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Multiple sclerosis (MS) is a neurologic disease affecting myelinated nerves in the central
nervous system (CNS). The disease often debuts as a clinically isolated syndrome, e.g.,
optic neuritis (ON), which later develops into relapsing-remitting (RR) MS, with temporal
attacks or primary progressive (PP) MS. Characteristic features of MS are inflammatory
foci in the CNS and intrathecal synthesis of immunoglobulins (Igs), measured as an IgG
index, oligoclonal bands (OCBs), or specific antibody indexes. Major predisposing factors
for MS are certain tissue types (e.g., HLA DRB1*15:01), vitamin D deficiency, smoking,
obesity, and infection with Epstein-Barr virus (EBV). Many of the clinical signs of MS
described above can be explained by chronic/recurrent EBV infection and current models
of EBV involvement suggest that RRMS may be caused by repeated entry of EBV-
transformed B cells to the CNS in connection with attacks, while PPMSmay be caused by
more chronic activity of EBV-transformed B cells in the CNS. In line with the model of
EBV’s role in MS, new treatments based on monoclonal antibodies (MAbs) targeting B
cells have shown good efficacy in clinical trials both for RRMS and PPMS, while MAbs
inhibiting B cell mobilization and entry to the CNS have shown efficacy in RRMS. Thus,
these agents, which are now first line therapy in many patients, may be hypothesized to
function by counteracting a chronic EBV infection.

Keywords: Epstein-Barr virus, multiple sclerosis, immune evasion, central nervous system, chronic infection,
relapsing-remitting
INTRODUCTION

Multiple sclerosis (MS) is a disease affecting the central nervous system (CNS), with inflammation
and demyelination of nerves, eventually resulting in nerve damage and disabilities. MS can take
different courses, most often in the form of relapsing-remitting (RR) cycles of disease activity or
more rarely as a primary-progressive (PP) disease. RR MS can progress over many years and may
eventually develop into a secondary-progressive (SP) disease (1–3).

Initial symptoms of MS are often recorded as solitary symptoms, i.e., a clinically isolated
syndrome in the form of optic neuritis (ON) or other neurological disturbances isolated in time and
space (1–4). Diagnosis of MS relies on the so-called McDonald criteria, latest updated in 2017 (5).
These criteria include detection of active inflammatory foci in the CNS as seen by positron emission
tomography (PET) and magnetic resonance imaging (MRI) and intrathecal production of
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immunoglobulins (Igs), measured as an elevated cerebrospinal
fluid (CSF)/serum IgG index, as a free light chain index or as the
occurrence of oligoclonal bands (OCBs) of IgG in CSF (6–10).
Each oligoclonal band is a result of intrathecal antibody (Ab)
synthesis by single B cell clones and therefore, specific CSF/
serum Ab indices (AIs) may also be elevated, e.g., Abs to various
viruses, corresponding to the specificity of some of the OCBs
(11–15). Accordingly, the OCB Abs show evidence of antigen
(Ag) exposure, somatic hypermutation and affinity maturation
(16–19).

Differential diagnoses for MS are neuromyelitis optica
(NMO) and major oligodendrocyte glycoprotein (MOG) Ab-
associated demyelinating disease, but other diseases may also
mimic some aspects of MS, including acute disseminated
encephalomyelopathy (ADEM), CNS neoplasms and various
other diseases with the potential to affect the CNS (20–22).

Therapy of MS was previously mainly empirical and relied on
several low molecular weight (LMW) drugs, including glatiramer
acetate, teriflunomide, dimethyl fumarate, fingolimod, cladribine
and others, however, biological drugs have been introduced for
treatment of RRMS, including beta-interferon and several
therapeutic monoclonal Abs (MAbs) (23–25). Especially the
array of MAbs approved for MS treatment has expanded and
currently range from Natalizumab, an integrin a4b1/a4b7 MAb,
Alemtuzumab, a CD52 Mab, to MAbs targeting the B cell surface
marker CD20 (Rituximab, Ocrelizumab) (25–28). Most
interestingly, the latter have been found to have an effect also
on PPMS (27, 28).
MS ETIOLOGY AND EPIDEMIOLOGY

No consensus about MS etiology exists at present and theories
range from idiopathic loss of self-tolerance, over molecular
mimicry to chronic virus infections. However, it is generally
accepted that MS involves a combination of genetic predisposing
factors and environmental influences (29–34). MS has a female
preponderance, which most likely is due to genetic factors and
Abbreviations: Ab, antibody; ADEM, acute disseminated encephalomyelitis; Ag,
antigen; AI, antibody index; AuAb, autoantibody; AuAg, autoantigen; B, B cell; B’,
EBV-infected B cell; BBB, blood-brain barrier; BKV, B. K. Virus; CD, cluster of
differentiation; CIS, clinically isolated syndrome; CMV, Cytomegalovirus; CNS,
central nervous system; CSF, cerebrospinal fluid; D, dedritic cell; Di, Diphteria;
EBV, Epstein-Barr Virus; f, female; FLC, free light chains; HERV, Human
Endogenous Retrovirus; Hib, Hemophilus influenzae B; HHV, Human Herpes
Virus; HLA, human leukocyte antigen; HPV, Human Papilloma Virus; HSV,
Herpes Simplex Virus; Ig, immunoglobulin; IM, infectious mononucleosis; JCV,
John Cunningham virus; KSV, Kaposi Sarcoma Virus; L, ligand; LMW, low
molecular weight; M, macrophage; m, male; MAb, monoclonal antibody; MIG,
microglia cell; MMR, Measles-Mumps-Rubella; MOG, major oligodendrocyte
glycoprotein; MRI, magnetic resonance imaging; MS, multiple sclerosis; MuV,
Mumps virus; NMO, neuromyelitis optica; OCB, oligoclonal bands; ODC,
oligodendrocyte; ON, optic neuritis; PCR, polymerase chain reaction; PD,
programmed death; Pe, pertussis; PET, positron emission tomography; Pol,
polio; PP, primary-progressive; RR, relapsing-remitting; RuV, Rubella Virus; SP,
secondary-progressive; T, T cell; t, time; Te, tetanus; VitD, vitamin D; VZV,
Varicella Zoster Virus.
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incidence is highest after puberty, which may be ascribed to
either genetic or environmental factors or both.

Genetic factors influencing development of MS are in particular
major histocompatibility class II (MHC II) alleles, of which some
increase susceptibility (e.g., human leukocyte antigen (HLA)
DRB1*15:01), while others decrease susceptibility. Likewise, some
MHC I alleles also appear to be protective (e.g., HLA A*02.01),
while others increase susceptibility. Overall, more than 100 genes
have been found to have an influence on development of MS, of
which most are involved in immune system functioning and in
particular lymphocyte and Ab functioning (1–3, 29–40).

Environmental factors with an impact on MS incidence
include sunlight exposure/vitamin D (vitD) deficiency, dietary
and other compounds, smoking and some virus infections [e.g.,
Epstein-Barr Virus (EBV)] (30).

MS is most prevalent on the Northern hemisphere, a finding
which can most likely be related to the intensity of sun light,
which may in turn be explained by levels of vitD synthesis.
Actually, vitD concentrations have been found to be correlated
with MS incidence/prevalence (39, 41–43).

Smoking increases the risk of MS, but some other uses of
tobacco may actually reduce the risk of MS (30, 44–46). Other
environmental compound exposures have been found to have an
effect om MS susceptibility (30) and recently, propionic acid and
the composition of the intestinal microbiota has been reported to
influence or be influenced by MS (47–49).

Obesity, especially in adolescence has been reported to have
an effect on MS susceptibility, but it is unclear whether this may
be attributed to genetically determined factors or environmental/
socio-economical influences or a combination of different effects,
e.g., a low-grade neuro-inflammatory effect or a vitD-
sequestering effect (50–53).

Virus infections have for long been suspected to be involved
in MS development (29–32, 54–56). Most investigations have
focused on EBV, which remains the most likely candidate for a
causative virus, but other viruses may also play a role as
discussed below.
EPSTEIN-BARR VIRUS (EBV)

EBV is a member of the Human Herpes Virus (HHV) family,
which also includes Herpes Simplex Virus (HSV) 1 and 2,
Varicella Zoster Virus (VZV), Cytomegalovirus (CMV), HHV
6 and 7, and Kaposi Sarcoma Virus (KSV) (57–59). EBV is an
enveloped virus with a 120 kB double-stranded DNA genome,
coding for about 85 proteins and a number of non-coding RNAs
(60–65).

EBV is transmitted to new victims with saliva and infects
pharyngeal epithelial cells. When released from the epithelial
cells, EBV infects B cells in the associated underlying tissue,
where it may be propagated or enter a state of latency, depending
on the B cell environment and the state of the host immune
response (66–70). Initially, in the absence of an adaptive immune
response, B cells are induced to lytic production of virus. Upon
entry to the cell, EBV uncoats in the cytoplasm and transfers its
DNA to the nucleus, where an ordered sequence of viral gene
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expression then takes place. First, immediate early genes are
expressed, coding for transcription factors and other proteins
involved in control of the host cell, next early genes are expressed,
coding for proteins involved in viral DNA replication, followed by
late genes, coding for capsid proteins and other proteins involved
in mature virus production [e.g., envelope (glyco)proteins)].
Finally, virions are released from the cell by a process
resembling the reverse of endocytosis. At later stages, when an
adaptive immune response has been established, EBV may enter a
latent state, where only few or no viral genes are expressed, but the
viral genome may still be replicated along with cellular DNA. This
state is called “deep” latency, where from the virus may be
reactivated in response to B cell activation (66, 71–80).

As a counter-measure to host immune responses, EBV has
evolved a multitude of immune evasion mechanisms, counteracting
both host cell intracellular anti-viral processes and host extracellular
innate and adaptive immune responses. Cellular anti-viral pathways
are many and EBV devotes a large part of its genome to control of
cellular anti-viral apoptosis mechanisms and to immune evasion
(81–86).

The adaptive immune response to EBV involves both Ab-
dependent processes and cytotoxic T cells, and EBV has evolved
mechanisms to evade these as described above, e.g., by down-
regulating MHC I to avoid recognition by cytotoxic T cells.
Therefore, control of EBV relies to a large extent on natural killer
cell surveillance of infected cells with too little MHC I on the
surface, which is in turn counter-balanced by EBV by
upregulation of non-classical MHC molecules (87–102).

Despite the many evasion mechanisms of EBV, the host
immune system eventually forces EBV into latency, where a
minimal number of EBV genes are expressed as described above.
However, T cell immunity eventually wanes with time, allowing
EBV to reactivate under certain conditions with lytic production
of virions, thus re-invigorating the immune response, again
forcing the virus into latency, a cyclic process which may go
Frontiers in Immunology | www.frontiersin.org 3
on for the rest of a person’s life with smaller or larger intervals,
depending on the person’s immune system profile.

Decreased capacity for immune control of EBV may, in some
cases manifest itself as a tendency to develop EBV-related
diseases, including infectious mononucleosis (IM), various
cancers, MS, and other relapsing-remitting autoimmune
diseases (e.g., systemic autoimmune diseases) (103–112).
EBV AND MS

In MS, much evidence indicates a role for EBV and specifically
that EBV-infected B cells have entered the CNS at some point of
disease development (Table 1). As described above, some of the
major characteristics of MS are the presence of an elevated IgG
index and OCBs in the CNS, representing various B cell clones
synthesizing Abs in the CNS (6–8). The elevated IgG index and
the OCBs cannot reflect simple diffusion of Abs from serum to
CSF, since the IgG index is calculated relative to the albumin
ratio and the OCBs test is only regarded as positive, when the
OCBs are absent from serum. Similarly, intrathecal presence of
elevated free light chains represent synthesis of Abs in the CNS
(9, 10). Intrathecal synthesis of Abs is also reflected in elevated
specific antibody indexes (AIs), representing intrathecal
synthesis of Abs to Measles Virus (MeV) antigens (Ags),
Mumps Virus (MuV) Ags, HZV Ags, Rubella Virus (RuV)
Ags, and other pathogen Ags (11–16). EBV AIs are also
elevated, however, not necessarily to the same extent as other
AIs, despite the presence of high levels of Abs to EBV in serum of
MS patients (15, 124). Interestingly, there is a high degree of
correlation between Ab concentrations in serum and in CSF for
most or all of the virus Abs described above (15). Since the
elevated CSF levels are not caused by diffusion from serum to
CSF and since there is a highly significant correlation between
serum and CSF Ab levels, the only likely explanation is that there
TABLE 1 | Evidence for Epstein-Barr virus (EBV) involvement in multiple sclerosis (MS).

MS trait/characteristic EBV relation References

Elevated IgG index CNS entry of EBV-infected B cells and differentiation to plasma cells (6)
OCBs in CSF CNS entry of EBV-infected B cells and differentiation to plasma cells (6, 8)
Elevated FLCs CNS entry of EBV-infected B cells and differentiation to plasma cells (9, 10)
Elevated specific AIs CNS entry of EBV-infected B cells and differentiation to plasma cells (11–19)
CNS inflammatory foci T cell attack on CNS EBV-infected B cells (1, 2, 5)
Demyelination in CNS Inflammatory damage to oligodendrocytes and stimulation of macrophages and microglia cells (1–3)
AuAbs to myelin AuAgs Inflammation-induced stimulation of (EBV-infected) B cells and damage to oligodendrocytes (113–116)
Therapy with CD20 MAbs Killing of EBV-infected B cells, prevention of CNS entry (27, 28)
Therapy with integrin MAbs Prevention of CNS entry of EBV-infected B cells (117, 118)
Therapy with EBV-specific T cells Killing of EBV-infected B cells, prevention of CNS entry (119, 120)
Female preponderance Reduced EBV control (immune suppression due to menstruation (blood loss, healing, hormonal factors) (1–3, 30)
Incidence increases after puberty Increased exposure to EBV, reduced capacity for EBV control due to thymus involution (3)
HLA DRB1 predisposes Increased entry and/or decreased immune control of EBV (1–3, 29–40)
IM predisposes Increased load of EBV-transformed B cells (30, 54–56, 121–123)
VitD deficiency predisposes Reduced EBV control (immune suppression due to vitD deficiency of leukocytes, (e.g., T cells, NK cells) (39, 41–43)
Smoking predisposes Reduced EBV control (immune suppression by smoke) and/or increased frequency of EBV reactivation (30, 44–46)
Obesity predisposes Reduced EBV control due to immune suppression (50–53)
December 2020 | Volum
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has been or is a continuous influx of Ab-producing B cells from
blood to CSF, most likely in the form of B cell blasts which have
differentiated to plasma cells concomitantly in the periphery and
in the CNS.

Many studies have revealed increased amounts and increased
frequencies of EBV Abs in MS, however, such studies are
hampered by the nearly ubiquitous presence of EBV in adults.
Moreover, the results seem to depend somewhat on the EBV Ags
used and the assay methodology.

Seroconversion from negative to positive for EBV Abs
generally increases with age. It has a major incidence peak
early in childhood and shows a second peak, especially for
females, around puberty, co-incident with the approximate age
of IM and co-incident with the female predominance in MS (3,
103, 104, 106, 125–128). EBV infection correlates with pediatric
MS and essentially all children with MS are found to be positive
for EBV Abs, whereas the positivity rate is considerably lower in
healthy children (54, 129–132). When using an array of Ags and
methods, all adult MS patients are also found to be positive for
EBV Abs and it appears that MS development generally depends
on prior EBV infection (54–56, 121, 122, 130, 133–137).
Furthermore, prior IM has been found to increase the risk of
MS by more than 2-fold by itself and more in combination with
other predisposing parameters (30, 54–56, 121–123, 138, 139).

In contrast to the Ab-based studies, polymerase chain
reaction (PCR)-based investigations on EBV DNA and RNA in
blood, CSF and saliva have generally shown no or only minor
differences between MS patients and controls (140–142). These
results may depend on the patient cohorts and the methods
employed, but they do indicate that the role of EBV in MS
reflects a predominantly latent infection (as in most infected
persons) with occasional reactivation and transient lytic virus
production. However, sequencing-based studies have indicated
an association between the presence of EBV variants and MS
(143, 144).

In situ hybridization and PCR studies on brain material from
MS patients have in some cases indicated the presence of EBV
DNA in lesions, but other studies have yielded negative results
(145–148). Immuno-histochemical studies are few, but one study
has demonstrated the presence of EBV Ags in post-mortem brain
tissue of MS patients (149).

Other viruses, including RuV, MuV, MeV, CMV, HHV6,
VZV, John Cunningham Virus (JCV), and Human Endogenous
Retrovirus W (HERV-W) have also been suggested to play a role
in MS, either by themselves or in combination with EBV
infection (30, 54, 150–154). This may simply reflect a viral Ag-
induced reactivation and stimulation of EBV-infected B cells
with specificity for the virus(es) in question (i.e., a secondary role
for these viruses), or it may reflect a more active role of the
viruses. The virus Ab profile varies much between individual
patients, thus favoring a primary role of EBV and a secondary
role of other viruses (15). Interestingly, CMV seropositivity
appears to afford some protection against MS development (30,
135). CMV is evolutionarily related to EBV, so it may be a likely
possibility that CMV may exhibit some cross-reactivity with and
protection against EBV (59).
Frontiers in Immunology | www.frontiersin.org 4
As described above, EBV control relies to a large extent on T
cells and NK cells. It could therefore be hypothesized that MS
patients have a deficiency in the cellular immune control of EBV
and possibly also other viruses. CD8 T cell infiltration of MS
brain lesions has been demonstrated in several studies but
defective T cell control of EBV has also been reported in MS
patients (155–157). This could indicate an imbalance in the T cell
control of EBV in MS patients, and one study has actually found
increased programmed death (PD) 1 on CD8 T cells with
resulting decreased cytolytic activity against EBV-infected B
cells (158), while PD1 has also been reported to be increased
on regulatory T cells (159).
DISCUSSION

MS has traditionally been regarded as an autoimmune disease.
However, the occurrence of autoantibodies (AuAbs) in MS (e.g.,
myelin basic protein (MBP) and major oligodendrocyte
glycoprotein (MOG) Abs) is limited to only some patients and
the pathogenic role of AuAbs remains debatable, while the search
for autoantigens (AuAgs) in MS continues (113–116, 160–173).
For this reason, models of MS etiology have for long revolved
around T cells as major contributors. The role of T cells has been
suggested to involve idiopathic loss of self tolerance with
expansion of self-reactive T cell clones, defective regulatory T
cells, infections in combination with (T cell) molecular mimicry
and epitope spreading, bystander T cell activation, exhaustion of
infection-related T cells, or combinations/imbalances of these
(1–3, 30, 54, 173–182). Even though EBV-infected B cells appear
to play a major role in MS, is an important role for T cells not
excluded. EBV-infected memory B cells will be sensitive to
stimulation by both their cognate Ags and specific CD4-
positive T helper cells and will be a target for CD8-positive
cytotoxic T cells. Both stimulation by T helper cells and attack by
cytotoxic T cells will contribute to inflammation around EBV-
infected B cells. Thus, a major role for T cells in MS is likely, in
agreement with the predominance of T cells in MS lesions (1, 2,
173–182).

Thus, exhaustion of cytotoxic T cells and/or NK cells would
seem to be highly relevant in relation to EBV involvement in MS as
indicated above. This view has gained momentum from the
relatively big success of B cell-targeted therapies in MS and CD20
MAbs are now the choice of treatment in many newly diagnosed
MS patients (27, 28). These drugs can be hypothesized to work
either by elimination of self-reactive B cell clones or elimination of
EBV-infected (memory) B cells. As the frequencies of AuAbs in MS
are variable and as CD20 is not expressed on differentiated Ab-
producing “plasma” B cells, the first possibility can be regarded as
more hypothetical (although a contribution of this to therapeutic
outcome remains a possibility). Consequently, the second
possibility, elimination of EBV-infected memory B cells, appears
to be the most likely mechanism for the therapeutic effects of CD20
MAbs. The results described above indicate that EBV-transformed
B cells proliferate or have proliferated in the periphery and entered
the CNS at some point of disease evolution in connection with
December 2020 | Volume 11 | Article 587078
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relapses (RRMS) or have entered the CNS at some point in disease
evolution (SPMS and PPMS) (Figure 1). CD20-targeted MAbs are
administered intravenously and are not expected to enter the CNS
to any major degree (in line with the occurrence of CNS OCBs and
elevated IgG index not deriving from diffusion from the blood
stream). Therefore, the efficacy of these drugs must derive from an
effect on CD20-positive B cells in the periphery, both in RRMS and
PPMS, indicating that the import of EBV-transformed B cell to the
CNS is a continuous process.

Other treatments with an effect in MS can also be related to a
role of EBV. Natalizumab inhibits lymphocyte mobilization and
entry to the CNS by targeting integrin a4b1/a4b7 (117, 183).
Integrins may be used by EBV as entry receptors (118) and
Natalizumab might therefore both inhibit entry of EBV to
integrin-expressing cells and may also inhibit mobilization and
entry of EBV-infected B cells and EBV-directed T cells to the
CNS by a general inhibition of lymphocyte trafficking.

Some other low molecular weight MS drugs have also been
reported to have an effect on EBV, in particular Teriflunomide,
which has been reported to inhibit EBV lytic replication and to
influence the immune response to EBV (118, 184). Similarly, the role
of vitD inMS can be regarded as a general immune-stimulatory effect
Frontiers in Immunology | www.frontiersin.org 5
as can other environmental factors (e.g., propionic acid, which has
been found to reactivate EBV (thus re-invigorating an EBV-targeted
immune response) (119). Smoking can theoretically affect the disease
course both by reducing immunity and by reactivating EBV, two
effects that may partly oppose each other, thus possibly explaining the
apparently protective role of some uses of tobacco (54).

In line with the role of EBV, small trials of MS therapy with
autologous in vitro-expanded EBV-specific T cells have shown a
beneficial effect in some patients (119, 185). The theory of EBV
involvement in MS was proposed early by Pender et al. and it has
been made likely that MS patients have a deficient T cell control of
EBV-infected cells (54, 120, 155, 186–197). The theory of EBV
involvement in MS has subsequently been elaborated and
substantiated by many studies as described above and summarized
in Table 1. Several models have been proposed based on the
accumulated evidence for the role of EBV in MS (198–201). Figure
1 represents an attempt to visualize much of this evidence.

In conclusion, the infectious, transforming, anti-apoptotic
and immune-evasion properties of EBV makes it a highly
likely candidate for an etiologic agent in MS. However, much
remains to be investigated in future studies. For example, MS
shows characteristics of an indolent neoplastic disease
A

B

FIGURE 1 | Model of Epstein-Barr virus (EBV)’s role in multiple sclerosis (MS). The time line also represents the blood-brain-barrier (BBB) and events across the
BBB. The birth of a child subsequent to the mixing of a female (f) and a male (m) set of genes is indicated by an asterisk (*). (A) Time course of normal immune
system development with vaccinations (green) and infections (red). The order and time course of vaccinations is defined by vaccination regimens. The order of
infections is individual and variable, so the sequence indicated is hypothetical. In some individuals, EBV infection may manifest itself as IM, and it is not known to
which extent infectious mononucleosis (IM) affects the CNS at the time of primary infection, but it is known to increase the risk of ON/CIS and eventually MS.
(B) Schematic presentation of etiological immunological reactions in multiple sclerosis in relation to vaccinations and infections. The normal immunological feed-back
loop is indicated in green (e.g., vaccination-induced Ag uptake by dendritic cells (D) and macrophages (M), which interact with T cells, which in turn interact with B
cells and vice versa). In the case of EBV infection, the immunological feed-back loop is re-programmed to the advantage of EBV, resulting in chronic infection of B
cells (B’). These may enter the CNS (particularly in the case of IM) and be followed by T cells. This results in inflammation in the CNS with the feed-back loop also
involving microglia cells (MIG) and at some point also oligodendrocytes (ODC) and eventually, nerve cells. Ag, antigen; B, B cell; B’, EBV-infected B cell; BBB, blood-
brain barrier; BKV, B. K. Virus infection; CIS, clinically isolated syndrome; CMV, Cytomegalovirus infection; D, dendritic cell; DiTePePolHib, Diphtheria-Tetanus-
Pertussis-Polio-Hemophilus influenzae B vaccine; EBV, Epstein-Barr virus infection; f, female; HHV6, Human Herpes Virus 6 infection; HPV, Human Papilloma Virus
vaccine; HSV, Herpes Simplex Virus infection; JCV, John Cunningham Virus infection; IM, infectious mononucleosis; m, male; M, macrophage; MIG, microglia cell;
MMR, Measles-Mumps-Rubella vaccine; MS, multiple sclerosis; ODC, oligodendrocyte; ON, optic neuritis; t, time; T, T cell; VZV, Varicella Zoster Virus infection.
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(metastasis, clonal expansion, overlap with lymphoma, etc.).
Thus, the role of the transforming properties of EBV in MS
should deserve attention. If the pathogenic role of EBV-specific T
cell exhaustion can be confirmed, treatment of MS with immune
check point inhibitors (e.g., PD1 and/or PD1 ligand (PD1L)
MAbs), known to be effective in several forms of cancer may
become a possibility.
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