
Frontiers in Immunology | www.frontiersin.

Edited by:
Linda Ann Spatz,

City University of New York,
United States

Reviewed by:
Cheryl Rockwell,

Michigan State University,
United States

Sanjeev K. Sahni,
University of Texas Medical Branch at

Galveston, United States

*Correspondence:
Gunnar Houen

gunnarh@bmb.sdu.dk
Nicole Hartwig Trier

nicole.hartwig.trier@regionh.dk

Specialty section:
This article was submitted to

Autoimmune and
Autoinflammatory Disorders,

a section of the journal
Frontiers in Immunology

Received: 25 July 2020
Accepted: 19 November 2020
Published: 07 January 2021

Citation:
Houen G and Trier NH (2021)

Epstein-Barr Virus and Systemic
Autoimmune Diseases.

Front. Immunol. 11:587380.
doi: 10.3389/fimmu.2020.587380

REVIEW
published: 07 January 2021

doi: 10.3389/fimmu.2020.587380
Epstein-Barr Virus and Systemic
Autoimmune Diseases
Gunnar Houen1,2* and Nicole Hartwig Trier2*

1 Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark, 2 Department of
Neurology, Rigshospitalet, Glostrup, Denmark

Epstein-Barr Virus (EBV) is an extremely successful human herpes virus, which infects
essentially all human beings at some time during their life span. EBV infection and the
associated immune response results in production of antibodies (seroconversion), which
occurs mainly during the first years of life, but may also happen during adolescence or later
in life. Infection of adolescents can result in infectious mononucleosis, an acute serious
condition characterized by massive lymphocytosis. Transmission of EBV mainly occurs
through saliva but can rarely be spread through semen or blood, e.g. through organ
transplantations and blood transfusions. EBV transmission through oral secretions results
in infection of epithelial cells of the oropharynx. From the epithelial cells EBV can infect B
cells, which are the major reservoir for the virus, but other cell types may also become
infected. As a result, EBV can shuttle between different cell types, mainly B cells and
epithelial cells. Moreover, since the virus can switch between a latent and a lytic life cycle,
EBV has the ability to cause chronic relapsing/reactivating infections. Chronic or recurrent
EBV infection of epithelial cells has been linked to systemic lupus erythematosus and
Sjögren’s syndrome, whereas chronic/recurrent infection of B cells has been associated
with rheumatoid arthritis, multiple sclerosis and other diseases. Accordingly, since EBV
can shuttle between epithelial cells and B cells, the systemic autoimmune diseases often
occur as overlapping syndromes with symptoms and characteristic autoantibodies (e.g.
antinuclear antibodies and rheumatoid factors) reflecting epithelial and/or B cell infection.

Keywords: antibodies, Epstein-Barr virus, connective tissue disease, systemic autoimmune diseases, human
herpes virus
INTRODUCTION

Epstein-Barr Virus
Epstein-Barr Virus (EBV) is a lymphotropic herpes virus and the causative agent of infectious
mononucleosis (IM) (1–4). It was originally discovered in cells isolated from African Burkitt’s
lymphoma and first later on, was it recognized that EBV is highly prevalent worldwide (5).

EBV is a member of the Human Herpes Viruses (HHVs) family, comprising eight viruses
distributed on three subfamilies (Alpha, Beta, Gamma). EBV, which is also called HHV4, belongs to
the Gammaherpesviridae, genus Lymphocryptovirus (6, 7). The circular double-stranded genome of
EBV is approximately 172 kilobases, with more than hundred genes coding for approximately 85
proteins (Table 1) and approximately 50 non-coding RNAs (8–12).
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Several strains of EBV exist. The first EBV variants identified
were type 1 (type A) and type 2 (type B). While type 1 (B95-8,
GD1, and Akata) is the main EBV type prevalent worldwide, type
2 (AG876 and P3HR-1) is as abundant as type 1 in sub-Saharan
Africa (13). The EBV variants have different replicative
properties and individuals may become superinfected with two
or more strains (14–16).

The structure of EBV is typical of HHVs and related viruses
(Figure 1) (17). It has an outer lipid envelope, derived from the
producing host cell, wherein several viral proteins are embedded
in addition to host cell-derived membrane proteins. Many of the
viral envelope membrane proteins are glycoproteins (gPs).
Currently, 13 gPs have been identified, 12 of which are
expressed only during the productive, lytic replication cycle
and one of which (BARF1, a decoy viral colony-stimulating
factor 1 receptor (vCSF1R)) may be expressed during latency as
well. Some of these are listed in Table 1 (18). Inside the envelope
is the viral tegument, in which the capsid is embedded with its
enclosed genome and associated proteins.

The life cycle of EBV is characteristic of a large enveloped
DNA virus, being composed of primary infection, latency, and
lytic reactivation phases. In addition, EBV has an ability to infect
several cell types (19). The EBV genome encodes 9 different
envelope entry gPs (Table 1). The functions of all of these are not
completely understood, but the roles of the most important gPs
are known in much detail. The tropism of newly released EBV
virions is determined by the envelope gPs, which in turn vary
Frontiers in Immunology | www.frontiersin.org 2
somewhat depending on the host cell (20). The major cell types
infected by EBV are epithelial cells and B cells. Epithelial cells are
the first cell type to be infected, as EBV is transmitted to
recipients through saliva. Next, B cells are infected when EBV
gains access to the underlying tissue after release from the
oropharyngeal epithelium (21–25). EBV virions released from
epithelial cells have a preference for B cells and EBV virions
released from B cells have a preference for epithelial cells, due to
the composition of the envelope gPs (20, 26, 27).

Epithelial cell infection may occur by direct fusion of the viral
envelope membrane with the plasma membrane of the target cell.
Attachment of the virus to the cell surface primarily occurs via
gH/gL interaction with Ephrin A2 (EphA2) and avb5/avb6/
avb8 integrins and via BMRF1, which interacts with b1
integrins, but EBV gP350/220, which interact with complement
receptor (CR)2 (CD21) and CR1 (CD35) also plays a role in
epithelial cell attachment. The gH/gL interaction with integrins is
mediated by a KGD motif on gH, and the interaction between
gH/gL and EphA2 occurs through the receptor’s ligand binding
and fibronectin type III repeats and is mediated by the gP42
binding site on gH. Upon attachment and interaction with
integrins or EphA2, a conformational change in gH/gL allows
interaction with the trimeric gB, which in turn changes
conformation and facilitates viral entry by acting as a fusogen
(20, 28–32).

Other EBV proteins may also play a role during infection of
epithelial cells, e.g. BMRF2, which can bind integrin avb1 and
A B

FIGURE 1 | Schematic presentation of Epstein-Barr virus. (A) Schematic illustration of the basic EBV structure. (B) Enlargement of membrane section showing viral
envelope glycoproteins (entry complex) and putative host-derived membrane proteins.
TABLE 1 | Epstein-Barr virus (EBV) proteins and their functions.

Function Protein

Entry glycoproteins BLLF1 (gP350), BZLF2 (gP42), BMRF2m, BXLF2 (gH), BKRF2 (gL), BALF4 (gP110), BLRF1 (gN), BHLF1, BDLF2
Lytic replication BRRF1, BZLF1, BRLF1, BMRF1 (EA/D), BSLF1, BBLF4, BBLF2/3, BALF5, BALF2
Viral DNA synthesis BORF2, BaRF1, BXLF1, BLLF3, BKRF3, BMLF1/BSLF2
Late gene expression BGLF4, BGLF3, BcRF1, BFRF2, BDLF4, BVLF1, BDLF3.5

BFLF1, BFRF1A, BBRF1, BGRF1/BDRF1, BALF3, BGLF1, BVRF1Packaging and translocation of viral DNA
Capsid BCLF1 (VCAp160), BFRF3 (VCAp18), BORF1, BDLF1, BVRF2, BdRF1 (VCAp40)
Tegument BNRF1 (VCAp143), BPLF1, BSRF1, BBRF2, BGLF3.5, BGLF2, BTRF1, BLRF2 (VCAp23), BRRF2, BKRF4
Virion assembly and egress BFLF2, BFRF1, BBRF3 (gM), BXRF1, BOLF1, BBLF1
Latency Stage I:

Stage II:
Stage III:

EBNA1
EBNA5, LMP1, LMP2A, LMP2B
EBNA2, EBNA3, EBNA4, EBNA6

Lytic immune-modulators BCRF1 (vIL-10), BARF1, LF2, BNLF2a, BDLF3 (gp150), BILF1, BHRF1 (EA/R), BALF1, BGLF5
Uncharacterized proteins BLLF2, BNLF2b, BWRF1, LF3, LF1, RPMS1, A73, BARF0, BILF2
January 2021 | Volume 11 | Article 587380

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Houen and Trier EBV in Systemic Autoimmune Diseases
BDLF2, which can bind non-muscle myosin heavy chain IIA.
Moreover, gB, itself can bind neuropilin-1 and IgA directed to
EBV envelope proteins may enhance infection through the
polymeric IgA receptor (28, 32–36).

B cell infection is mediated by gP350/220, which binds CR2
and CR1, together with gP42, leading to the formation of a
complex together with major histocompability complex
(MHC)-II (37). Upon attachment, the virion is endocytosed
and gH/gL can form a fusion complex with gP42-MHC-II, thus
inducing a conformational change in gH/gL (similar to what
happens upon gH/gL interaction with integrins and/or EphA2).
As a result, trimeric gB changes conformation and promotes
fusion of the viral membrane with the endosome membrane,
thus releasing the virus to the cytoplasm (Figures 1–3) (20, 26,
27). The structural and mechanistic basis of B cell entry has
been elucidated in much detail by solving the structures of gB,
gP42, complexes of gH/gL, gP42/MHC-II (human leukocyte
antigen (HLA)-DR1) and of gH/gL/gP42/MHC-II in pre- and
post-fusion conformations (20, 38, 39). This has allowed
modelling not only of the EBV B cell entry complex, with the
involved gPs acting sequentially and in concert, but also of the
epithelial cell entry complex. Thus, gH/gL/gB appears to
constitute a core entry machinery and gP42 seems to be a
primary determinant of EBV tropism, since it participates in
and promotes B cell infection but inhibits epithelial cell
infection by binding to the EphA2/integrin-binding site(s) on
gH/gL (20).

Successful entry and viral take-over of cellular control leads to
an ordered sequence of transcription of viral genes, translation of
viral mRNAs and finally, replication of the viral DNA and
assembly of new virus (Figure 3). The virion assembly and
egress from the host cell utilizes the host cell exocytosis
machinery and involves several viral proteins apart from the
structural, tegument and envelope proteins (Table 1) but is less
understood than the entry process (40, 41). Collectively, EBV
utilizes several characteristic major host cell membrane proteins
for entry and release and due to the properties of gP42, it has a
preference for epithelial cell infection when produced by B cells
and vice versa, assuring that some virions will eventually return
to salivary gland cells and be able to be transmitted to
new individuals.

Infection activates the intracellular antiviral mechanisms and
induces an extracellular immune response against EBV antigens,
with generation of specific helper T cells, antibodies and
cytotoxic T cells and activation of natural killer (NK) and NK
T cells (NKT) (42–46). In response to this, EBV has evolved
mechanisms for evading the extracellular innate immune system
and the host cell’s innate antiviral systems together with adaptive
immune system evasion mechanisms and the virus devotes a
substantial part of its proteins and non-coding RNAs to this (47–
51). Together, the innate and adaptive immune evasion
mechanisms of EBV assure its persistence in the host. A major
aspect of the immune evasion strategy is EBV’s ability to enter a
latent state with minimal expression of viral genes and minimal
presentation of viral peptides to the immune system (19, 52–54).
This mainly occurs in (memory) B cells, but latency may also
Frontiers in Immunology | www.frontiersin.org 3
take place in epithelial cells. From the latent state, EBV can
occasionally reactivate, e.g. in response to antigen stimulation of
memory B cells, resulting in lytic production of virions upon
expression of an ordered sequence of viral genes (55–57). This in
turn mounts an increased immune response against EBV,
neutralizing infected cells and forcing the virus into latency
again. Reactivation may also occur upon “waning” of the
cellular immunity to the virus and infected individuals through
the rest of their lives experience a persistent “battle” with EBV.
Depending on the host immune system and environmental
factors, some individuals may eventually suffer from EBV-
related diseases, either as a result of EBV immune evasion or
as a result of EBV infection of other cell types (T cells, NK cells,
NKT cells, monocytes/macrophages, and others), which may
take place in some instances.

Epstein-Barr Virus Immune Evasion
As a part of the common evolutionary history of humans and
EBV, the virus has evolved a multitude of immune evasion
mechanisms, including wrapping itself in host cell-derived
membranes (envelopment) and the ability to switch between
latent and lytic life stages (50, 58). Most of the immune evasion
proteins of EBV are expressed during the lytic cycle and some are
shown in Table 1 as “immune modulators”. More EBV proteins
are presumably involved in immune evasion and many EBV
proteins serve two or more functions.

In the latent state, as mentioned above, there is minimal
expression of viral genes and minimal presentation of viral
peptides to the immune system (19, 52–54). In the “deep”
latency state, only EBV nuclear antigen (EBNA)1, which
assures maintenance and replication of the EBV genome
along with host cell chromosomes, is expressed. In order to
avoid presentation of EBNA1-derived peptides on MHC-I, the
EBNA1 protein contains a characteristic AG repeat sequence,
which interferes with proteasome processing and which
interacts with nucleolin to restrain its expression. Moreover,
EBNA1 also contains characteristic RG repeat sequences, which
may play a role in immune evasion (59–61). Upon switching
to lytic cycle with production of viral proteins, EBV
downregulates MHC-I and interferes with presentation of
viral peptides on MHC-I via BDLF3-induced ubiquitination
of MHC-I (62). Likewise, in B cells, EBV can also downregulate
MHC-II by BDLF3-induced ubiquitination of MHC-II (62) and
gP42 can be released in a soluble form, which inhibits
interaction between MHC-II and the T cell receptor (63, 64).
Other EBV proteins are involved in minimization of MHC-I
expression, including BNLF2a, BILF1, BGLF5. The exonuclease
BGLF5 degrades cellular mRNAs including those for MHC-I
and BILF1 associates with cell surface MHC-I and enhances its
degradation, while BNLF2a prevents MHC-I peptide loading by
inhibiting the transporter associated with peptide loading
(TAP) (65–68). As a means to avoid NK cell recognition,
EBV upregulates non-classical MHC during the phase of viral
protein synthesis. Lytic production of viral proteins and RNAs
as well as replication of viral DNA requires that EBV can
prevent cellular apoptosis and EBV has evolved an elaborate set
January 2021 | Volume 11 | Article 587380
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of proteins for pacifying intracellular virus-sensing apoptosis-
inducing mechanisms including downregulation and inhibition
of toll-like receptors (47, 49, 50, 62, 68–71).

EBV also produces soluble mediators, which interfere with
mobilization of the adaptive immune system. BCRF1 encodes a
viral IL10 homologue (vIL10), which dampens inflammation
(72–75) and, as mentioned above, BARF1, encodes a decoy
vCSF1R, which binds CSF1 and thereby limits mobilization of
hemopeoietic stem cells (76, 77).

The viral envelope derived from the host cell (Figure 2)
offers substantial protection to the enclosed viral particle
by mimicking a host extracellular vesicle. In principle, the
viral envelope may contain all host-derived membrane
proteins relevant for “disguise” and immune evasion (e.g.
MHC molecules, complement regulators, Fc receptors,
phagocytosis-inhibitory (“don’t-eat-me”) molecules, etc.).
However, to be able to exit from the host cell in a controlled
process, and to be able to infect other cells, several viral gPs
have to be inserted into the envelope membrane as mentioned
above. These proteins are targets for innate immune
recognition and antibody (Ab) production, as described in
the preceding paragraph, but extensive glycosylation with
host-derived glycans affords considerable protection
against pattern recognition (scavenger) receptor (including
complement) and Ab recognition (“glycan shielding”).
Moreover, as described, some of the immune reactions may
actually be exploited for viral infection and spreading, f.ex.
“hitchhiking” with complement/CRs (e.g. EBV entry in B cells)
or with Abs bound to viral envelope gPs/Fc receptors (FcRs)
(e.g. cytomegalovirus entry in monocytes/macrophages or
EBV entry in B cells with cell surface immunoglobulins (Igs)
against EBV envelope gPs) (78–80). Despite the many immune
evasion mechanisms of EBV, the normal healthy human
immune system is able to eradicate active virus and force it
into a quiescent (“immune silent”) state (latency). Since EBV
appears to be able to evade most or all innate immune system
components, the final “victory” of the immune systemmust rely
on cellular immune control of EBV involving a combination of
T cells, NK cells and NKT cells, in accordance with all available
evidence of EBV immunity. The molecular details of how this
results in EBV latency instead of cell killing are not known, but
it is firmly established that EBV has evolved mechanisms of
Frontiers in Immunology | www.frontiersin.org 4
latency as an ultimate, opportunistic and effective immune
evasion strategy.

Epstein-Barr Virus Epidemiology
A majority of children becomes infected with EBV early in life
and seroconversion, the appearance of Abs to EBV peaks
around 1–2 years of life, where the majority of infectious
cases is non-complicated and may even go unnoticed. A
second peak in seroconversion is seen in puberty, due to
increased frequency of close social contact with already infected
persons. Infection in adolescence is more problematic and may
result in IM in many cases, popularly denoted “kissing disease”
(1–4). For the majority of infected individuals latent infection
does not appear to influence the general health, however,
dysregulation of latency or inability to control the lytic infection
may lead to development of lymphoproliferative diseases and
lymphoma (81).

The course of EBV infection is determined by the virus
load and an individuals’ immune system state, which in turn
is determined by the person’s gene composition, other
infection history and several environmental factors, which
all may influence the immune capacity of a person to
various degrees.

Genetic factors influencing EBV control are in principle all
genes of the immune system. In practice, T cells, NK cells and
NKT cells have turned out to be of utmost importance (42–44,
46). Relatively few studies have addressed genetic factors
associated with EBV infection, presumably due to the
ubiquitous occurrence of EBV. Consequently, since essentially
all persons eventually become infected, genetic associations will
only relate to the age of infection. Epidemiological studies have
indicated an association of some MHC-II and -I alleles and EBV
seropositivity. Moreover, mannan-binding lectin insufficiency
has been linked to EBV seropositivity as well (82). Also, some
polymorphisms in the (IL) 10 gene and other immune system
genes have been linked with EBV seropositivity (83). However,
all these studies are hampered by a relative scarcity of
seronegative persons.

Besides from genetic factors, environmental factors are known
to affect a person’s EBV status. Currently identified factors are
sunlight/Vitamin D (VitD), smoking and body mass index (BMI)
(84, 85). These factors may be assumed to influence the general
FIGURE 2 | Schematic illustration of EBV fusion with the cellular lipid bilayer of B cells. For gP42 to become active, the protein is cleaved N-terminally. gP42
interacts with gH/gL, and the complex interacts with gB. gP42 interacts with the b1 domain of MHC-II, which ultimately results in membrane fusion.
January 2021 | Volume 11 | Article 587380

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Houen and Trier EBV in Systemic Autoimmune Diseases
immune status of individuals and thereby affect susceptibility to
EBV infection. E.g. sunlight/VitD has been proposed to protect
against autoimmunity by increasing the number of CD8+ T cells
available to control EBV infection (84). Moreover, obesity has been
proposed to impact the cellular immune response to infections and
induce a state of chronic immune-mediated inflammation (85), but
more studies are required to understand these associations. Finally,
prior infections may play a role in shaping an individual’s immune
repertoire and resulting capacity to combat later infections, as
evidenced by the more serious course of EBV infection in
adolescence or later in life.

Epstein-Barr Virus Serology – Assays,
Antigens
The presence of EBV nucleic acid material in infected persons can be
determined by numerous methods, e.g. by direct sequencing,
fluorescence in-situ hybridization (FISH) and polymerase chain
reaction (PCR) analysis of blood samples for EBV-derived DNA
or RNA, while (prior) infection/reactivation may also be
demonstrated by PCR analysis of saliva (86–91). In relation to
testing of EBV in biopsy tissues, molecular detection of EBV-
encoded RNA transcripts by FISH remains the gold standard.
Moreover, EBV-encoded RNA hybridization and EBV LMP1
immunostains are used routinely to detect latent EBV in tissues
affected by posttransplant lymphoproliferative disorder (PTLD) or in
enlarged nodes from IM patients (92). Traditionally, serology is the
Frontiers in Immunology | www.frontiersin.org 5
simplest way to test for EBV infection and even for evaluating acute
versus remote infection in healthy individuals. High serological titers
serve as a tumor marker for some EBV-related malignancies, but
titers are not a dependable tumor marker in immunocompromised
hosts. EBV viral load testing by quantitative DNA amplification of
blood samples has proven useful for early diagnosis and monitoring
patients with PTLD (92).

Acute infection may also be inferred from analysis of IgM to
viral antigens, while prior infection may be inferred from the
presence of IgG to EBV antigens, and IgA can be used as a
measure of epithelial infection load (45). Using three EBV
antigens, viral capsid antigen (VCA) IgG, VCA IgM and
EBNA1 IgG, it is normally possible to distinguish an acute
from a past infection. While the presence of VCA IgM and
VCA IgG without EBNA-1 IgG indicates a current acute
infection, does the presence of VCA IgG and EBNA1 IgG
without VCA IgM typically indicate a past infection (93).

Among the 85 proteins encoded in the EBV genome, several
have been used for detection of Abs to EBV including EBNA1,
EBNA2, VCAp23, VCAp18, early antigen diffuse (EAD), gP350,
BARF1 (Table 1) (15, 94–97). IM has previously been associated
with the presence of so-called heterophile Abs, however, this test
has a rather low specificity and it remains unclear, what the test
actually measures (2, 98).

Since induction of Abs follows a pattern of viral Ag
production, seropositivity will depend on a person’s ability to
FIGURE 3 | Common basic EBV infection scheme. Viral entry can occur by direct fusion of the viral plasma membrane-derived envelope with the target cell
membrane or by endocytosis/phagocytosis of virus followed by fusion of virus envelope and endosome/phagosome membrane. Both processes release virions and
viral tegument proteins into the cytoplasm. Released virions are transported to the nuclear membrane and the viral genome introduced into the nucleus together with
associated proteins. This initiates transcription of viral genes in a sequence of immediate-early (iE) genes, coding for regulatory alfa-proteins, early genes, coding for
catalytic beta-proteins, and late (L) genes, coding for structural gamma proteins. Translation of viral messenger RNAs takes place on ribosomes in the cytoplasm and
on the endoplasmic reticulum, and the viral proteins are routed to different locations for subsequent virus assembly. Successful replication of viral genomes and
transport of capsid proteins to the nucleus results in assembly of virions, which travel to the plasma membrane by a series of envelopment/fusion events involving
intracellular membranes (stippled lines) ending with budding of mature virus with a plasma membrane envelope, containing viral glycoproteins and host-derived
membrane proteins. Premature cell death releases a mixture of “naked” virions and diffentially enveloped viruses.
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control EBV and the balance between latent and lytic EBV
infection. Moreover, any assay has a characteristic sensitivity
and specificity for EBV detection, and some individuals may be
judged false negative or positive. Thus, to fully define the
incidence and prevalence of EBV infection in a population,
several assays should be used, preferably combining assays
for detection of viral nucleic acids, Abs to different viral
antigens and the frequency of virus-specific T cells. Optimally,
different detection principles may also be used; e.g. for Ab
detection: enzyme-linked immunosorbent assay (ELISA) and
immunoblotting, for T cell detection: antigen-induced cytokine
release and peptide-MHC tetramer assays, and the assays should
target different parts of the viral genome or different viral
antigens representing both latent and lytic states. This is
evidently very labor-intensive but may be realized by using
multiplex techniques.

Epstein-Barr Virus and Diseases
Many diseases are known to be associated with EBV infection and
prior IM increases the risk of many of these diseases (2, 99). IM
itself is a prolonged state of fever, swollen lymph nodes, fatigue,
malaise and various other symptoms. Few studies have focused on
genetic factors associated with IM. Similar to EBV infection itself,
some MHC-I and -II alleles and polymorphisms in the IL10 gene
have been associated with IM development (82).

In contrast to the scarcity of information about genetic factors
involved in EBV infection itself, several data has been published
relating to EBV involvement in diseases and genetic factors
associated with these. Several types of cancer, notably B cell
lymphomas and nasopharyngeal epithelial carcinomas, affecting
the two primary cell types targeted by the virus, are caused by
EBV (99–102). This can be ascribed to EBV’s ability to evade
cellular antiviral mechanisms and control cellular apoptotic
pathways and to its capacity for immune evasion (103).
However, several other diseases affecting other cell types,
which may become infected by EBV are known, including T
cell lymphomas, NK cell leukemias and other T cells, NKT cells
and NK cell lymphoproliferative diseases (101, 104, 105).
Moreover, several systemic autoimmune diseases (SADs) and
multiple sclerosis (MS) have been demonstrated to be associated
with chronically relapsing EBV infection and inefficient immune
control of the virus.

Systemic Autoimmune Diseases
SADs are a group of partly overlapping syndromes, also called
connective tissue diseases, since they often are accompanied by
Frontiers in Immunology | www.frontiersin.org 6
inflammation of connective tissues. The SADs include the
relatively common rheumatoid arthritis (RA) and the more
rare conditions Sjögren’s syndrome (SS), systemic lupus
erythematosus (SLE), systemic scleroderma (SSc), and others
(Table 2) (106, 107).

Epstein-Barr Virus and Rheumatoid
Arthritis
The clinical characteristics of RA are swollen and painful joints,
caused by synovial inflammation eventually resulting in
exaggerated connective tissue deposition (pannus formation) and
bone erosion, with resulting disability. Moreover, RA is frequently
accompanied by systemic complications such as vascular disease,
osteoporosis, and others (108–110). Most RA patients have
characteristic autoantibodies (AuAbs) including rheumatoid
factors (RFs) and anti-citrullinated protein antibodies (ACPA)s,
but many also have anti-nuclear Abs (ANAs) (111, 112). The
etiology of RA is commonly ascribed to genetically determined
defective self-tolerance, but environmental factors are known to
play a dominating role, including EBV infection (113–116). Alleles
of many genes are known to contribute to RA, notable HLA-DRB1
alleles containing shared epitope (SE) motives, but many other
genes affecting the immune system and in particular lymphocytes
have an impact (108, 110, 117). Tumor necrosis factor (TNF) plays
an important role in a large proportion, if not most RA patients,
and therapeutic Abs targeting TNF have good therapeutic efficacy
in many patients (109, 118).

EBV evidently plays an important role in the etiology of RA,
although not all evidence indicates an association between RA
and EBV (119). Mechanisms behind the role of EBV in RA may
include either molecular mimicry in the initiation of RA,
bystander activation effects or chronic recurrent infection of
joint epithelial cells and synovial B cells. The characteristic
ACPAs seen in a major proportion of RA patients have been
found to represent Abs to a citrullinated region of EBNA2, an
important transcription factor of EBV expressed in lytic phases
(120). Presumably, EBNA2 and possibly also other EBV proteins
become citrullinated by peptidyl arginine deiminase (PAD)
enzymes during the inflammatory process in RA joints (121,
122). RFs have been found to target cryptic epitopes of IgG heavy
chains, presumably being released by lysis of EBV-infected B
cells (123) and MHC-II molecules with SE motives (certain
HLA-DRB1 alleles) have been found to be optimal ligands for
EBV gP42, thus favoring EBV infection of B cells with these
forms of MHC-II (31). Thus, the major characteristics of RA can
be related to chronic EBV infection, and actually, serum EBV
TABLE 2 | Systemic autoimmune diseases (SADs) and their characteristics.

Disease Genetics Environmental factors

Mixed connective tissue disease (MCTD) HLA-DRB1, multiple genes VitD, smoking, EBV, sunburn, silica dust
Polymyositis – dermatomyositis (PM-DM) HLA-DRB1, multiple genes Smoking
Rheumatoid arthritis (RA) HLA-DRB1, PTPN22, multiple genes VitD, smoking, EBV
Sjögren’s syndrome (SS) HLA-DRB1, PTPN22, multiple genes VitD, EBV, inverse correlation with smoking
Systemic lupus erythematosus (SLE) HLA-DRB1, C’, multiple genes VitD, smoking, EBV, sunburn, silica dust
Systemic sclerosis (SSc) HLA-DRB1, multiple genes Silica dust, solvents
J
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DNA has been found to correlate with disease activity (124).
Furthermore, EBV has been demonstrated to be present in the
synovium of RA patients (115, 125, 126).

EBV and Sjögren’s Syndrome
SS is a disease resulting in progressive destruction of exocrine
salivary and lacrimal gland tissue. The major clinical
characteristics are xerostomia and xeropthalmia in addition
to fatigue and various other symptoms, which may also affect
other organ systems (127, 128). Patients most often have
ANAs and characteristic AuAbs are Ro60 and La Abs, but
various other AuAbs may also be present. In addition, RFs are
present in a majority of patients, whereas ACPAs are usually
absent (128).

The etiology of SS has been suggested to involve several
environmental and genetic factors, molecular mimicry and
bystander activation (129, 130). Genetic factors include
certain MHC-II (especially some HLA-DRB1) alleles, some
MHC-I alleles and components of the interferon regulatory
system (131). Environmental factors include vitD deficiency,
smoking, silica dust exposure and virus infections (129).
Especially EBV infection has been associated with SS (132,
133). The mechanisms involved in SS are presumably similar to
RA and other SADs, but are much less studied. RA and SS often
co-exist and SS primarily affects the epithelial tissues targeted
by EBV, i.e. salivary and lacrimal glands, making the
association with EBV infection particularly attractive.
Epstein-Barr Virus and Systemic Lupus
Erythematosus
SLE is a disease, which clinically presents with a heterogenous
array of symptoms, often evaluated by the SLE disease activity
index (SLEDAI) or similar indexes, including complementemia,
DNA Abs, leukopenia, thrombocytemia, fever, fatigue, skin rash,
UV sensitivity, mucosal ulcers, alopecia, pleuriris or pericarditis,
proteinuria, hematuria, nephritis, myositis, arthritis, vasculitis,
headache, stroke, and more rarely, neuropsychiatric symptoms
(134–137). The disease may show a relapsing/remitting course,
depending on the efficacy of treatments (138, 139).

SLE has been described as an immune complex disease, since it is
often associated with decreased levels of complement components
(140). Other characteristics are the presence of ANAs, notably DNA
Abs, which are included in the SLEDAI, but in many cases AuAbs
to a heterogenous panel of AuAgs are present and changes in the
AuAb profile may reflect changes in disease activity (141–144).

Genetically predisposing factors are first of all certain HLA-
DRB1 alleles, but multiple immune system genes, including other
MHC-II alleles and some MHC-I alleles, as well as genes affecting
cellular waste removal, have been found to influence disease
development (145, 146).

Major environmental factors promoting development of SLE
are silica dust exposure, sun burn, smoking, vitD deficiency and
EBV infection (147–153). The etiology has been suggested to
involve molecular mimicry between EBV EBNA1 and cellular Ro
60, and/or bystander activation (154, 155).
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Decreased immune control of chronic EBV infection has been
found to be a contributing factor, if not a major cause (152, 156,
157), but other infections may also play a role in SLE development
or exacerbation (158, 159). The presence of DNA Abs and other
ANAs would seem to be compatible with infection by a DNA virus
in combination with inefficient removal of apoptotic and
necrotic material.
DISCUSSION

SADs constitute a group of partly overlapping autoimmune
disease syndrome and include systemic sclerosis (SSc), mixed
connective tissue disease (MCTD) and polymyositis/
dermatomyositis (PM/DM) in addition to RA, SS, and
SLE (Table 2). These diseases share several genetic and
environmental factors, in particular the predisposing effect of
certain HLA-DRB1 alleles (although not exactly identical alleles),
the predisposing effect of EBV infection and of factors, which can
be related to EBV infection (e.g. vitD deficiency) (Table 2) (106,
107, 160–171).

The evidence for a major etiological role of EBV is
particularly strong for RA, where several of the clinical
characteristics can be related to EBV as described above (RFs,
ACPAs, SE-allele disposition). Current treatments can also be
related to EBV infection, e.g. CD20 monoclonal antibodies
(MAbs), which presumably diminish the burden of EBV-
infected (memory) B cells, and TNF MAbs, which possibly
diminish the burden of EBV infection by an anti-inflammatory
effect (172–174). The evidence for an etiological role of EBV
in SLE is also strong and seems to point to EBV infection
of epithelial cells in combination with decreased removal of
apoptotic/necrotic cell debris (175). Thus, these two prototype
SADs can be seen as the results of a chronic, poorly controlled,
relapsing/remitting EBV infection targeting the two major host
cells of EBV; B cells in RA and epithelial cells in SLE. In RA,
relapses most likely follow re-activation of EBV in (memory) B
cells upon Ag stimulation. This results in production of EBV-
transformed B cell blasts, which by their very nature will
attempt homing to bones and therefore will have a tendency
to populate joints, where the concomitant lytic EBV production
may also result in EBV infection of synovial epithelial cells. In
SLE, B cells will also be involved, thus accounting for the
common involvement of joints and other symptoms
overlapping with RA, however, the major target cells affected
are epithelial cells, thus accounting for the common skin and
mucosal pathology, while the defective removal of EBV and
cellular debris results in immune complex deposition in
affected organs and in particular kidneys, by virtue of their
filtrating actions. SS has been studies less intensively than RA
and SLE but the relation to EBV is nevertheless even more
obvious. In SS, pathological symptoms reminiscent of both RA
and SLE are seen. This again reflects the tendency of EBV to
“shuttle” between B cells and epithelial cells and in particular
the ability of EBV to return to salivary (and lacrimal) gland
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epithelial cells as part of its natural life cycle (Figure 4). Thus,
SS may in some respects be thought of as SLE effecting the
exocrine glands, while SS also has many characteristics in
common with RA.

Other autoimmune diseases, especially MS have also been
found to depend on EBV infection in several aspects (176). The
question therefore arises, how EBV can be involved in these
apparently diverse diseases? A common feature seems to be
decreased immune control of EBV. T cells are crucial for the
control of EBV (and other viruses) and defective/exhausted T
cell repertoires are characteristic of SADs (177). This allows for
chronic infections with continuous cycles of relapses and
remissions. However, while this may explain a common
involvement of EBV (or other viruses) in disease etiology, it
does not explain the different clinical appearances and the
differences in e.g. association with different HLA alleles. A
plausible explanation is that the role of EBV does not depend
solely on e.g. entry, which in RA seems to be facilitated by SE-
containing HLA alleles. Other HLA interactions must also be
involved, e.g. presentation of EBV and/or host peptides,
interactions with the peptide loading complex, interaction
with other EBV or host proteins, etc. In general will the
genetic composition of the host determine the fate of EBV in
different cell types, including the interactions of EBV
attachment and entry proteins with the target cell membrane
proteins, the ability of the host cell to undergo apoptosis and
the possibility to support lytic production of virus, and the
efficiency of adaptive immune control of EBV. Since there are
large differences in individual immune systems and in infection
histories, one possibility for the different appearances of EBV-
related diseases could also be individual mutations in EBV
genomes during chronic infections and/or re-infections, and/or
different rates of co-infection with other viruses. Patients with
SADs are often prone to various infections, possibly due to
inherent or acquired immune deficiencies, which predispose to
Frontiers in Immunology | www.frontiersin.org 8
coinfection with other viruses e.g. cytomegalovirus and others,
which have been suggested to play a role in SAD development
(178–181).

Patients with SADs also have increased tendency to
develop cancer, including various forms of lymphoma. This
may relate to secondary effects of treatment with immuno-
suppressive drugs but may also reflect an inherent ability of
EBV to cause transformation of B cells and epithelial cells (13,
99–102, 160).
CONCLUSION

EBV has been found to play a role in several, if not all SADs. It
remains unclear, whether the role of EBV is primarily in
initiation of disease (e.g. by molecular mimicry) or is simply
due to the chronic relapsing-remitting nature of EBV infections.
Many characteristics of especially RA can be ascribed to EBV
infection, but this may also be the case for other SADs. Future
studies should focus on interaction of EBV proteins and non-
coding RNAs with host molecules and on the role of other
viruses in relation to EBV infection.
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