesterolemia reprogramming of HSCs has also been
described (123, 124). Thus, the relevance of immune-tolerance
is readily implicated in chronic inflammatory diseases and
possibly for the treatment of certain autoimmune diseases
such as type 2 diabetes.
EFFECT OF IMMUNE INSULTS ON
HEMATOLOGIC MALIGNANCIES

Hematopoietic homeostasis is perturbed when the immune system
is challenged, such as in cases of infection or inflammation. A
systemic increase of inflammatory cytokines and chemokines will
stimulate effector immune cells, stromal cells andHSPCs to rapidly
replenish consumed innate immune cells at peripheral sites. Stress-
induced cell cycle activation of quiescent HSCs will boost
hematopoiesis to restore tissue homeostasis, but may come with
dire consequences if chronically sustained (i.e., chronic
inflammation and autoimmune diseases). Chronic immune
stimulation induces cell stress, DNA damage and various
hematopoietic dysfunctions, as observed in patients with sickle
cell disease often developing myeloid malignancies, possibly from
the associated cytokine storm that can cause somatic gene
mutations and myeloid neoplasms (125). Persistent cytokine or
PAMP stimulation via TNF, IFN, and IL-6 signaling and HSC
dysfunction have been well-documented and may readily impact
the initiation andprogression of hematologicmalignancies andBM
failure (126).
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The risk for developing hematologic malignancies increases
exponentially with age (127–129). Although not a hematopoietic
challenge per se, aging displays a chronic inflammatory
phenotype often associated with expansion of the HSC
compartment and lineage-bias toward myeloid and
megakaryocytic cells (130). The increase in inflammatory
factors, IL-6, IL-1, and C-reactive protein accompanies aging
(131) and is basis for the emergence of inflammaging (132). As
reported by Mann et al., aged and young HSCs display
contrasting responses toward inflammatory stress (133). A
myeloid-biased subset, which expands with age and are further
marked by CD61 expression shows a poor response to prolonged
infectious challenges, and possibly are prone to myeloid
leukemia development.

Closely associated with aging is clonal hematopoiesis of
indeterminate potential (CHIP), a precursor state where
mutations in leukemia-associated driver genes are acquired in
individuals with no prior history of hematologic diseases, and
thus posing a neoplastic progression risk (134). Somatic genes
with high potential to develop into hematopoietic malignancies
upon mutation include epigenetic modifiers, splicing factors,
proliferation signaling molecules and DNA-damage regulators
such as DNMT3A, TET2, ASXL1, JAK2, SF3B1, PPM1D and
TP53, all known to be mutated in prominent hematologic
malignancies (135, 136). Clonal hematopoiesis is a predictor
state with adequate potential toward the development of
hematologic malignancies (137), while the indeterminate
potential aspect of the name reflects the uncertainty behind
why only a small population of individuals displaying clonal
hematopoiesis develop into full-blown leukemia. Specific
mutations may augment inflammation and drive HSC
proliferation, while the inflamed environment may further
foster genetic ablations in some HSCs and result in their
selective expansion. Indeed, several patient studies report of cases
where inflammatory conditions promote clonal hematopoiesis (138,
139), and illustrate how HSC impairment upon inflammatory stress
may provoke their malignant transformation. This possibility is
supported by epidemiological evidence where a history of infection/
autoimmunity strongly correlates with hematologic malignancies
(140, 141).

A prominent driver mutation in hematological neoplasms is
TET2. A recent study reported the abnormal expansion of
myeloid cells in Tet2-deficient mice (142). Cull et al., found
LPS induced Tet2 transcription in macrophages, while Tet2 loss
enhanced the secretion of the pro-inflammatory cytokines, IL-6,
IL-1b, and TNF and the expression of LPS-induced genes associated
with an inflammatory state (143, 144). This alteration toward an
inflammatory environment may favor Tet2-mutant HSPC
expansion (145). Interestingly, Meisel et al., reported a breach in
the intestinal barrier and subsequent translocation of bacteria
result in increased IL-6 production. The risk for development
into a pre-leukemic myeloproliferation state was heightened in
mice with Tet2-deficinent expression in hematopoietic cells,
which was similarly recapitulated in Tet2-deficient germ-free
mice upon colitis induction or in response to systemic
bacterial stimuli such as treatment with a TLR2-agonist (146).
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This study highlights the requirement for microbial-
dependent inflammation in the development of pre-
leukemic myeloproliferation.

TLR signaling is also essential for the inflammatory response
by shaping HSC fate and blood cell output and if dysregulated,
contributes to the loss of HSC potential and/or their malignant
transformation (147). Recently, aberrant TLR signaling and its
downstream effector molecule, Myd88 has been linked to
myelodysplastic syndrome (MDS) and acute myeloid leukemia
(148–150). As HSCs express several TLRs enabling their direct
stimulation, a causal link between innate immune signaling,
HSC dysfunction and hematologic malignancies can be readily
imagined, as supported by the following studies. The expression
of TLR2 and TLR4 genes was found higher in patients
with myelomonocytic and monoblastic acute leukemia (151).
Huang et al., reported enhanced innate immune response
pathways in chronic myeloid leukemia mouse models (152).
MDS patients were found to overexpress TLR1, TLR2, TLR4
and TLR6 in human CD34+ cells (153, 154). Activation of the NF-
kB pathway contributed to HSPC apoptosis in MDS, possibly via
a family of Nod-like receptors (NLRs) and inflammatory-
mediated cell death, or pyroptosis. Particularly, the NLR protein
3 (NLRP3) inflammasome overexpressed in MDS HSPCs
increased secretion of IL-1b and IL-18, and caused pyroptotic
cell death and eventual cytological dysplasia (147, 155, 156). An
inflamed environment (i.e., chronic inflammation) was found to
promote MDS progression by providing MDS HSPCs with a
competitive advantage over normal HSPCs. The mechanistic
basis for their clonal dominance occurred via a switch from
canonical to noncanonical NF-kB signaling in TLR-TRAF6
primed HSPCs that ultimately sustained myeloid expansion
(157). A novel perspective designating the BM niche as the
driving force for the initiation and evolution of MDS
pathogenesis has been elaborated upon in another review (158)
Thus, inflammation is a key determinant for the competitive
advantage of MDS HSPCs over normal HSPCs.

Abnormal activation of autoreactive T cells and a shortage in
stem cells have been reported in both aplastic anemia (AA)
patients and mouse models as the ruling cause of BM failure and
appears central to the pathophysiology of acquired AA (159).
Increased CD4+ helper T cells and activated CD8+ cytotoxic T
cells can be found in the patient’s BM and are suspected as
culprits in HSPC and BM destruction (160). The CD4+ T cells
dominant in acquired AA secrete IFN-g and TNF-a, and have
been reported to inhibit CD34+ colony formation. The
adenylate-uridylate–rich element (ARE)-deleted mouse model
that constitutively expresses IFN-g, revealed IFN-g alone could
disrupt CMP generation, prevent hematopoietic differentiation
and recapitulate AA pathology (161). Apart from AA, the most
often inherited bone marrow failure syndrome, Fanconi anemia
is associated with defective DNA repair and genomic instability,
which are also primary hallmarks of aging. In addition to pI:C
injections, Walter et al., demonstrated the ability of other
physiological stimuli (i.e., IFN, G-CSF, TPO or serial bleeding)
to cause DNA damage in LT-HSCs in vivo within similar ranges
of pI:C, enforce HSC exit out of quiescence, and accelerate failure
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of the hematopoietic system as observed in Fanconi anemia
patients (55). These findings collectively illustrate a causal link
between HSC dysfunction induced by chronic immune
stimulation and progression toward hematopoietic failure and
hematologic malignancies.
DISCUSSION

Since the initial establishment of the hematopoietic
differentiation tree, our understanding of the hematopoietic
system, and of the HSC population situated at its apex
undergoes continuous refinement. Formerly presumed
unresponsive to tissue insult, HSCs in fact show high
adaptability under various scenarios and actively cooperate
with downstream hematopoietic progenitors, mature cells, and
environmental stromal cells as frontline responders to preserve
blood homeostasis. However, their ability to respond deftly
through self-renewal and differentiation at times brings about
detrimental consequences. In this review, we sought to address
the latest understanding of HSC biology, in terms of
heterogeneity, functionality, and adaptability in steady-state
versus perturbed conditions with a particular emphasis on
infectious and inflammatory challenges.

From ontogeny to aging, the functional readout of a single
HSC in terms of repopulation ability and lineage output differs
immensely, leading to the concept of clonality and heterogeneity.
Only recently through the development of single-cell approaches
can we now address the most basic questions: How many HSCs
are born during definitive hematopoiesis formation (162)? Are
all HSCs identical in terms of lineage fate (7, 15)? Do all HSCs
equally contribute to daily hematopoiesis? Are HSC responses
equal under perturbed conditions (133)? The list of questions is
ever-expanding. However, transplantation-based studies to test
for HSC functionality, where the recipient is subjected to
irradiation is a non-physiological setting and should be
interpreted with caution as the readout reflects lineage
potential enforced on a single HSC rather than its native fate.
For example, expanding HSCs after 5-FU treatment contain
elevated ROS levels due to high mitochondrial activity but also
high repopulating ability (95) and contrasts with steady-state
HSCs, where high mitochondrial activity normally implies
reduced repopulating ability (96). HSCs can perhaps change
their cell fate, depending on the surrounding environment.
However, whether this reflects genuine HSC heterogeneity or
simply activation of an emergency program remains unresolved.
The implementation of new technology to assess lineage output
in unperturbed states, such as the inducible sleeping beauty
transposon system enabling barcoding of single cells and
lineage reconstitution by sequencing (4, 163) or the HUE
mouse system (164) is beneficial here. Of note, the definition
of HSCs (i.e., long-term, short-term and differences amongst the
MPP subset) is still ambiguous and their exact contribution to
steady-state hematopoiesis remains controversial. Different
conclusions may thus be drawn depending on the experimental
system at hand and must be examined carefully.
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It is now clear that the BM is not immune-ignorant but a
prominent lymphoid organ that receives a large spectrum of
hemato-immunological insults. Likewise, BM-residing HSCs are
not just quiescent sleeping cells but directly respond to insults not
limited to infection, inflammation but also the regeneration of the
BM after toxic agents or irradiation. Depending on the type of
DAMPs, PAMPs, cytokines and growth factors involved and the
strength/duration of the stimulation, HSCs will alter their fate
toward myelopoiesis, granulopoiesis or even bypass progenitors
altogether to directly orchestrate on-demand hematopoiesis. HSCs
positioned at the interface of perturbed hematopoiesis will execute
distinct emergency programs to integrate and fine-tune responses
to maintain hematopoietic integrity. However, such beneficial
effects of HSC activation can be counteracted by chronic
inflammatory conditions. HSC dysfunction upon chronic
inflammation or aging as the cause of clonal hematopoiesis and
in certain cases leukemic transformation are all readily imaginable
scenarios, although direct causality remains to be demonstrated.
Emerging reports of trained immunity in HSPCs and mature cells
derived from “trained” progenitors with an enhanced protective
function provide a novel opportunity for interpretation. The well-
established immune response against inflammatory or infectious
stimuli may have well been under the influence of HSC trained
memory and should be revisited. HowHSCmemory is formed and
maintained, and to what degree trained immunity in HSCs dictate
host immune defense are areas yet to be explored. Whether the
metabolic shift in HSCs induced by memory formation alters the
depth of HSC quiescence, population hierarchy and functional
heterogeneity, and ultimately clonal hematopoiesis are primary but
still unresolved questions. Despite the risk for potential collapse of
the hematopoietic system,HSCs nonetheless persist at the frontline
not only as an integrative hub for incoming inflammatory signals,
but also execute tissue repair in organs beyond the blood system.
Trained immune memory in HSCs offers one more additional
perspective in elucidating the true nature of HSCs.

In linewith this, counterpart immune/stromal niche components
also regulate steady-state and stress hematopoiesis. The importance
of stromal cells as amajor source ofHSCmaintenance and activation
factors for HSC homeostasis is clear. As observed by the apelin+ EC
subset tasked to regenerate the BM after irradiation (81), ECs are
highly heterogeneous in terms of their identity and function. Other
BM constituents, including adipocytes that proliferate and secrete
SCF post irradiation to promote BM regeneration (73), certainMSC
progenitors that maintain both lymphoid progenitors and HSCs via
CXCL12 (165), as well as a subset of regulatory T cells with high
CD150 expression that localize in HSC niches and maintain HSC
quiescenceare additional examplesofHSCinteractionwith immune/
stromal heterogeneity (166). Thus, the heterogeneity of HSCs and
their counterpart niche cells become vital when interpreting stressed
conditions such as inflammation, infection and the onset of
hematologic malignancies. Nonetheless, the bigger question would
be, whether this so-called heterogeneity of HSCs (among others) is a
distinct population or a continuum where cells retain the ability to
transform back and forth. Single-cell RNA-sequencing, despite its
immense power offers only a snapshot analysis and may not reflect
the true nature of these cells.
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Finally, the recently proposed concept of immune memory
in HSPCs is a prime topic with clinical relevance. Only several
studies till now have demonstrated trained immunity at the
level of hematopoietic progenitors via b-glucan, LPS and BCG,
and more can be expected. Besides transcriptional and
epigenetic reprogramming and a metabolic shift as key
characteristics of trained immunity, much remains to be
revealed. For example, the similarities and differences in
trained immunity between different stimuli, or whether the
formation of a trained memory is mutually exclusive or
synergistic. Regarding the duration of trained immunity as
well as the cellular/molecular mechanisms associated with it,
whether the stability of different signatures, e.g., chromatin
modification, histone/DNA methylation, RNA splicing impact
the half-life of the memory formed is a primary question among
others. Furthermore, what determines whether a cell is able to
form a memory? Is memory a privilege granted only to the
hematopoietic compartment or do niche/stromal cells possess
this ability as well and does this affect their interaction with
HSCs? Although yet to be demonstrated, this possibility can
readily be imagined as certain stromal cells also take part in the
immune response by secreting inflammatory cytokines and
chemokines and express PRRs. BCG vaccination induced
trained immunity in human monocytes via IL-1b (121),
whereas IL-1b re-stimulation damaged the repopulation
ability of HSCs post transplantation (34). The latter situation
may imply the induction of immune-tolerance, and a possible
relevance with aging-associated HSC dysfunction due to IL-1
upregulation observed in the elderly (131). It is important to
understand the determinants for dictating trained immunity
versus immune-tolerance, and whether the type of stimuli or
threshold of signal strength or duration determines the choice
for one over the other. Lastly, trained immunity may possibly have
detrimental outcomes, as in instances of autoimmune diseases
(167), so can HSC memories be a predisposition for future
hematopoietic malignancies, say in terms of CHIP progression to
MDS? More studies are expected in the near future.
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