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Multiple Sclerosis (MS) is a neurodegenerative disease characterized by multiple focal
lesions, ongoing demyelination and, for most people, a lack of remyelination. MS lesions
are enriched with monocyte-derived macrophages and brain-resident microglia that,
together, are likely responsible for much of the immune-mediated neurotoxicity. However,
microglia and macrophage also have documented neuroprotective and regenerative
roles, suggesting a potential diversity in their functions. Linked with microglial functional
diversity, they take on diverse phenotypes developmentally, regionally and across disease
conditions. Advances in technologies such as single-cell RNA sequencing and mass
cytometry of immune cells has led to dramatic developments in understanding the
phenotypic changes of microglia and macrophages. This review highlights the origins of
microglia, their heterogeneity throughout normal ageing and their contribution to
pathology and repair, with a specific focus on autoimmunity and MS. As phenotype
dictates function, the emerging heterogeneity of microglia and macrophage populations in
MS offers new insights into the potential immune mechanisms that result in inflammation
and regeneration.

Keywords: microglia, macrophages, single-cell analysis, single-cell RNA sequencing, multiple sclerosis,
remyelination, ageing
INTRODUCTION

Microglia are a specialized population of myeloid cells in the brain and spinal cord, and depending
on the species and anatomical region, account for 0.5–16.6% of total central nervous system (CNS)
cells (1, 2). Under homeostatic conditions they are the primary macrophage-like cell in the CNS. To
maintain homeostasis microglia act as sentinels, continually surveying their environment by
extending and retracting their motile processes, ready to respond to the first signs of pathogenic
invasion or tissue damage (3). In the event of inflammation, microglia help orchestrate the immune
response, balancing the risk of potential harm to delicate CNS tissue and supporting tissue repair
and remodeling. The central role of microglia in the defense and maintenance of the brain and
spinal cord implicates them in nearly all brain pathologies (4).
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Microglia are derived from the embryonic yolk sac and take
residence in the CNS early in development (3). As the brain and
spinal cord mature, microglia respond to the changing
environment and, help shape CNS tissue development;
microglia contribute to the remodeling of postnatal neural
circuits and play a role in synaptic pruning during postnatal
development (5, 6). This bidirectional communication with the
CNS during development helps establish a unique microglial
identity. Once established, microglia density is sustained by
balancing microglia proliferation and cell death, without a
contribution from blood-derived cells (7).

In the last decade, advancements in technologies such as single-
cell RNA sequencing and lineage tracing has shed light on the way
microglia function under steady state conditions and during
disease. Lineage tracing and genetic fate mapping allow microglia
to be distinguished from other macrophage-like cells, which
becomes crucial during pathological conditions as monocyte-
derived cells enter the CNS parenchyma from the periphery and
the two cell types become virtually indistinguishable from one
another using classical markers (8). Techniques such as MARS-Seq
and Drop-Seq, among many others, allow gene expression to be
analyzed at the single-cell level. The ability to focus on microglia
explicitly, combined with single-cell sequencing has allowed greater
insight into cell trajectories, cell states, gene networks, and
receptor-ligand interactions. This information supplements what
is known about microglia across the lifespan, during development
and during disease, including autoimmune demyelinating
disorders such as multiple sclerosis (MS).

The pathological hallmark of MS is the formation of
demyelinating lesions in the brain and spinal cord (9). These
focal lesions are ubiquitously associated with the infiltration and
activation of immune cells. Microglia are among the first
responders and remain within lesions until the lesion resolves or
becomes inactive. The lesion microenvironment changes over time
and differs with anatomical location—i.e. white matter versus grey
matter. The presence or absence of remyelination further
complicates the lesion environment. Microglia are influenced by
these changing lesion environments and are tasked with responding
to the associated complex immune milieu. Understanding various
microglia functions in MS lesions may help develop therapeutic
interventions that tip the scale of the immune response towards
repair and regeneration and away from tissue damage.

In this review, we discuss what is known about microglia
origin and development; similarities and differences between
human and murine microglia; and microglia heterogeneity
throughout life, in the context of CNS autoimmunity and
during remyelination and ageing. The heterogeneity of
microglia during development, across the lifespan and in MS
offers new insights into the potential immune mechanisms
resulting in tissue inflammation or tissue regeneration.
MICROGLIA ESTABLISHMENT IN THE CNS

Microglia are CNS resident macrophages of the mononuclear
phagocyte system (10). Under steady-state conditions, they are
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the primary resident myeloid population in the brain and spinal
cord. Microglia first appear in early development (~E9.5 days
post-conception) from a population of primitive macrophages
that mature from mesodermal erythromyeloid progenitors in the
embryonic yolk sac (11, 12). These primitive macrophages do not
require the transcription factor Myb for their development,
unlike monocyte-derived macrophages and those of the
hematopoietic stem cell lineage (13). Initially, the primitive
macrophages that give rise to microglia lack the classic
leukocyte marker (Cd45) and express the receptor tyrosine
kinase C-kit. They progressively lose C-kit expression while
gaining expression of Cd45 as they mature (12, 14). These cells
migrate through the developing vasculature to the brain
rudiment, where they differentiate into microglia (13, 15). This
migration starts around E9.5 in mice. Once inside the CNS,
microglia undergo extensive local proliferation and spread out to
populate the entire developing brain, ultimately acquiring their
unique identity in tandem with neural tissue development (16).

Murine microglia isolated from various life stages reveal a
progressive change in gene expression pattern that occurs in
parallel with the developing brain as they influence and adapt to
the changing CNS environment (17, 18). This reciprocal
interaction between the developing brain and the maturing
microglia population heavily influences the establishment of a
unique microglia identity. Microglia identity is driven, in large
part, by the activity of the critical lineage dependent transcription
factors, Pu.1 and C/ebp (19). Mice lacking Pu.1 do not develop a
microglia population (13). Other critical regulators of microglia
identity include signal-dependent transcription factors such as
Maf, Mef2c, Sall1and Irf8 (15, 20–22).

Local CNS factors maintain a healthy microglia population.
Signalling through the colony-stimulating factor 1 receptor
(Csf1r) is vital for microglial survival in mice, both
developmentally and throughout the lifespan (23). Csf1 and Il-
34 are the two known ligands for Csf1r that are both found in the
CNS. Interestingly, microglia in white matter, grey matter and
from distinct brain regions differ in their reliance on either Il-34
or Csf1 (24, 25). In the mature mouse brain, Tgf-b is another key
regulator of microglia identity through the activity of Smad
transcription factors (26, 27). During embryonic and early
postnatal development, where there are high levels of microglia
proliferation, Tgf-b is also a crucial contributor (28). Following a
burst of postnatal proliferation, microglia self-renew slowly in a
stochastic manner where the processes of proliferation and
apoptosis are tightly coupled (7). While the exact rate of
turnover is yet to be agreed upon, it is apparent that there are
different rates of microglia turnover depending on brain location
(7, 29) where human microglia divide on an average of 4.2 years,
but some may not divide for over 20 years (30). Mouse microglia
turnover approximately every 15 months (31).

The CNS contains other immune cells that may regulate
microglia function. Outside the CNS parenchyma resides several
distinct myeloid cell populations including perivascular,
meningeal and choroid plexus macrophages. These populations
are collectively known as border associated macrophages
(BAM) (32, 33) or CNS-associated macrophages (CAM) (34).
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Heterogeneity between and even within BAM populations has
recently been uncovered and their roles in mediating immune
cell entry and activation of T-cells investigated (32, 35). BAMs
display heterogeneity with respect to the expression of antigen
presentation genes appearing postnatally, suggesting that BAM
diversity is primarily shaped after birth, in part under the
influence of microbiome-derived stimuli (36). The interactions
between BAM cells and parenchymal microglia remains to be
studied. Other immune cell populations reside in the
cerebrospinal fluid such as lymphocytes, dendritic cells,
neutrophils and monocyte-derived cells (32). These and
peripheral blood-associated immune cells infiltrate the
parenchyma during injury and under disease conditions to
affect microglia function (37). The extent to which these cells
exert a remote influence on microglia activity remains to be
fully understood.
MURINE MICROGLIA HETEROGENEITY
THROUGHOUT LIFE

The advent of new technologies has allowed the exploration of
cell biology at the single-cell resolution. Previous genomic
strategies such as bulk RNA sequencing were focused on
investigating global gene expression changes. These bulk
strategies measured the average gene expression across a
population of cells, which presented significant limitations in
cases where cell types are heterogenous or divided into several
populations with potentially different functions (38). To
overcome this, Tang and colleagues developed single-cell
sequencing technologies that used a combination of PCR
amplification and microarray tools (39). With the expansion of
new tools such as, MARS-Seq (38), Drop-Seq (40), Smart-Seq
(41), Smart-Seq2 (42), Cel-seq (43), CEL-Seq2 (44) and SCRB-
Seq (45)—that have been reviewed extensively by others (46,
47)—it is now possible to determine the transcriptome of cells or
nuclei at an individual cell level. The study of microglia with
single-cell resolution has allowed significant advances with
recent developments in bioinformatics (48), such as defining
cell trajectories (49), deciphering cell states, constructing gene
regulatory networks (50) and inferring receptor-ligand
interactions (51, 52).

One important discovery from single cell transcriptomic work
is the presence of different microglial populations that vary
phenotypically across development and lifespan. Embryonic
and postnatal development is characterized by several unique
microglia populations not present in adults (53, 54). For
example, at E14.5 there is a population of metabolically active
microglia enriched with lactate dehydrogenase (Ldha), an
enzyme involved in glycolysis that produces lactate (53). This
population is also enriched with migration inhibitory factor
(Mif), which is often associated with microglia during
inflammation (8). These observations suggest an overlap
between microglia populations in development with those
found during inflammation. During development, microglia
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prune synapses, clear dead cells and regulate cell numbers (55),
which may account for this microglial inflammatory signature.

During the transition from embryonic development into the
early postnatal period, there is some phenotypic overlap in
microglia populations (53, 54). A population of proliferative
microglia are enriched during embryonic development and at
early stages postnatally (53). Proliferative microglia were
enriched with different cell cycle-related genes and were found
in equal magnitudes at E14.5 and P4/5, but not at P30 (53),
which parallels other work on the proliferation of microglia (7).
These proliferative microglia express genes related to the DNA
damage response (Ankle1, Lig1), histone mRNA decay (Eri1) and
epigenetic function such as histones and chromatin modifiers
(54), suggesting that proliferation is largely limited to the
embryonic and early postnatal time points when the microglia
population is established.

During the first three postnatal weeks another microglia
population arises in developing white matter axonal tracts.
This early postnatal period coincides with active myelination
of the corpus callosum and cerebellum in mice (56, 57). Three
independent groups have defined this interesting population
of microglia. Wlodarczyk and colleagues found a population of
microglia expressing Cd11c that are a significant source of
Insulin-like growth factor 1 (Igf1) (58), an important survival
factor that promotes myelin development (59). When Igf1 was
conditionally removed from these Cd11c microglial cells, there
was reduced myelin gene expression (58), which is consistent
with the finding that microglia regulate myelin development
(60). Similarly, using single-cell RNA sequencing, Hammond
and colleagues identified a population of microglia enriched in
the developing axonal tracts they referred to as axonal tract
microglia (ATM) (53). These ATMs were characterized by the
distinct expression of genes related to lysosomal activation
(Lamp1, Cd68) and possessed an amoeboid morphology (53).
Microglia prune myelin sheaths in development (61), which may
account for the amoeboid morphology and lysosomal activation
characterizing ATM. Li and colleagues independently identified
an equivalent population that they termed proliferative-region-
associated microglia (PAM) (54). These amoeboid PAMs
preferentially phagocytosed fluorescently labelled beads relative
to other microglia phenotypes (54). PAMs were found to engulf
newly formed oligodendrocytes, which incur significant cell
death upon the onset of CNS myelination (62). The emergence
of the PAM phenotype coincides with myelination onset and,
therefore, may play an essential role in clearing the overproduced
oligodendrocytes (63). PAMs also upregulated genes associated
with lipid metabolism, lipid transport and lysosomal
acidification, presumably necessitated by the phagocytosis of
lipid-rich oligodendrocytes (54). The CD11c (58), ATM (53)
and PAM (54) all contained common distinguishing genes such
as Spp1, Igf1 and Gpnmb, suggesting these populations are the
same. Although, a comparison of these populations is needed to
confirm the extent of overlap (Figure 1).

Microglia diversity decreases after puberty, when microglia
become more homogenous with fewer distinct phenotypes but
with considerable variance in expression levels of homeostatic
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genes (Figure 2) (17, 53, 54). Adult homeostatic microglia are
characterized by genes such as Fcrls, Clqa, Selplg and Tmem119
(17, 27, 66, 67). Interestingly, the previously thought canonical
microglia markers (P2ry12, Cx3cr1, Tmem119) are not found to
Frontiers in Immunology | www.frontiersin.org 4
be uniformly expressed across all homeostatic clusters and
therefore may not be a robust way to detect microglia in vivo
(53). The transition of microglia from the postnatal phenotype to
the adult is dependent upon the transcription factor Mafb,
FIGURE 1 | Overlap of upregulated genes between early postnatal microglia and microglia in diseased models. Subsets of early postnatal microglia (ATMs, PAMs,
Cd11c+) with similar transcriptomic profiles were observed in three independent studies (53, 54, 58). The transcriptomic profile of an Alzheimer’s model (DAMs) (64)
and an acute demyelination model (8) also show overlap with these postnatal microglia. The top ten upregulated genes from each dataset are shown with three
genes that are common to all five datasets (Spp1, Igf1, Lyz2).
FIGURE 2 | Changing microglia heterogeneity throughout development. Peak microglial heterogeneity is seen during embryonic development, with a decrease in
adulthood, and a subsequent increase in the aged brain (65). Enriched genes and phenotypes significant to each microglial developmental stage are shown, with
genes that are unique to each stage in blue. Hammond et al. reported a subset of embryonic microglia uniquely expressing Ms4a7, suggesting a similarity to BAMs.
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without which microglia upregulate antiviral genes and lose their
homeostatic nature (17).

Regional differences in microglia phenotypes may reflect their
functional requirements (68). For example, the cerebellum has a
high neuronal turnover rate compared to the striatum and has
been found to house a microglia subset that appears to specialize
in debris clearance and apoptotic cell detection (Figure 3). This
subtype is characterized by the presence of the genes more
commonly associated with inflammation, such as Axl, Apoe,
Cd74, and MHC-I genes. As the striatum consists of a neuronal
population that is relatively stable throughout adulthood, it does
not require a phagocytic microglia phenotype and is therefore
accompanied by a homeostatic microglia phenotype lacking
expression of activation genes (69). The deep brain structures
also showcase a distinct variety of microglia. Microglia in the
basal ganglia nuclei differ in their densities, morphologies and
electrophysical properties (70). In the ventral tegmental area of
the basal ganglia, genes related to metabolism are depressed and
those required for growth factor release and phagocytosis
are upregulated.

Age-related changes tomicroglia populations occur and suggest
an overall heightened inflammatory response with regional
variability (68). While whole-brain analysis demonstrates a
significant overlap between microglia populations in young and
aged mice, there is an expansion of two microglia populations
enriched in the aged brain (53). These age-associated microglia
populations are either enriched in the chemokine Ccl4, lipoprotein
lipase (Lpl) or genes associated with interferon response such as
Ifitm4, Ifit3, and Irf7. With age, microglia accumulate myelin
fragments within lysosomal structures (71), which likely account
for new age-related microglial populations. The dominance of
inflammatory subpopulations may contribute to progressive
neurodegeneration, which is often age-dependent (53, 54, 72).
SIMILARITIES BETWEEN HUMAN
AND MURINE MICROGLIA

The similarities and differences between murine and human
microglia have been explored in more detail elsewhere (27, 65).
Here, we will briefly review recent work that has combined
single-cell RNA sequencing with multiplexed mass cytometry
and comprehensive histological analysis to explore species-
specific microglia heterogeneity (73–75). The study of human
Frontiers in Immunology | www.frontiersin.org 5
microglia is challenging due to the relative scarcity of non-
pathological human brain tissue. However, recent studies have
taken advantage of microglia isolated from post-mortem brains
of donors without diagnosed neurological disease and from
tissue resected during the treatment of epilepsy, brain tumours
and acute ischemic stroke that is isolated from outside the area of
pathology and deemed histopathologically normal.

Human microglia have not been extensively studied at the
embryonic level; however, studies by Zhong et al. and Kracht
et al. corroborate mouse data, suggesting there is a higher level of
heterogeneity in the gestational period, which culminates in
microglia acquiring a more homeostatic phenotype (76, 77).
Like mice, human microglia can be differentiated based on
their developmental stage, suggesting there is a progressive
developmental program for human microglia development. At
early gestational weeks nine through eleven microglia are
enriched in genes such as ITGAX, CLEC7A, AXL, and PKM,
while the later gestational weeks, fifteen to seventeen, are
enriched with more canonical microglia genes (CX3CR1,
TMEM119, P2RY12). Functions have yet to be ascribed to
these phenotypes, but initial steps have been taken to compare
microglia clusters to functions based on gene ontology
designations (77).

To compare and contrast microglia heterogeneity within and
between species, Masuda and colleagues sequenced 3,826
microglia from healthy and injured (facial nerve axotomy and
cuprizone) mouse brains in addition to 1,180 human cortical
microglia and 422 CD45+ cells from MS brain tissue (78). While
some of the homeostatic genes translated well between mouse
and human (Cst3, P2ry12, Tmem119, Emr1), human microglia
were found to be more diverse and had clusters with higher
expression of chemokines (CCL2, CCL4) and distinct
transcription factor profiles (EGR2, EGR3) (78–80). This study
identified homeostatic human microglia clusters with distinct
profiles, but also profiles that partially overlap with those of
murine microglia. This same group further explored microglia
heterogeneity across 18 different species using an extensive
dataset that included 1,069 human microglia. They reported
significant microglial heterogeneity in humans compared to all
other mammals (75).

Using both single-cell RNA sequencing and mass
cytometry, Sankowski and colleagues observed both age
and spatial (white vs grey matter) heterogeneity in human
microglia (81). Enriched in humans is a microglia population
FIGURE 3 | Regional differences in microglial phenotypes in the mouse brain. Regions showing similar microglial phenotypes are similarly coloured (cortex and
striatum = blue, cerebellum and hippocampus = yellow). Phenotypic characteristics and signature genes for each region are shown.
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expressing the gene SPP1 that encodes for a proinflammatory
cytokine, osteopontin (78, 82, 83). In people under the age of 30,
the proportion of microglia expressing SPP1 is negligible.
However, people over the age of 50 show a five to ten-fold
increase in microglia expressing SPP1, suggesting microglia
become more inflammatory as one ages. The human age-
associated proinflammatory microglia are synonymous with
inflammatory profiles identified in mice. In the same study,
comparisons between white and grey matter were also made,
highlighting the upregulation of the MHC-II antigen
presentation complex related genes, CD68 and HLA-DR in the
white but not the grey matter (81).

Regional variability in microglia signatures was further
explored using multiplexed mass cytometry of human
microglia (84). Bottcher and colleagues analyzed microglia
expression across five brain regions and found two prominent
patterns (84): microglia located in the temporal and frontal lobe
were defined by low levels of the mannose receptor CD206,
whereas those in the thalamus, subventricular zone and
cerebellum had no expression of CD206. These CD206 low
microglia were distinct from what are presumably perivascular
macrophages that expressed high levels of CD206. This study
also found that microglia express similar genes in the fresh and
post mortem isolates, albeit at slightly different levels, which
validates the use of post mortem tissue in the study of human
microglia signatures (84).

There are some common findings concerning microglia
density in both mice and humans, with higher microglia
density in the white matter than grey matter. Other similarities
include relatively lower densities in the cerebellar cortex
compared to regions of high density, such as in midbrain and
brainstem structures (2, 75, 85). Despite these commonalities,
overall microglial density varies markedly between the two
species. Reported differences include a higher microglial
density in the frontal cortex of mice compared to humans and
more microglia in the human cerebellum and hippocampus
compared to mice (75). Despite these differences in density,
the morphological features of microglia remain relatively similar,
including branch points, terminal points and dendrite length.
The functional importance of these species’ differences and the
effect that these differences might have on our understanding of
microglia during neurological diseases such as MS remains to be
fully elucidated.
MICROGLIA/MACROPHAGE
HETEROGENEITY IN THE CONTEXT OF
CNS AUTOIMMUNITY

In MS, microglia and macrophage likely serve diverse roles and
acquire distinct phenotypes given the variable nature of the
disease. MS is characterized by demyelinating lesions along with
progressive degeneration of white and grey matter (86, 87). In the
active stages of MS—with the presence of new lesions—there is a
dissemination of lesions in anatomical space and over time. At any
given moment, a person with MS is likely to have old and new
Frontiers in Immunology | www.frontiersin.org 6
lesions in both the grey and white matter regions; these differences
affect the pattern of microglial gene expression (88). The potential
effects of lesion evolution on microglial/macrophage phenotypes
are compounded by the presence of myelin regeneration, or
remyelination. Microglia found in demyelinating and
remyelinating conditions possess different phenotypes (78), with
demyelination-associated microglia resembling patterns
found associated with neurodegenerative disease (64). In parallel
with lesion formation, MS is characterized by ongoing
neurodegeneration that is often measured by advancing brain
atrophy (89). Overall, the microglia and macrophage phenotypic
heterogeneity and their diverse responses are likely related to
temporal differences in lesion progression coupled with potential
ongoing remyelination or neurodegeneration and interactions
with other cell types. Regional variability in microglia
phenotypes in the non-diseased state is likely to add complexity
in the immune response during MS with disease characteristics
convolving onto regional disease heterogeneity (Figure 4) (88).
Animal models are designed to replicate different features of the
disease to understand various aspects of MS. In this section, we
focus on microglia and macrophage’s role during the autoimmune
attack in the CNS. Much of what we know about the mechanism
of lesion formation and evolution comes from the experimental
autoimmune encephalomyelitis (EAE) model.
TOXICITY OF MICROGLIA AND
MONOCYTES DURING EAE

In EAE, various myelin antigens are given to a mouse in
conjunction with an adjuvant to stimulate a myelin mediated
autoimmune response [reviewed by (90, 91)]. Although there is
FIGURE 4 | Factors contributing to microglial heterogeneity in MS lesions. A
variety of factors likely contribute to the diversity of the microglial phenotype in MS.
These include: 1) temporal lesion evolution, 2) ongoing neurodegeneration and 3)
remyelination/demyelination in the surrounding environment, 4) location within the
lesion and 5) anatomical location within the brain.
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variability between models, therapeutics that prevent T-cell
activation or trafficking prevent EAE (92, 93). Despite T-cells’
critical role in initiating autoimmune injury, T-cells collaborate
with microglia and macrophages to induce toxicity (94). For
example, Heppner and colleagues used transgenic mice
expressing the suicide gene thymidine kinase under the
expression of the Itgam (cd11b) promoter to kill myeloid cells
and found that ablation in these mice considerably repressed
EAE (95). Similarly, the removal of Tak1—an NF-kB cell
signalling mediator—from microglia and BAM almost
completely prevented autoimmune injury (96). Selective
removal of Tak1 prevented demyelination but also dramatically
suppressed T-cell infiltration into the CNS suggesting that
microglia or BAM regulate lymphocyte trafficking into the
CNS during EAE. Monocyte-derived macrophages are also
required for the autoimmune injury during EAE. Monocytes
are elevated in the blood before an increase in disability and
monocytes’ entry into the CNS triggers EAE progression (97, 98).
Preventing monocyte entry by removing the chemokine receptor
Ccr2 reduces clinical disability and toxicity in the CNS during
EAE, suggesting that monocyte-derived macrophages are toxic
(97, 99). Taken together, the combined efforts of microglia, BAM
and monocyte-derived macrophage are required in the
pathogenesis of EAE and likely contribute to lesion formation
and evolution in MS.

It is still unclear whether these cells induce direct toxicity, or
whether they act through indirect mechanisms. For example,
while both microglia and macrophage produce reactive oxygen
species (ROS) during EAE, a greater proportion of monocyte-
derived macrophages express ROS producing enzymes than
microglia (100). The production of ROS by phagocytes during
EAE produces injury to myelin and axons alike, and can be
diminished with ROS and reactive nitrogen species (RNS)
scavengers (101, 102). Other direct mechanisms of toxicity by
microglia and macrophage include the release of glutamate (103–
105), or the expulsion of numerous potentially toxic cytokines
(100, 106, 107). The toxic properties of microglia or macrophage
may also be indirect. Microglia prevent the migration of
infiltrating macrophages into spared tissue (8), and may also
serve important “gate-keeping” functions for other leukocytes
that are toxic during EAE. The roles of microglia are likely to
evolve throughout the disease, as demonstrated by the finding
that microglia ablation with a Csf1 inhibitor during EAE
progression accelerates clinical disability (108).
MICROGLIA HETEROGENEITY
DURING EAE

Despite the hundreds of receptor systems expressed by microglia
(109), their activation and response to damage does have
similarities across disease conditions. For example, microglia in
an environment of amyloid induced neurodegeneration form a
disease-associated microglia (DAM) (64), characterized by the
downregulation of canonical microglial genes (P2ry12/13,
Cx3cr1, Tmem119, Cst3) and upregulation of genes mapped to
Frontiers in Immunology | www.frontiersin.org 7
lipid metabolism pathways and phagocytosis (Apoe, Lpl, Cst7,
Ctsd, Tyrobp, and Trem2). Certain genes, such as Hexb are stably
expressed in homoeostatic microglia, DAM, and other
neurological conditions (64, 110). Elements of this DAM
signature were later observed in microglia activated by diverse
conditions such as following white matter injury (8, 53), EAE
(35), MS (78, 82), amyloid lateral sclerosis (ALS) (64, 111),
ageing (53, 111), facial nerve injury (112) and cancer (81).
Krasemann and colleagues analyzed gene expression patterns
from microglia isolated during Alzheimer’s disease, EAE and
ALS mice models and identified a common microglia response
(111). The microglia response to neurodegeneration required
lipid receptor and trafficking elements Apoe and Trem2 under
diverse disease conditions, suggesting that some aspects of
microglia activation in murine disease models are conserved.
Critical aspects of this microglia signature were stimulated by the
injection of apoptotic neurons that were later engulfed by
microglia. The typical microglia response to diverse disease
conditions may be a consequence of clearing debris, dead cells
or other neurodegenerative molecular patterns (113).

Despite a common microglia response to disease, there is also
a diversity in the microglia response during EAE and MS (35,
78). Jordao and colleagues identified four different clusters of
disease-associated microglia in mice induced with EAE (35).
EAE microglia were enriched with a phenotype characterized by
markers of inflammation and proliferation Ly86, Ccl1, Cxcl10,
Mki67, Ccl4, and Ccl5. The Ccl5 and Cxcl10 provide more of an
understanding of this phenotype as these chemokines aid in
leukocyte recruitment, which could be a potential future avenue
to explore (35). They also identified a heterogenous response by
other CNS resident macrophages such as those from the
leptomeninges, the perivascular space and choroid plexus (35),
suggesting a CNS-wide transcriptional change during
autoimmune-mediated CNS injury. Ajami and colleagues also
identified a population of CNS associated macrophages enriched
in expression of diverse cytokines that were not found in healthy
mice and peaked during symptomatic EAE (114).

Diverse populations of microglia were also found in the MS
brain (78). Three subsets of MS-specific microglia were identified.
Subsets were enriched for SPP1 or CD74, which also defined
microglia from mice given the demyelinating agent cuprizone
and isolated under either demyelinating or remyelinating
conditions, respectively (78). The transcriptional signature of
microglia may one day be used to determine whether a lesion is
demyelinating or remyelinating. The MS lesion exhibits marked
diversity: Park and colleagues used imaging mass cytometry to
examine the heterogeneity of CNS-associated macrophages and
found that their diversity could be stratified based on their relative
location within the MS lesion with enriched lysosomal LAMP1 or
receptor tyrosine kinase MERTK expression on myeloid cells
located at the lesion rim (115, 116). Taken together, microglia
initiate certain conserved activation patterns in diseased conditions
but also, microglia exhibit several unique phenotypes likely
reflecting their local environment. Understanding the function
and ubiquity of disease-specific microglia phenotypes will provide
a greater understanding of neurological diseases.
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MONOCYTE HETEROGENEITY
DURING EAE

Monocyte diversity in the CNS similarly increases during
autoimmunity. Ajami and colleagues identified five subsets of
monocytes in the CNS that changed their expression profile
throughout EAE (114). Peak EAE is defined by the simultaneous
expression of three or four different cytokines in a given cell, not
found in homeostatic subsets. By comparing the surface markers of
blood-derivedmyeloid cells to theCNS-residentmacrophage, Ajami
and colleagues identified a new cell surface marker, Cd49e—or a5
integrin—that is upregulated by infiltrating monocytes (114).
Treatment with antibodies that blocked Cd49e delay the onset and
reduced the severity of EAE. Using single-cell RNA sequencing,
Giladi also examinedmonocyte andmonocyte-derivedmacrophage
diversity during EAE finding eight distinct populations (117). Using
antibodies against Ccr2 to ablate monocytes and reduce EAE
severity, Giladi and colleagues identified two distinct monocyte
populations that were selectively lost, and presumably are
pathogenic given their association with disease conditions (117).
Surprisingly, monocyte depletion resulted inminor changes to other
immune cells suggestingmonocytesmay be pathogenic due to direct
cytotoxicity. Given the toxic role ofmonocyte-derivedmacrophages,
understanding monocyte diversity—with particular focus on
pathogenic populations and how they traffic into the CNS—will
lead to new macrophage focused therapies.
MICROGLIA/MACROPHAGE
POPULATIONS DURING REMYELINATION

Myelin injury is a crucial attribute of demyelinating diseases such
as MS, but so is the regeneration of myelin, or remyelination. For
people with MS, remyelination occurs, but it is highly variable and
prone to failure (118–122). Remyelination can restore lost
behaviour due to myelin injury (123) and protects axons from
degeneration (124)—which causes irreversible harm that is
thought to contribute to ongoing progression. Indeed,
promoting remyelination spares axons and improves functional
recovery following EAE (125). For these reasons, finding
therapeutic agents that promote remyelination is an exciting
new avenue to treat MS. Several clinical trials are ongoing but
no therapies have been approved as of yet (122, 126).
Remyelination requires a favourable immune response from
macrophage/microglia to clear inhibitory myelin debris and
secrete growth factors and cytokines, such as Igf1 and activin-A,
that regulate remyelination and the extracellular matrix (127–
129). Despite the many benefits of the immune response to
remyelination, there are only a few strategies that focus on
improving the immune response as a means to boost
remyelination (130–133). The paucity of immune-boosting
targets in MS likely reflects the challenges of promoting immune
activities because there are numerous immune-mediated
mechanisms of neurotoxicity that could potentially be triggered.

Pioneering work by Miron and colleagues demonstrate that
microglia/macrophages take on a proinflammatory signature
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early after demyelination that promotes OPC proliferation
(134). These proinflammatory macrophage/microglia secrete
cytokines such as Il1b and Tnf, which stimulate OPC survival
and proliferation (135, 136). The proinflammatory microglia/
macrophage then transition to an immunoregulatory phenotype
(134). Ablation of these immunoregulatory immune cells
contributes to remyelination failure suggesting that the transition
from the proinflammatory state to an immunoregulatory one is an
important step during remyelination. Unknown from this work is
whether microglia or macrophage express these proinflammatory
or immunoregulatory factors. Research from our group shows that
the classic proinflammatory (iNos) and immunoregulatory
markers (Arg-1) used by Miron and colleagues are not expressed
by microglia following LPC mediated demyelination of the spinal
cord (8). The proinflammatory and immunoregulatory phenotypes
described by Miron and colleagues may therefore be attributed to
blood-derived macrophages. Recently, Lloyd and colleagues
investigated how microglia/macrophage transition from a
proinflammatory to an immunoregulatory phenotype (127).
Surprisingly, this transition required necroptosis, a form of
programmed necrosis. Inhibiting necroptosis stalled remyelination
and maintained high levels of proinflammatory microglia/
macrophages, suggesting that necroptosis regulates the shift away
from the proinflammatory phenotype.

Whi le microgl ia and macrophages can take on
proinflammatory and immunoregulatory phenotypes, new
deep phenotyping of immune cells suggests that there are more
diverse immune states after demyelination. We identified three
distinct microglia phenotypes by isolating microglia following
LPC-mediated demyelination of the spinal cord and conducting
single-cell RNA sequencing (8). Microglia were isolated five days
after LPC demyelination–a time point before remyelination
characterized by OPC recruitment (137–139). We found that
most activated microglia were enriched for Spp1, or osteopontin,
Apoe, and Cd74 (8). These genes are commonly expressed in
microglia within the diseased, neurodegenerative CNS (64) and
may, therefore, reflect microglia that are responding to damage
or neurodegenerative molecular patterns (113). We also found a
population of microglia enriched in interferon associated genes
such as Ifit3, Irf7and Ifitm3 as well as a third population likely
reflecting proliferative microglia (8). At seven days after LPC
demyelination of the corpus callosum, Hammond and colleagues
similarly used single-cell RNA sequencing and identified similar
populations of microglia, suggesting the microglial response may
be consistent between these regions (53). Yet to date, none of the
deep sequencing studies to date have investigated how microglia
or macrophages change throughout the continuum of
remyelination. This work could identify yet more states of
immune cell activity.

The tools for differentiating microglia and macrophages are
relatively novel and understanding the regenerative and
neurotoxic aspects of these cell types is an area of research still
in its infancy. Remyelinating models are valuable tools to
understand the beneficial aspects of the immune response.
After all, remyelination is perhaps the clearest example of
regeneration in the CNS and likely resembles regenerative
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processes in other tissues that also depend on a tightly regulated
inflammatory response. Presumably, the immune cell phenotype
will inform its function; therefore, identifying remyelination
associated microglia and macrophage phenotypes are vital.
Identifying immune cell phenotypes may also provide new
biomarkers for remyelination. In MS, microglia/macrophages
make up the majority of immune cells within the lesion (140)
and MS lesions classification often relies on the presence and
location of activated microglia/macrophage (141). However,
activated microglia/macrophages are enriched during ongoing
CNS injury (142) and can present during remyelination (143,
144). The accumulation of microglia/macrophage is, therefore,
not a sensitive predictor of injury or regeneration. Given that
microglia and macrophage are highly plastic and take on a
unique cell state in response to diverse disease conditions,
these cell states may indicate the stage or relative toxicity of
the immune response. Indeed, the phenotype of microglia during
active demyelination is distinct from microglia during
remyelination (78).
AGE-ASSOCIATED REMYELINATION
DECLINE INVOLVES IMPAIRED
MICROGLIA/MACROPHAGE RESPONSE

It has been known for almost three decades that the efficiency of
remyelination declines with ageing (145, 146). Given that
remyelination protects axons from degeneration (124),
preventing remyelination decline due to ageing may slow MS
neurodegeneration. Mechanisms underlying this age-related
impairment have been attributed to both CNS-intrinsic and
extrinsic factors (147). For example, extrinsic factors such as
the inadequate clearance of myelin debris in aged mice are
restored by a more youthful peripheral immune response
(148). Interestingly, the ageing demyelinated lesion increases in
stiffness, potentially due to the extracellular matrix remodelling
functions of aged microglia/macrophage (149), which impairs
remyelination (150).

As activated microglia and infiltrating macrophages play an
essential role in remodelling the lesion microenvironment, the
changes these cell types undergo with ageing have a direct impact
on the age-related impairment in remyelination efficiency. One
of the first studies to document this link observed a delay in the
expression of several essential growth factors following
demyelination in ageing animals (151). This alteration in
Pdgfa, Tgf-b, and Igf1 was associated with a delay in recruiting
macrophages and microglia to lesions in ageing rats (152). In
addition to this dysregulation in growth factor kinetics, lesions
from ageing rodents displayed an accumulation of inhibitory
myelin debris, suggesting that macrophages’ and microglia’s
phagocytic capacity becomes impaired with ageing (148).
Several studies have now highlighted a deficiency in the ability
of ageing microglia and macrophages to phagocytose myelin
debris (130, 133, 153). These alterations have been attributed to a
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disruption in retinoid X receptor signalling and a decrease in the
expression of the scavenger receptor Cd36 (130, 133). In addition
to deficiencies in the initial engulfment of myelin debris, another
group identified disruptions in the lysosomal processing and
subsequent cholesterol efflux of ingested myelin (71, 131).
Accumulation of lysosomal inclusions and cholesterol crystals
in ageing microglia resulted in inflammasome signalling and
proinflammatory cytokine expression, resulting in a lesion
microenvironment not conducive to efficient regeneration.

Due to difficulties distinguishing microglia from monocyte-
derived macrophages within the lesion, no studies to date have
been able to assign intralesional functional differences between
these two cell populations with ageing. The advent of phenotypic
markers and genetic fate-mapping strategies to distinguish these
two populations opens up a promising new avenue of inquiry
(110, 154, 155). Circumstantially, it has been documented that
the ageing process manifests differently in microglia compared to
monocyte-derived macrophages. As microglia are self-renewing
cells within a CNS microenvironment that accumulate myelin
fragments and protein aggregates with advancing age, they
assume a senescent phenotype that is “primed” (71, 156).
Single-cell sequencing of microglia from the ageing brain
shows the expansion of two different clusters that upregulate
several inflammatory signals such as Ccl4, Il1b, as well as several
interferon-response genes (53).

In contrast, ageing monocyte-derived macrophages display
an impairment in producing a functional proinflammatory
cytokine response when stimulated with potent activating
agents such as LPS (157). As the half-life of circulating
monocytes in humans is approximately 71 h, it is postulated
that the age-related changes in monocyte-derived macrophages
manifest at earlier stages in monocyte development, such as at
the level of the hematopoietic stem cell (158, 159). In addition to
differences in the manifestations of ageing between microglia and
monocyte-derived macrophages, it is now appreciated that
microglia from diverse regions within the CNS also age
differently (68). Future studies using single-cell sequencing and
genetic fate-mapping to dissect microglial and macrophage
transcriptional and functional heterogeneity within lesions and
in the context of ageing will be essential to establish better
how best to target these cells therapeutically and promote
myelin regeneration.
CONCLUSION

We are at the dawn of a new era in recognizing microglia
heterogeneity. Research is accelerating to identify microglial
phenotypes throughout development and disease. Work must
continue to expand upon our understanding of the gene and
protein expression of microglia during development, throughout
life, at different stages of disease and in different spatial locations
relative to damage as this research will advance our knowledge of
microglial functions and the interactions between microglia and
other cell types.
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Defining microglia will provide new cellular and phenotypic
markers that can be used to detect and manipulate microglia
phenotypes in MS and other neurological conditions. As the
primary innate immune cells of the brain and spinal cord,
microglia are uniquely positioned to both exacerbate the injury
and be neuroprotective or even reparative. Still, with only
recently available tools to target microglia directly, much work
remains to define microglia function in different conditions. In
the field of MS, we must still differentiate the contributions of
microglia, infiltrating macrophages and BAM during
remyelination, progression and throughout autoimmune
injury. The next frontier will be to resolve the functions of
these different microglia phenotypes.

Important questions remain: are there neuroprotective or
neurotoxic microglial phenotypes? If so, what factors promote
these phenotypes? Can they be targeted therapeutically? The
availability of serum-free cell culture models for murine (160)
and human cells (161–164) will support the functional analyses of
distinct microglial phenotypes. Newer single-cell sequencing
modalities such as IN-seq (165) or CITE-seq (166) allow protein
markers to be overlaid onto single-cell sequencing defined
immune cell phenotypes, permitting comparisons of cellular
signalling or state to immune phenotypes. Strategies such as
Tox-seq are also available to differentiate one function—ROS
production—and overlay this function onto immune cell
clusters. Bioinformatic tools such as NicheNet (51) and
CellPhoneDB (52) provide a way to identify new receptor-ligand
pairs from single-cell RNA sequencing data, which will serve as the
starting point to dissect intercellular communications between
CNS macrophages and their surrounding cellular niche that can
Frontiers in Immunology | www.frontiersin.org 10
then be studied in vitro and in vivo. With these and other available
tools, it will be possible to dissect functionally distinct microglial
and macrophage phenotypes so that they can be manipulated in
MS and other neurological conditions. This ability offers the
potential to harness the immune system’s capabilities and bias
the CNS lesion environment towards protection and repair rather
than damage.
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