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PD-L1/PD-1 blockade immunotherapy has significantly improved treatment outcome for
several cancer types compared to conventional cytotoxic therapies. However, the specific
molecular and cellular mechanisms behind its efficacy are currently unclear. There is
increasing evidence in murine models and in patients that unveil the key importance of
systemic immunity to achieve clinical responses under several types of immunotherapy.
Indeed, PD-L1/PD-1 blockade induces the expansion of systemic CD8+ PD-1+ T cell
subpopulations which might be responsible for direct anti-tumor responses. However, the
role of CD4+ T cells in PD-L1/PD-1 blockade-induced anti-tumor responses has been
less documented. In this review we focus on the experimental data supporting the “often
suspected” indispensable helper function of CD4 T cells towards CD8 effector anti-tumor
responses in cancer; and particularly, we highlight the recently published studies
uncovering the key contribution of systemic CD4 T cells to clinical efficacy in PD-L1/
PD-1 blockade therapies. We conclude and propose that the presence of specific CD4 T
cell memory subsets in peripheral blood before the initiation of treatments is a strong
predictor of responses in non-small cell lung cancer patients. Therefore, development of
new approaches to improve CD4 responses before PD-L1/PD-1 blockade therapy could
be the solution to increase response rates and survival of patients.
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INTRODUCTION

Immunotherapies based on PD-L1/PD-1 blockade have revolutionized the treatment paradigm for
several cancer types. The PD-L1/PD-1 immune checkpoint inhibitory interaction regulates the activation
of immune responses and specifically of T cell responses in physiological conditions. However, cancer
cells utilize this strategy to evade from anti-tumor immune responses, but also contributing to a general
state of immunosuppression. Many tumor cells upregulate PD-L1, that subsequently binds to PD-1 on
the surface of tumor infiltrating T cells (TILs). This interaction inhibits T cell responses by several
mechanisms (1, 2). Currently, most PD-L1/PD-1 inhibitors consist of recombinant antibodies that
interfere with this T cell inhibitory signal. Therefore, these inhibitors reinvigorate anti-tumor T cell
responses and induce the effective elimination of tumor cells. In 2014, pembrolizumab was approved as
the first PD-1 inhibitor for the treatment of metastatic melanoma. Since then, the Food and Drug
org November 2020 | Volume 11 | Article 5869071
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Administration (FDA) has approved nivolumab and
pembrolizumab as PD-1 inhibitors, and atezolizumab,
durvalumab and avelumab as PD-L1 inhibitors for the treatment
of several metastatic cancer types (Table 1). These treatments have
achieved impressive clinical results characterized by durable
responses and prolonged survival of patients compared to
conventional therapies. Yet, only a small group of patients obtain
clinical benefit while a significant number of patients are still
refractory. In addition, there is accumulating evidence supporting
that PD-L1/PD-1 blockade in a certain group of patients does
accelerate tumor progression and death, an adverse event termed
hyperprogressive disease (3). Therefore, there is a critical need for
the identification of accurate predictive biomarkers to discriminate
patients who will potentially benefit from PD-L1/PD-1 blockade
immunotherapies from those that will not respond or can develop
hyperprogression. Moreover, the precise molecular mechanisms by
which T functions are stimulated by PD-L1/PD-1 inhibitors remain
to be fully understood. Such understanding is highly relevant not
only for the discovery of predictive biomarkers, but also to designing
complementary approaches that may increase clinical efficacy of
PD-L1/PD-1 blockade therapy. Despite the general assumption that
PD-L1/PD-1 inhibitors reinvigorate pre-existing TIL immunity,
recent experimental research supports systemic T cell immunity
as a key contributor to PD-L1/PD-1 blockade efficacy (4). These
treatments induce broad changes in CD8 immunity which correlate
with clinical responses, which could be required for efficacy.
However, the longstanding fact that proficient CD8 anti-tumor
responses largely depend on CD4 help is often underestimated, or at
least overlooked. Here, we discuss the evidence supporting the
implication of systemic CD4 immunity in achieving clinical
responses under PD-L1/PD-1 blockade therapies, with the
proposal that indeed the pre-treatment status of CD4 immunity
strongly influences therapy outcomes. We also discuss the
promising emerging biomarkers based on quantification of
peripheral T cell populations, highlighting CD4 T cell memory
subpopulations possibly as a key reliable biomarker for patient
selection. Research should go in depth into the molecular
Frontiers in Immunology | www.frontiersin.org 2
mechanisms regulating the interplay between CD4 and CD8 T
cell responses under PD-L1/PD-1 blockade immunotherapies.
These results will provide new insights on potential molecular
targets and alternative strategies to boost CD4 immunity in
patients to increase PD-L1/PD-1 blockade efficacy.
CD4 T CELLS AS CENTRAL PLAYERS IN
ANTI-TUMOR IMMUNITY

The cancer immunity cycle summarizes how the development of
T cell-derived specific anti-tumor responses are essential for
controlling tumor growth. Dying cancer cells release tumor-
specific antigens (TAA) which are captured by dendritic cells
(DC) to prime tumor-specific effector T cells in secondary
lymphoid organs. So far, CD8 effector responses have been
classically considered as the major players in anti-tumor
immunity due to their potent cytotoxicity which enables direct
tumor-cell killing (5). Upon antigen recognition, CD8 T cells
expand and differentiate into cytotoxic T lymphocytes (CTL)
which migrate through peripheral blood and infiltrate tumors.
Cancer cells can escape by several mechanisms through a process
of immunological editing (6), which includes down-regulation of
MHC-I to prevent CD8 T cell recognition (7). In contrast, the
importance of CD4 immunity for anti-tumor responses is less
recognized as a result of limited studies. Nevertheless, the
existing experimental evidence supporting the important role
of CD4 T cells is compelling, by promoting and providing help to
innate and adaptive anti-tumor immune responses (8). This is
reflected by a stronger selective pressure of mutations in MHC-
II-restricted neoantigens compared to MHC-I-restricted
neoantigens during tumorigenesis, which reinforces the key
contribution of CD4 T cells in cancer immunosurveillance (9).
The contribution of the different types of effector CD4 T cell
subsets is very diverse. Depending on the cytokine milieu during
TCR activation, naïve T cells can differentiate into different
effector subsets, characterized by different expression of key
transcription factors and cytokine profiles that distinctly
influence anti-tumor immunity (10).

The CD4 helper (Th) 1 subset is the most prominent for anti-
tumor immunity (Figure 1). Th1 cells promote the priming and
differentiation of naïve CD8 T cells into CTLs during antigen
presentation by producing cytokines such as IFN-g and IL-2 (11–
13). They also contribute to the maturation and activation of
DCs in a process called “DC licensing” through the engagement
of CD40L with CD40 on DCs (14–17). Such interaction
promotes IL-12 and IL-15 production by DC and up-regulates
co-stimulatory ligands CD80 and CD86, providing the required
signals for efficient CD8 CTL priming (18, 19). DC activation
also favors naïve CD8 T cell recruitment to lymph nodes
for priming by yet largely unknown mechanisms (20).
Importantly, a recent study has identified the specific gene
expression programs by which CD4 Th1 cells provide help
for the acquisition of CD8 CTL effector functions, with
the CD70-CD27 co-stimulatory pathway playing a prominent
role. CD70 up-regulation via CD40-CD40L signaling results in
TABLE 1 | FDA-approved PD-L1/PD-1 inhibitors for cancer treatment.

Drug name Target Cancer types

Pembrolizumab PD-1 melanoma, non-small cell lung cancer, head and neck
squamous cell cancer, urothelial carcinoma, renal cell
carcinoma, classical Hodgkin lymphoma, microsatellite
instability-high solid cancer, gastric cancer, cervical
cancer, hepatocellular carcinoma, Merkel cell
carcinoma, primary mediastinal large B-cell lymphoma

Nivolumab PD-1 metastatic small cell lung cancer, metastatic non-small
cell lung cancer, metastatic melanoma, metastatic
urothelial carcinoma, metastatic colorectal cancer,
hepatocellular carcinoma, advanced renal cell
carcinoma, classical Hodgkin lymphoma, metastatic
head, and neck squamous cell cancer,

Atezolizumab PD-L1 urothelial carcinoma, non-small cell lung cancer, small
cell lung cancer, triple-negative breast cancer

Durvalumab PD-L1 locally advanced non-small cell lung cancer, small cell
lung cancer, metastatic urothelial carcinoma

Avelumab PD-L1 locally advanced or metastatic urothelial carcinoma,
metastatic Merkel cell carcinoma
November 2020 | Volume 11 | Article 586907
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co-stimulation of CD8 T cells through binding with CD27, which
contributes to CD8 CTL differentiation and clonal expansion
(21, 22). In addition, Th1-mediated signaling promotes the
establishment of long-lasting CD8 memory (23, 24). Indeed,
memory CD8 CTLs primed in absence of CD4 help fail to
expand after a second antigen reencounter, and present
dysfunctional phenotypes with expression of multiple
inhibitory receptors (21, 25, 26). Furthermore, CD4 Th1 cells
also activate innate anti-tumor responses by NK and type-1 anti-
inflammatory macrophages, promoting tumor cell killing and
providing a source of TAAs for T cell priming (27, 28).

Other CD4 T helper subpopulations including Th2 and Th17
have been generally associated with tumor progression.
However, several recent studies also show the contrary. CD4
Th2 effector cells could be required for establishing long-term
anti-tumor memory responses (29). Likewise, Th17 responses
have been reported to induce potent anti-tumor responses in an
IFN-g-dependent manner, and to allow the recruitment of
effector cells into the tumor microenvironment (30–34). This
“duality of responses” is likely to be context-dependent.
Regulatory T cells (Tregs) are key contributors of tolerance by
suppressing the other immune cell populations by several means
(35–38), such as cell-to-cell contact and production of anti-
inflammatory cytokines including IL-10 and TGF-b (39–41).
Finally, CD4 T cells can also mediate direct cytotoxic responses
Frontiers in Immunology | www.frontiersin.org 3
through IFN-g and TNF secretion, production of cytolytic
granules or expressing ligand of tumor necrosis factor (TNF)
superfamily molecules including FasL or TRAIL leading to
cancer cell apoptosis when engaged with their receptors (42–44).
Differentiation of Memory CD4 T Cells
Upon TAA recognition, CD4 T cells proliferate and differentiate
into helper effector T cells. These T cells are short-lived, but a
small proportion differentiate into long-lived memory subsets
following antigen clearance. Memory T cells undergo fast
activation and strong effector responses upon antigen re-
encounter (45–47). In humans, the discrimination between the
functionally different subsets is based on different expression
profiles of cell surface receptors including CD62L and CD45RA.
Naïve T cells co-express both CD62L and CD45RA. These T cells
exit the thymus and migrate to secondary lymphoid organs
driven by CD62L (48). Memory T cells have been divided in
two subpopulations based on their location and pattern of
migration, either in secondary lymphoid organs (central
memory) or in inflamed tissues (effector memory). Central
memory T cells express CD62L but not CD45RA, which
enable them to circulate between secondary lymphoid organs.
In contrast, effector memory T cells are tissue-resident and do
not need CD62L nor CD45RA. Effector memory T cells express
FIGURE 1 | The contribution of CD4 Th1 subsets to anti-tumor immunity. The figure summarizes the well-established roles of CD4 Th1 subsets in anti-tumor responses.
Right, CD4 Th1 cells allow the correct priming and differentiation of naïve CD8 T into CTLs by secretion of cytokines and co-stimulatory interactions with DCs within the
secondary lymphoid organs. This process termed “DC licensing” leads to DC maturation by CD40L-CD40 binding. CD40-CD40L signaling on DCs induces production of
IL-12 and IL-15 and up-regulates co-stimulatory ligands CD80, CD86, and CD70, providing the required signals for CD8 CTL priming. CD80, CD86, and CD70 co-
stimulatory ligands on activated DC bind to their receptors CD28 and CD27 on naïve CD8 T cells leading to CTL differentiation and survival. CD8 CTLs infiltrate tumors
and exert cytotoxic responses against tumor cells after TAA recognition. Within the tumors, Th1 cells activate NK and M1-macrophages enhancing their innate anti-tumor
responses. Th1, T helper 1; CTL, cytotoxic T lymphocyte; DC, dendritic cell; NK, natural killer; M1 TAM, type-1 tumor associated macrophages.
November 2020 | Volume 11 | Article 586907
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high levels of chemokine and cytokine receptors to reach
inflamed tissues. Finally, the effector population which re-
expresses CD45RA (EMRA) is considered a terminally
differentiated phenotype which accumulates during lifetime
(49). Distinct expression patterns of transcription factors
regulate the acquisition of memory phenotypes.

Human CD4 T cells can also be classified in distinct
differentiation stages based on CD27/CD28 expression profiles.
Following the initial antigen recognition, T cell differentiation
advances through the progressive loss of CD27 and CD28 co-
stimulatory receptors (50, 51). Hence, human CD4 T cells can be
classified into poorly differentiated (CD27+ CD28+),
intermediately-differentiated (CD27negative CD28+) and highly-
differentiated (CD27negative CD28low/negative, THD) subsets (51,
52). In humans, THD cells are largely composed of memory,
effector, and senescent T cells.
CD4 IMMUNITY HAS AN IMPORTANT
CONTRIBUTION TO PD-L1/PD-1
BLOCKADE EFFICACY

The specific molecular mechanisms behind the efficacy of PD-
L1/PD-1 blockade therapy have not been fully elucidated yet.
These treatments interfere with PD-L1-PD-1 inhibitory
interactions by the administration of monoclonal antibodies
against both molecules. PD-L1 is overexpressed by several
tumor types and confers resistance to pro-apoptotic signals
(53, 54); while PD-1 is expressed on T cells upon antigen
recognition and interferes with T cell activation when engaged
with PD-L1. TILs express high levels of PD-1 and are often
functionally imparted due to several dysfunctional states (55).
When efficacious, PD-L1/PD-1 blockade therapies seem to
counteract tumor-induced T cell dysfunctionality by interfering
with PD-1 and PD-L1 signals, and by unleashing activating
pathways (1, 56). As a consequence, inhibited tumor reactive T
cells reinvigorate and mount an effective anti-tumor response.
Indeed, tumor resident CD8+ CD103+ CD69+ T cells which
express high levels of PD-1 have been shown to proliferate after
PD-L1/PD-1 blockade therapy in melanoma patients (57).

In the last years, increasing evidences have challenged the
conventional view of PD-L1/PD-1 inhibitors reinvigorating
pre-existing intra-tumoral immunity, supporting that systemic
immunity might have a relevant role in therapy efficacy. Various
groups have identified that both systemic and intra-tumor CD8
PD-1+ T cell subpopulations experience a proliferative burst
after PD-L1/PD-1 blockade treatment in several cancer types
(57–61). This proliferative burst may be driven by inhibition of
the up-regulation of CBL-b ubiquitin ligase by interference with
PD-1 signaling in T cells (62, 63). Extensive phenotypic
characterization of intra-tumor PD-1+ CD8 T cells shows that
this subpopulation is highly heterogeneous, with distinct
exhaustion degrees and susceptibility to be reinvigorated by PD-
L1/PD-1 blockade (61, 63–66). Interestingly, K.E. Yost and
colleagues recently demonstrated that the ability of PD-1
Frontiers in Immunology | www.frontiersin.org 4
blockade to rescue pre-existing TILs from exhaustion might be
limited, demonstrating that expanded TIL clones post-therapy
arose from novel clonotypes recruited from the periphery (4).
Indeed, two different studies with NSCLC patients have shown
that PD-1+ CD8 T cells expand systemically following PD-1
blockade therapy and correlated with clinical responses (58, 59).
These cells exhibited an effector-like phenotype and expressed co-
stimulatory molecules including CD28, CD27, and ICOS.
Although it has not been directly demonstrated that this
expanded subpopulation was tumor-specific, both studies
showed that PD-1 blockade did not alter the proliferation of
virus-specific PD-1+ CD8 systemic T cells. The same result was
observed in melanoma patients treated with pembrolizumab, with
a systemic PD-1+ CD8 subpopulation that expanded after
treatment with similar clonotypes to those found in the tumor
(60). Additionally, a recent elegant study with melanoma patients
confirmed that rearrangements of the peripheral memory
cytotoxic CD8 T cell repertoire correlated with response to
immune checkpoint blockade (67). As CD8 T cells are possibly
the main direct effectors of anti-tumor responses through
cytotoxicity over cancer cells, these systemic changes are
thought to be the drivers of efficacious clinical responses.

Given the importance of CD4 help function in anti-tumor CD8
responses, it is likely that CD4 responses might be required
systemically to achieve efficacious CD8 responses under PD-L1/
PD-1 blockade therapy. Pre-clinical studies using murine models
and in patients have demonstrated the importance of CD4
immunity for immunotherapy efficacy (68–70). The systemic
expansion of a CD4+ CD62Llow CD27- FOXP3- CD44+ CXCR3+
ICOS+ T-bet+ T cell subset in mice treated with anti-cancer cell
immunoglobulins was correlated with tumor rejection (68). This
observation was confirmed in melanoma patients treated with
immune checkpoint blockade where a subset of CD4+ PD-1-
CD127low T cells was increased in responders compared to non-
responders (68). Alspach and colleagues confirmed previously
published data on the contribution of CD4 T cells recognizing
tumor neoepitopes for the efficacy of immunotherapy (71–73).
Moreover, they demonstrated using murine models that both
MHC-class I and II-restricted neoantigens are required to
generate efficient anti-tumor responses (74). Emerging studies are
evaluating the specific contribution of CD4 immunity to PD-L1/
PD-1 blockade therapy efficacy which is still unknown. Two
recently published studies have independently demonstrated that
pre-treatment status of systemic CD4 immunity is a critical factor
for determining the clinical outcome of PD-L1/PD-1 blockade
therapy in NSCLC patients. Particularly, our study showed that
only patients with pre-treatment high numbers of CD4 central and
effector memory T cells with a highly differentiated phenotype
(CD27-CD28low/-) responded to the treatment (75). Responder
patients presented high proportion of CD4 memory T cells before
treatment initiation. These CD4 T cells exhibited significant
proliferative capacities and low co-expression of PD-1/LAG-3 at
baseline, and were responsive to PD-1 blockade ex vivo and in vivo
(75). In contrast, patients with low numbers of memory CD4 T
cells exhibited a strong CD4 T cell dysfunctionality. Such
dysfunctionality was reflected as strongly impaired proliferation
November 2020 | Volume 11 | Article 586907
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capacities and high co‐expression of LAG‐3/PD‐1 associated to
resistance to PD-L1/PD‐1 blockade ex vivo and in vivo. Although all
patients showed a baseline dysfunctional CD8 proliferative
response, this was only recovered by PD-L1/PD-1 blockade in
patients with high numbers of CD4 memory T cells harboring
functional proliferative CD4 responses before treatment initiation.
These results strongly suggest the implication of PD-1/LAG-3
signaling on systemic T cells dysfunctionality which is under
investigation in order to provide new molecular targets to restore
CD4 pre-treatment immunity before PD-L1/PD-1 blockade
treatment application. Kobayashi and colleagues simultaneously
obtained similar conclusions by identifying an equivalent CD4+
CD62Llow T effector memory population which was present at
higher numbers in responders before PD-1 blockade treatment
initiation (76). Patients who maintained high numbers of CD62Llow

CD4 T cells were long survivors while decreased levels after therapy
resulted in acquired resistance. Gene expression analysis of the
specific subset revealed that they represented TCR-engaged
proliferating Th1-like cells. Indeed, these cells expressed genes
related to CD4 help functions involved in the promotion of CD8
CTL responses (76). Hence, the maintenance of systemic CD4
responses over time is required for therapy efficacy. Overall, these
two studies provide strong evidence that proficient systemic CD4
immunity is a key factor to achieve efficacious clinical responses
under PD-L1/PD-1 blockade therapies.

Although CD4 memory help functions seem to directly
influence PD-L1/PD-1 inhibitor effects on CD8 anti-tumor
responses, the molecular mechanisms by which both
populations interplay during PD-L1/PD-1 blockade therapy
remain to be fully understood. In addition, it is not clear yet
whether CD4 memory T cells could also play a role within the
tumor microenvironment under PD-L1/PD-1 blockade therapy.
A recent study in Classic Hodgkin lymphoma (CHL) murine
models demonstrated that PD-1 blockade therapy has strong
anti-tumor effects on MHC-II expressing tumors mediated by
cytotoxic CD4+ T cells (77). Moreover, they observed that CHL
patients responding to PD-1 blockade therapy exhibited high
CD4+ T cell infiltration compared to non-responders (77).
Another study using murine models demonstrated that the
expansion of tumor infiltrating follicular CD4+ PD1+ T cells
after PD-1 blockade therapy correlated with enhanced CD8 CTL
anti-tumor responses and tumor growth control (78). They
proposed that this specific population might be an important
target of PD-1 blockade within the tumor microenvironment. In
contrast, a clinical study with NSCLC patients revealed that the
accumulation of CD4+ FOXP3- PD-1 high T cells within the
tumor and peripheral blood correlated with higher tumor
burden. Moreover, the decrease of such population during
therapy onset was significantly associated with improved OS
(79) suggesting that those cells might be exhausted. Although the
data published so far suggests that exhausted T cell populations
within the tumor microenvironment might not be the
predominant target of PD-L1/PD-1 blockade therapy, further
research is needed to reveal the specific contribution of the
different intra-tumoral CD4 T cell subsets to PD-L1/PD-1
blockade efficacy in different cancer types.
Frontiers in Immunology | www.frontiersin.org 5
CD4 IMMUNITY AS A RELIABLE
BIOMARKER OF RESPONSE TO PD-L1/
PD-1 BLOCKADE THERAPY

Most of the current research has been focused on the tumor cell and
the immunological status of the tumor microenvironment to find
biomarkers of response to PD-L1/PD-1 blockade. These biomarkers
include tumor PD-L1 expression, mutational and neoantigen
burden, TAA-specific repertoire, presence, and characterization of
TILs and infiltration with immunosuppressive cells. PD-L1 tumor
expression is the only predictive biomarker accepted so far, but its
reliability is still under debate. Recently, tumor mutational burden
(TMB) quantification and TIL gene expression have demonstrated
potential predictive value in patients treated with PD-L1/PD-1
inhibitors (80–83). Nevertheless, the identification of biomarkers
using tumor sampling is challenging for most cancer types,
particularly in advanced stages due to limited accessibility.
Moreover, single tumor samples do not often represent the tumor
heterogeneity. It is important to remark that PD-L1/PD-1 inhibitors
are administered systemically and will have a direct impact on
systemic immunity, which in turn could correlate with clinical
responses (58, 59). Hence, characterization of peripheral immune
cell populations of patients undergoing PD-L1/PD-1 blockade
therapy is a promising non-invasive source of biomarkers of
response, more homogeneous and less costly than tumor
sampling. Nevertheless, no peripheral biomarkers approved by the
FDA, EMA, and PMDA have been validated for clinical application.
Here, we highlight the most promising findings on peripheral
biomarkers in predicting clinical outcome to PD-L1/PD-1
inhibitors (Table 2).

A study evaluating peripheral blood samples of NSCLC patients
treated with anti-PD-1 by conventional flow cytometry
demonstrated that early expansion of peripheral PD-1+ CD8 T
cells was associated with clinical efficacy (59). Another study in
patients with thymic epithelial tumors confirmed the previous
observation (58). The authors correlated peripheral expansion of
PD-1+ CD8 T cells with durable clinical benefit to anti-PD-1
treatment. In this case, T cell expansion was measured as the
fold-change in the percentage of Ki67+ cells (Ki-67D7/D0)
≥2.8 after the first week of treatment. The predictive value of
Ki-67D7/D0 ≥2.8 was validated in two independent cohorts of
NSCLC patients treated with PD-1 inhibitors (58). Early clonal
expansion of peripheral T populations evaluated by genome-wide
sequencing was also positively associated with clinical responses in
NSCLC patients under PD-1 blockade therapy (88). Studies with
metastatic melanoma patients treated with PD-1 inhibitors have
confirmed this observation. A high ratio of baseline Ki67+PD1
+CD8 T subpopulation to tumor burden was associated with longer
PFS (60). A recent study from Richard Marais and colleagues using
high dimensional flow cytometry also identified the correlation
between the expansion of a systemic subset of CCR7- CD27- CD8
cytotoxic memory effector T cells with response to PD-1 blockade in
melanoma patients (67). All these studies support the quantification
of proliferating peripheral CD8 PD-1+ CD8 T cell subpopulations
as a surrogate biomarker to predict responses to PD-L1/PD-1
November 2020 | Volume 11 | Article 586907
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blockade therapy. These approaches can help decision-making in
the early onset of the treatment, but do not identify deleterious
adverse events such as hyperprogressive disease. Hence, the power
of CD8 T cell subsets to discriminate clinical responses before PD-
L1/PD-1 blockade treatment initiation are so far limited.

Detailed characterization of pre-treatment peripheral
immune cell population profiles has been performed to
identify potential biomarkers for patient selection before
treatment initiation. For example, mass cytometry (CYTOF)
allows the identification of multiple markers simultaneously.
CYTOF-based analyses of peripheral blood from metastatic
melanoma patients before anti-PD-1 treatment initiation have
identified several potential biomarkers. Increased baseline
peripheral CD14+ CD16- HLA-DRhigh monocytes correlated
with a high response rate and PFS (84). High numbers of
CD69+ MIP-1b+ NK cells are found in responders compared
to non-responders (85). Analyses of PBMC in NSCLC patients
by multi-parametric flow cytometry have identified high PD-1,
PD-L1 and PD-L2 expression associated with worse OS (86).
Although associations with clinical benefit and survival have
been observed, none so far have been validated as predictive
biomarkers in prospective studies. Moreover, the high cost of
these technologies makes it difficult to standardize and
implement them in clinical practice.

Work from our group and from other independent groups is
demonstrating the value of baseline CD4 memory T cell
quantification to predict the efficacy of PD-L1/PD-1 blockade
therapy. A preliminary study analyzing 4 metastatic melanoma
patients showed that patients with longer survival had an
Frontiers in Immunology | www.frontiersin.org 6
increase in central memory CD4 T cells (89). Another small-
scale study with NSCLC patients treated with nivolumab also
uncovered higher ratios between systemic central memory and
effector subsets in the total populations of CD4 and CD8 T cells
was associated with benefit (87). In the last year, two prospective
studies which include our own have independently monitored
the dynamics of systemic CD4 T cell populations in NSCLC
patients undergoing PD-L1/PD-1 blockade therapy as second
line treatments (75, 76). Apart from demonstrating that CD4 T
cells play a crucial role in PD-L1/PD-1 blockade efficacy, both
studies proposed similar relative percentages of peripheral CD4
memory T cells before the start of immunotherapies with strong
predictive capacities for clinical benefit. We identified that
relative percentages of systemic CD27- CD28low/- central and
effector memory CD4 T cells discriminate NSCLC patients with
differential clinical outcome (75). A cut-off value of >40% of this
subset at baseline identified a subgroup of patients containing the
objective responders with an ORR 50%; while patients with <40%
at baseline showed an ORR of 0% and were significantly
associated with a higher risk for hyperprogressive disease (75).
Independently, K. Kobayashi and colleagues identified a CD4+
CD62Llow effector memory subset by multiparametric flow
cytometry which also discriminates patients with distinct
clinical outcome, and with similar threshold values found by
Zuazo and collaborators (76). Responders to PD-1 blockade
therapy presented a significantly higher proportion of baseline
CD62Llow CD4 T cells. In contrast, percentages of Tregs were
significantly higher in non-responders. Hence, the authors
proposed an algorithm accounting for the ratio between
TABLE 2 | Proposed biomarkers of clinical response to PD-L1/PD-1 blockade immunotherapy based on peripheral immune cell populations.

ICI treatment N of
patients

Cancer type Method of assessment Association with clinical outcome Reference

Anti-PD-1 30 Metastatic melanoma CYTOF Increased baseline CD14+ CD16- HLA-DRhigh

monocytes correlated with high RR and PFS
Krieg et al. (84)

Anti-PD-1 67 Metastatic melanoma CYTOF Increased baseline CD69+ MIP-1b+ NK cells in
responders

Subrahmanyam et al. (85)

Anti-PD-L1/PD-1 64 NSCLC multiple-parametric FC High PD-1, PD-L1, and PD-L2 expression on PBMC
associated with worse OS

Arrieta and Montes-Servıń
(86)

Anti-PD-L1/PD-1 29 NSCLC Conventional FC Early on-treatment proliferative responses in CD8+
PD-1+ T cells associated with response

Kamphorst et al. (59)

Anti-PD-1 31
33
46

TET and NSCLC multiple-parametric FC CD8+ PD-1+ Ki-67D7/D0 ≥2.8 associated with better
response

Kim et al. (58)

Anti-PD-1 29 Metastatic melanoma High dimensional FC Ratio of Tex-cell reinvigoration to tumor burden
associated with clinical outcome

Huang et al. (60)

Anti-PD-1 54 Metastatic melanoma High dimensional FC Expansion of CD8+ CCR7- CD27- memory effector
T cells correlated with response

Valpione et al. (67)

Anti-PD-1 40
43

NSCLC
Metastatic melanoma

multiple-parametric FC Baseline high T cell (CD4 and CD8) CM/effector ratio
associated with longer PFS

Manjarrez-Orduño et al.
(87)

Anti-PD-L1/PD-1 51 NSCLC Conventional FC Baseline CD4 THD (CD27- CD28low/-) >40%
associated with response and PD-L1 positivity

Zuazo et al. (75)

Anti-PD-1 40
86

NSCLC multiple-parametric FC Formula with the ratio between CD4+ CD62Llow and
CD4+ FOXP3+ CD25+ > 192 associated with
response

Kagamu et al. (76)
November 2020 | V
NSCLC, Non-small-cell lung carcinoma; TET, Thyroid epithelial tumors; RR, Response rate; PFS, Progression free survival; CYTOF, single cell mass cytometry; FC, flow cytometry; Tex,
exhausted T cells; CM, central memory; NK, Natural killer; THD; highly differentiated T cells.
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CD62Llow and CD25+Foxp3+CD4+ T cell population
percentages to discriminate responders with a cut-off value of
≥192. Long-term responders maintained a high number of
CD62Llow CD4 T cell subsets during therapy. In contrast,
decreased CD62Llow CD4 T cell percentages were an indicator
of acquired resistance. Importantly, the results were validated in
an independent NSCLC patient cohort.

Finally, multiple studies have evaluated blood parameters
derived from routine clinical analyses for correlations with
responses to PD-L1/PD-1 blockade immunotherapy. Some of
these include absolute neutrophil counts (ANC), absolute
lymphocyte counts (ALC), neutrophil-to-lymphocyte ratio
(NLR), absolute eosinophil counts (AEC), absolute monocyte
counts (AMC), and serum lactate dehydrogenase (LDH). In a
cohort of advanced NSCLC patients treated with nivolumab, a
baseline ANC ≥7,500/ul correlated with worse PFS and OS (90).
Pre-treatment NLR ratios greater than five were associated with
decreased PFS and OS in several studies across different cancer
types treated with PD-L1/PD-1 inhibitors (91–93). The derived
NLR (dNRL) seems to be more consistent as a biomarker, as this
index includes monocytes and other granulocyte populations.
High dNRL (> 3) was associated with worse OS in NSCLC
patients treated with PD-1 blockers. dNRL greater than 3
together with lactate dehydrogenase (LDH) values greater than
the upper limit of normal (ULN) have been integrated into a
parameter termed “lung immune prognostic index”. This
parameter efficiently identifies 3 groups of patients with good
(0 factor), intermediate (1 factor), and poor survival (2 factors)
under PD-L1/PD-1 blockade therapy (94). Nevertheless,
parameters such as ANC, NLR, dNLR, and AMC do not
accurately discriminate the wide ranges of myeloid-derived
populations at different activation stages in peripheral blood
which may play distinct roles in therapy.
DISCUSSION AND FUTURE
PERSPECTIVES

Most of the research is centered on the immunological status
of the tumor microenvironment as a major driving force for
the efficacy of PD-L1/PD-1 blockade. However, it is often
ignored the significant impact that these treatments exert over
systemic immunity and the diverse susceptibility of TIL
populations to be reactivated by them. Indeed, several studies
have demonstrated that these therapies cause systemic changes
in immune cell populations which can be correlated with clinical
efficacy (4, 58, 59). Here we wanted to summarize the most
relevant studies in which peripheral blood immune cell
populations are analyzed in patients undergoing PD-L1/PD-1
blockade therapy. Many of these studies are difficult to validate
and implement in clinical routine due to the complexity and
high cost of the employed analytical technology. Moreover,
biomarkers based on blood cell parameters such as “lung
immune prognostic index” have demonstrated to possess
rather a prognostic value, while others cannot be cross-tested
Frontiers in Immunology | www.frontiersin.org 7
due to the lack to discrimination between different immune cell
populations. This is especially important in studies with
myeloid-derived populations (95).

Several of studies reviewed here have followed the dynamics
of CD8 T cells and have demonstrated that changes on systemic
PD-1+ CD8 subpopulation post-PD-L1/PD-1 blockade therapy
might reflect significant anti-tumor activities in patients (59, 60).
Moreover, emerging studies suggest that these changes may
depend on systemic CD4 immunity (75, 76). Interestingly, they
have also revealed that high systemic numbers of CD4 memory T
cells assessed by peripheral blood samples before PD-L1/PD-1
blockade treatment initiation can serve as a reliable predictive
biomarker in NSCLC patients. Although more extensive
independent validation cohorts for distinct cancer types are
required to assure its reliability as a predictive biomarker, the
statistically powerful ROC curves in both studies supports its
clinical application. Moreover, although the proposed CD4
memory populations are very likely equivalent, each study
applied different phenotypic markers for their identification.
Unification of data provided by both studies will help to better
select the specific CD4 memory subpopulation with the strongest
predictive value. In addition, dynamic changes of CD4 T-cell
memory populations could be successfully used for “real-time”
monitoring of responses from blood samples during
immunotherapy, to identify early progressors and patients with
a high risk of developing hyperprogression (75, 96). These
studies together with emerging evidences supporting the
limited susceptibility of TILs to be reinvigorated by PD-L1/PD-
1 blockade, are indicating that PD-L1/PD-1 inhibitors might be
predominantly targeting systemic immunity, which is then
recruited into the tumor. The enhancement of systemic CD8
anti-tumor responses by PD-L1/PD-1 inhibitors could possibly
be orchestrated by CD4 T cells in the periphery. Hence, these
evidences provide the rationale to design new approaches to
boost CD4 functionality in cancer patients before their
enrolment in PD-L1/PD-1 blockade immunotherapy. Indeed,
we showed that increased co-expression of immune-checkpoint
molecules PD-1/LAG-3 in systemic T cells confers resistance to
PD-1/PD-L1 inhibitors (75). PD-1/LAG-3 co-signaling induce
dysfunctional proliferative capacities on systemic CD4 T cells,
hampering the help functions over peripheral CD8 responses.
The combination of PD-1 and LAG-3 blockade has been shown
to reverse CD4 dysfunctionality ex vivo (75). In addition, given
the contribution of CD40 and CD70 signaling pathways to CD4
helper functions, these molecules represent good molecular
targets to reinvigorate CD4 helper functions. Based on data
from murine models, the combination of PD-1 inhibitors with
CD27 agonistic antibodies seems to be a promising approach to
enhance the correct T cell priming and expansion of PD1+ CD8
circulating T cells (97). Cytokine-based therapy with IL-12 has
also demonstrated to reinvigorate CD8 expansion during PD-1
blockade ex vivo (unpublished observation). Hence, deciphering
the molecular mechanisms regulating CD4 helper functions
under PD-L1/PD-1 blockade therapy will provide insights into
new potential targets, and better approaches to increase PD-L1/
PD-1 blockade therapy efficacy.
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