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Systemic inflammation ensues following traumatic injury, driving immune dysregulation
and multiple organ dysfunction (MOD). While a balanced immune/inflammatory response
is ideal for promoting tissue regeneration, most trauma patients exhibit variable and either
overly exuberant or overly damped responses that likely drive adverse clinical outcomes.
We hypothesized that these inflammatory phenotypes occur in the context of severe
injury, and therefore sought to define clinically distinct endotypes of trauma patients based
on their systemic inflammatory responses. Using Patient-Specific Principal Component
Analysis followed by unsupervised hierarchical clustering of circulating inflammatory
mediators obtained in the first 24 h after injury, we segregated a cohort of 227 blunt
trauma survivors into three core endotypes exhibiting significant differences in requirement
for mechanical ventilation, duration of ventilation, and MOD over 7 days. Nine non-
survivors co-segregated with survivors. Dynamic network inference, Fisher Score
analysis, and correlations of IL-17A with GM-CSF, IL-10, and IL-22 in the three survivor
sub-groups suggested a role for type 3 immunity, in part regulated by Th17 and gd 17
cells, and related tissue-protective cytokines as a key feature of systemic inflammation
following injury. These endotypes may represent archetypal adaptive, over-exuberant,
and overly damped inflammatory responses.

Keywords: systems biology, inflammation, biomarker, critical illness, network analysis
INTRODUCTION

Trauma, with more than five million deaths annually, is one of the leading causes of death
worldwide (1). The body reacts to trauma with an initial inflammatory response, which can drive
multiple organ dysfunction (MOD). The pathophysiology leading to MOD involves multiple cell
populations, and immune dysregulation and sepsis are major consequences (2, 3). Systemic
inflammation ensues in many disease states as a consequence of innate immune activation (4),
and this activation of innate immune responses impacts other facets of immunity in the context of
severe traumatic injury (5). Traumatic injury triggers the activation of the complement system and
the release of danger-associated molecular patterns (DAMPs), which activate the innate immune
org January 2021 | Volume 11 | Article 5893041
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system (6). Key features of trauma-induced inflammation are a
suppressed adaptive immune system secondary to reduced T
helper (Th)1 activation and enhanced Th2 activation (7–9). In
contrast, T helper 17 (Th17) (10, 11) function is enhanced
following trauma. Of these, Th17 cells produce IL-17A, which
activates neutrophils, have been associated recently with adverse
trauma outcomes including mortality (11, 12), and presumably
drive a feed-forward loop of inflammation ! tissue damage/
dysfunction! inflammation (5). This process is kept in check by
Th2 cells, which suppress inflammation via the release of
cytokines such as IL-10, as well as activating other arms of the
adaptive immune system such as B cells (13). However, this
same negative feedback can lead to hypo-inflammation, which,
combined with immunosuppression driven by overly exuberant
Th1 responses, can predispose to nosocomial infection, sepsis,
and exacerbation of MODS (14). Many other cell types and
cytokines are involved in the response to trauma (5), including
natural killer (NK) cells (15), mast cells (16), and innate
lymphoid cells (ILC) (17, 18) ILC and NK cells are activated
early and also participate in the regulatory cytokine landscape
that shapes the pro- and counter-inflammatory response in
trauma (5, 13, 19).

While a balanced inflammatory and immune response is ideal
for tissue regeneration and wound healing, most trauma patients
exhibit either overly exuberant or overly dampened responses (5,
20, 21). These complex, dynamic, processes are likely a key aspect
of the large variability observed in the systemic inflammatory
responses within trauma patient populations (22–24), and thus
defining inflammatory trauma endotypes has lagged in
comparison to related fields such as sepsis (25). We and others
have derived insights into the response to traumatic injury using
dynamic network analyses in propensity-matched outcome sub-
cohorts (26) and mathematically modeled “virtual trauma
patients” (27); however, there is to date no unified definition of
core inflammatory trauma endotypes. In a previous pilot study,
we provided proof of concept for the derivation of trauma patient
endotypes in the form of “inflammation barcodes,” by
segregating the 5-day clinical outcomes of two small cohorts of
trauma survivors based on their dynamic core inflammatory
responses within the first 24 h post-injury. This was
accomplished using patient-specific Principal Component
Analysis (PCA) combined with unsupervised hierarchical
clustering (28).

We therefore hypothesized that adaptive/balanced, over-
exuberant, and overly damped inflammatory responses play a
role in severe traumatic injury, and that the use of computational
strategies such as patient-specific PCA could help define
clinically distinct trauma endotypes. We show, in a large
cohort of blunt trauma survivors and non-survivors, that three
core inflammatory endotypes exist after trauma, which generally
match the qualitative phenotypes of adaptive, overly exuberant,
or overly damped post-injury systemic inflammation (5). In
contrast to established dogma but supported by prior studies
on trauma non-survivors (12, 29), type 3 immunity, in part
regulated by Th17 cells, is a major hallmark of these endotypes,
as are epithelium-derived protective cytokines.
Frontiers in Immunology | www.frontiersin.org 2
METHODS

Selection of Patients
The study cohort consisted of 236 patients who were studied
following their admission to the Presbyterian University hospital
emergency department (a Level 1 trauma center) in accordance
with relevant guidelines and regulations and following approval
by the Institutional Review Board at the University of Pittsburgh
Medical Center. Informed consent was obtained from all
participants in the study (cognitive impairment was not
assessed). Of these, 227 were blunt trauma survivors: 148 were
male and 79 were female. The mean age was 50.4 ± 1.3 years
(min: 18 years, max: 90 years) and the mean ISS in this patient
cohort was 17.7 ± 0.6 (min: 1, max: 50). A further 9 blunt trauma
non-survivors were also included in this cohort. Of these 9 non-
survivors, 7 were male and 2 were female. The mean age was
62.1 ± 7.2 years (min: 19 years, max: 86 years) and the mean ISS
in this patient cohort was 19.9 ± 2.1 (min: 9, max: 33).

Serial Analysis of Inflammatory Mediators
Inflammatory mediators were assayed as described previously
(10). In brief, whole blood samples were withdrawn in
heparinized tubes 3 times in the first 24 h after admission, and
then daily for 7 days. The samples were kept on ice and
centrifuged to obtain plasma, and then stored at −80°C until
assayed for inflammatory mediators. The Luminex™ 100 IS
analyzer (Luminex, Austin, TX) and Human Cytokine/
Chemokine MILLIPLEX™ Panel kit (Millipore Corporation,
Billerica, MA) were used to measure plasma levels of Eotaxin
(CCL11), interleukin (IL)-1b, IL-1 receptor antagonist (IL-1RA),
IL-2, soluble IL-2 receptor-a (sIL-2Ra), IL-4, IL-5, IL-6, IL-7, IL-
8 (CCL8), IL-10, IL-13, IL-15, IL-17A, interferon (IFN)-a, IFN-g,
IFN-g inducible protein (IP)-10 (CXCL10), monokine induced
by gamma interferon (MIG; CXCL9), macrophage inflammatory
protein (MIP)-1a (CCL3), MIP-1b (CCL4), monocyte
chemotactic protein (MCP)-1 (CCL2), granulocyte-
macrophage colony stimulating factor (GM-CSF) and tumor
necrosis factor alpha (TNF-a). The human Th17 MILLIPLEX™

Panel kit (Millipore Corporation, Billerica, MA) was used to
measure IL-9, IL-21, IL-22, IL-23, IL-17E/25, and IL-33. levels
were measured by a Griess Reagent colorimetric assay (Cayman
Chemical, Ann Arbor, MI). Soluble IL-1 receptor-like 1 (sST2)
was measured by a sandwich ELISA assay (R&D Systems,
Minneapolis, MN). All cytokine/chemokine mediator
concentrations are given in pg/ml; concentrations are in µM.
Experimental data are shown as mean ± SEM.

Patient-Specific Principal
Component Analysis
The inflammatory mediators of the first 24 h (3 time points each
patient) were analyzed by patient-specific Principal Component
Analysis (PCA), followed by hierarchical clustering, which
resulted in three subgroups (Figure 1). Group 1 (n= 85)
exhibited a mean age of 45.3 ± 2.0 years (min: 18 years, max:
90 years), a mean ISS of 18.8 ± 1.0 (min: 1, max: 50) and a gender
distribution of 51 males vs. 34 females. Group 2 (n = 41) showed
January 2021 | Volume 11 | Article 589304
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a mean age of 54.6 ± 3.1 years (min: 18 years, max: 86 years), a
mean ISS of 16.6 ± 1.3 (min: 2, max: 38) and a gender
distribution of 30 males vs. 11 females. Group 3 (n = 101) had
a mean age of 50.5 ± 1.9 years (min: 18 years, max: 89 years), a
mean ISS of 17.1 ± 0.9 (min: 1, max: 50) and a gender ratio of 67
males vs. 34 females (Table 1).
Frontiers in Immunology | www.frontiersin.org 3
Statistical and Computational Analyses
To define if patient sub-groups differed with regard to
demographics, clinical outcomes, or dynamic inflammatory
responses, our analytic strategy was to apply a stepwise
series of statistical and data-driven modeling techniques
aimed at discovering significant differences, principal drivers,
A

B

D

C

FIGURE 1 | Patient-specific Principal Component Analysis followed by unsupervised hierarchical clustering of circulating inflammatory mediator data yields three
distinct trauma survivor sub-groups. Patient-specific Principal Component Analysis was carried out for the Group of 227 trauma survivors using data on circulating
inflammatory mediators obtained at three time points within the first 24 h of hospital admission. These data allowed patients to be clustered hierarchically using
unsupervised methods as described in the Materials and Methods (A), resulting in three patient sub-groups: Group 1 (blue; n= 85 patients), Group 2 (red; n= 41
patients), and Group 3 (green; n = 101 patients). (B–D) Significant clinical outcome differences among Groups 1–3. (B): Group 2 (n = 41, 1.4 ± 0.9 days) showed
significantly fewer days on ventilation over a time course of 8 days as compared to Group 1 (n = 85; 2.3 ± 0.4 days) and Group 3 (n = 101; 2.5 ± 0.6 days); p =
0.02. (C): The requirement for mechanical ventilation was significantly different across Group 1 (n= 85; 44 on vs. 41 off ventilation), Group 2 (n = 41; 12 on vs. 29 off
ventilation), and Group 3 (n = 101, 39 on vs. 62 off ventilation) over a time course of 8 days; p = 0.0127. (D): Group 2 (n = 41) showed significantly lowered Marshall
MODScores over a time course of 8 days as compared to Group 1 (n = 85), and Group 3 (n = 101); p = 0.0126.
TABLE 1 | Demographics of Group 1 (n = 85), Group 2 (n = 41), and Group 3 (n = 101).

Group 1 (n = 85) Group 2 (n = 41) Group 3 (n = 101)

Age (years) 48.3 ± 2.0 54.6 ± 3.1 50.5 ± 1.9
ISS 18.8 ± 1.0 16.6 ± 1.3 17.1 ± 0.9
Gender Female: 34 Male: 51 Female: 11 Male: 30 Female: 34 Male: 64
January 2021 | Vol
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interconnected networks, and potential key regulatory nodes. We
detail these analyses below:

1) D’Agostino & Pearson normality test was used to identify if
the patient demographics and outcomes were distributed
normally, using GraphPad Prism 7 (GraphPad Software,
Inc., San Diego, CA). A p-value of less than 0.05 was
considered significant.

2) One-way ANOVA followed by Tukey’s multiple comparison
test was used to compare differences among groups of
patients with regard to normally distributed demographics
and outcomes, using GraphPad Prism 7. A p-value of less
than 0.05 was considered significant.

3) Kruskal-Wallis test followed by Dunn’s multiple comparison
test was used to compare differences among groups of
patients with regard to non-normally distributed patient
demographics and outcomes, using Graph Pad Prism 7. A
p-value of less than 0.05 was considered significant.

4) Chi-Square was used to compare patient demographics and
outcomes organized in contingency tables, using GraphPad
Prism 7. A p-value of less than 0.05 was considered
significant.

5) Two-Way ANOVA followed by Tukey’s multiple comparison
test was used to determine time-dependent changes of
circulating inflammatory mediators as a function of patient
sub-group, using GraphPad Prism 7. A p-value of less than
0.05 was considered significant.

6) Principal Component Analysis (PCA) (30) was carried out to
identify those inflammatory mediators that were the most
characteristic of the overall dynamic, multivariate response of
a given patient sub-group using MATLAB® software (The
MathWorks, Inc., Natick, MA). To perform this analysis, the
data was first normalized for each inflammatory mediator
(i.e., a given value divided by the maximum value for a given
inflammatory mediator), so that all mediator levels were
converted into the same scale (from 0 to 1). In this way,
any artificial effects on variance due to the different ranges of
concentration observed for different cytokines were
eliminated. Only those components sufficient to capture at
least 70% of the variance in the data were considered. From
these leading principal components, the coefficient (weight)
associated with each inflammatory mediator was multiplied
by the eigenvalue associated with that principal component.
This product represented the contribution of a given
mediator to the variance accounted for in that principal
component. The overall score given to each mediator is the
sum of its scores in each component, depicted as a stacked bar
graph. This gives a measure of a given inflammatory
mediator’s contribution to the overall variance of the
system. The mediators with the largest scores are the ones
which contributed most to the variance of the process being
studied (30).

7) Patient-specific PCA followed by hierarchical clustering (28)
was used to differentiate the patients by their early
inflammatory response. The goal of this analysis was to
identify the subsets of mediators (in the form of orthogonal
Frontiers in Immunology | www.frontiersin.org 4
normalized linear combinations of the original mediator
variables, called principal components) that are most
strongly correlated with the inflammatory response in
individual trauma patients, and that thereby might be
considered principal characteristics of each response. We
adapted an approach used previously (28, 31) to define
patient-specific “inflammatory barcodes” using time course
data and subsequent PCA. Hierarchical clustering is a simple
and unbiased method for segregating series of numerical
values by their similarity to each other (32). This analysis
was performed using the Bioinformatics Toolbox in Matlab®

8.1.0 for all inflammatory mediator data, following the
patient-specific PCA described above. For better
visualization, the colors of the resulting heat map were
based on the standardized-transformed value (standardized
along the rows of data, so that the mean is 0 and the standard
deviation is 1 in the specified dimension), with red indicating
higher values and green indicating lower values.

8) Inflammatory mediators that segregate each PCA/clustering-
defined patient sub-group were defined using feature
selection, a method used commonly in machine learning
which can help reduce the dimensionality of the data,
remove the irrelevant and redundant features, and directly
select a subset of the relevant features in order to construct
predictive models (33, 34). To carry out feature selection, we
utilized the Fisher Score, a supervised feature selection
method (35). The Fisher Score value indicates the degree
that a given feature has similar values in the same group and
dissimilar values in other groups. Since the groups were
defined by hierarchical clustering following PCA, the Fisher
Score analysis was carried out on data in PCA space, using the
Python 3.6 scikit-feature library (35).

9) Dynamic Network Analysis (DyNA) (30) was used to define the
central inflammatory network mediators as a function of both
time and patient sub-group. Using inflammatory mediator
measurements of at least three time-points per experimental
group, networks were created over seven consecutive time
periods (Admission-D1, D1–D2, D2–D4, D4–D5, and D5–
D6) using MATLAB® 8.1.0. Connections ([network edges]
represent trajectories of inflammatory mediators [network
nodes] that move in parallel; positive: same direction; negative:
opposite direction) were created if the Pearson correlation
coefficient between any two nodes (inflammatory mediators)
at the same time-interval was greater or equal to a threshold of
0.7, as indicated. The network complexity for each time-interval
was calculated using the following formula: Sum (N1+N2+…+
Nn)/(n − 1), where N represents the number of connections for
each mediator and n is the total number of mediators analyzed.
The total number of connections represents the sum of the
number of connections across all time intervals for all patients in
a given sub-group. In previous studies, we showed, that rising
network complexity is associated with rising MODScores when
comparing trauma survivors vs. non-survivors (10).

10) Spearman’s correlation was performed to measure the
strength of the association between the Luminex™ data for
two different mediators using a modified version of a
January 2021 | Volume 11 | Article 589304
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MATLAB®-based toolbox described recently (10, 36). A p-
value of less than 0.05 was considered significant.

11) Dynamic Bayesian Network (DyBN) inference was used to
model the evolution of the probabilistic dependencies within
a system over time. This analysis was carried out using
MATLAB™ (The Math Works, Inc., Natick, MA), using an
algorithm adapted from Grzegorczyk & Husmeier (37) and
revised recently by our Group. In this analysis, inflammatory
mediators were represented at multiple time points within the
same network structure. In this approach, time was modeled
discretely as in a discrete Markov chain. Each mediator was
given a time index subscript indicating the time slice to which
it belonged. Additional temporal dependencies were
represented in a DyBN by edges between time slices. Each
node in the network was associated with a conditional
probability distribution of a variable that is conditioned
upon its parents (upstream nodes). This particular network
structure was used to assess the dominant inflammatory
mediators and the probable interaction among various
mediators, including possible feedback loops.
RESULTS

Patient-Specific Principal Component
Analysis/Hierarchical Clustering
Segregates Blunt Trauma Patients Based
on Core, Early Inflammatory Responses
The primary goal of the study was to define core, early (within
the first 24 h) post-traumatic inflammatory endotypes of blunt
trauma patients, and to determine if these inflammatory
endotypes can predict the patients’ later clinical courses.
Accordingly, we utilized patient-specific PCA followed by
hierarchical clustering (28) to analyze the early post-traumatic
inflammatory response of 236 blunt trauma patients (227
survivors and 9 non-survivors). Patients were grouped using
hierarchical clustering based on inflammatory mediators
assessed in plasma samples obtained at three timepoints within
the first 24 h of admittance to the hospital. The sub-cohort of 227
survivors (148 males and 79 females; age = 50.4 ± 1.3 years [min:
18 years, max: 90 years]; ISS = 17.7 ± 0.6 [min: 1, max: 50]) was
demographically similar though younger as compared to the
sub-cohort of non-survivors (7 males and 2 females p = 0.7; age =
62.1 ± 7.2 years [min: 19 years, max: 86 years], p = 0.07; ISS =
19.9 ± 2.1 [min: 9, max: 33], p = 0.2).

We first analyzed time-course data from 31 circulating
inflammatory mediators obtained over the first 24 h in the 227
survivors using patient-specific PCA followed by unsupervised
hierarchical clustering, resulting in three main patient sub-
groups (Figure 1A). We next sought to determine if non-
survivors would co-cluster with these three sub-groups or form
a separate cluster. Notably, the 9 non-survivors in the over
cohort of 236 patients were segregated evenly across the three
sub-groups defined using data from trauma survivors (Figure
S1). Therefore, subsequent analyses were focused on the three
Frontiers in Immunology | www.frontiersin.org 5
sub-groups derived from the cohort of 227 trauma survivors,
given the small number of non-survivors and the heterogenous
causes of death typical of this population of trauma patients (10,
38, 39). These three groups had no statistically significant
differences in their principal demographics, as follows (see
details in Table S1):

1. Group 1 (n= 85): age: 45.3 ± 2.0 years (min: 18 years, max: 90
years), ISS: 18.8 ± 1.0 (min: 1, max: 50), gender: 51 males, 34
females

2. Group 2 (n = 41): age: 54.6 ± 3.1 years (min: 18 years, max: 86
years), ISS:16.6 ± 1.3 (min: 2, max: 38), gender: 30 males, 11
females

3. Group 3 (n= 101): age: 50.5 ± 1.9 years (min: 18 years, max:
89 years), ISS: 17.1 ± 0.9 (min: 1, max: 50), gender: 67 males,
34 females.

However, Group 1 was enriched for patients with head injury:
(mean abbreviated injury scale 1 [AIS1, head injury]), where
Group 1 had a significantly higher injury scale than Group 3
(Group 1: 1.14 ± 0.2, Group 2: 0.85 ± 0.2, Group 3: 0.22 ± 0.1
[p>0.99 Group 1 vs. 2; p = 0.0004 Group 1 vs. 3; p= 0.095 Group 2
vs. 3]) (Figure S2A). For the other body regions, there were no
statistically significant differences across the three groups
(Figure S2B).

Significantly Different Clinical Outcomes in
PCA/Clustering-Defined Trauma Sub-
Groups
We next hypothesized that the three patient sub-group would
differ in their clinical outcomes. In support of this hypothesis, we
observed significant differences with regard to days on
mechanical ventilation (Group 1: 2.3 ± 0.4 d vs. Group 2: 1.4 ±
0.9 d vs. Group 3: 2.5 ± 0.6 d; p= 0.03 overall; p= 0.02 Group 1 vs.
2), requirement for mechanical ventilation (Group 1: 44 on vs. 41
off ventilation vs. Group 2: 12 on vs. 29 off ventilation vs. Group
3: 39 on vs. 62 off ventilation; p= 0.04 overall; p= 0.02 Group 1 vs.
2), and Marshall MODscores over 7 days (p= 0.004 overall; p =
0.009 Group 1 vs. 2; p= 0.001 Group 2 vs. 3) across the three
cohorts (Figures 1B–D). However, there were no significant
differences in total hospital length of stay or ICU length of stay
(Figures S3A + S3B). Additionally, there were no significant
differences in other clinical parameters such as prevalence of
nosocomial infection, prevalence and degree of hypotension,
shock index, or comorbidities (Figures S3C-E + S4 [see legend
for exact values]).

Distinct Dynamic Networks of Systemic
Inflammation in Computationally Defined
Trauma Patient Sub-Groups
We next characterized the dynamics of the circulating
inflammatory mediators in each of the three computationally
defined trauma patient subgroups. Out of the 31 measured
inflammatory mediators, 23 were significantly different across
the three sub-groups (Table 2). We next utilized Dynamic
Network Analysis to define the dynamic inflammatory
networks in the three sub-groups (Figure 2A). Group 1 had a
January 2021 | Volume 11 | Article 589304
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consistently higher network complexity compared to the other
two sub-groups, and this network complexity rose continually
over the 7-day time course. Group 2 stayed consistently low
without any peaks. During the first 6 days, the complexity of
Group 3 remained low at the same level of Group 2, but then
increased towards the level of Group 1 at day 7 (Figure 2A).

We next investigated the degree of network connectivity of
each mediator in each trauma patient sub-group over 7 days
(Figure 2B). Group 1 had the highest degree of connectivity per
mediator, with the most connected mediators being IL-5, IL-15,
IL-1RA, MIP-1b, and IL-1b. Group 2 and Group 3 showed
similar degrees of individual mediator connectivity though at a
lower level than in Group 1. The most connected mediators in
Group 2 were IL-21, IL-22, IL-33, IL-17E/IL-25, and IL-1b,
whereas the most connected mediators in Group 3 were IL-
17A, MIP-1a, IL-1RA, IL-15, and IL-33 (Figure 2B).

We next sought to gain insight as to early drivers of
inflammatory programs associated with each trauma endotype,
using Dynamic Bayesian Network (DyBN) inference to define
potential early feedback structures inherent in the initial 24-h
data used to derive each of the three trauma sub-groups (Figure
3). All groups contained a core structure consisting of IL-23 and
IL-17E/IL-25, in which IL-23 was a central node (meaning that it
exhibited self-feedback as well as affecting downstream nodes).
Group 1 contained only this central motif (Figure 3A), while
Group 3 also included MIG as a downstream mediator driven by
IL-23 (Figure 3C). Group 2 showed the most complex
inflammatory network, being the only one with a third level of
inflammatory mediators, consisting of MCP-1 driven by MIG.
Frontiers in Immunology | www.frontiersin.org 6
Another unique attribute was the presence of IL-22 driven by IL-
23 and the feedback by MIG (Figure 3B).

Our next goal was to identify the principal characteristics, and
thus possibly identify main differentiators, of the core, dynamic,
A

B

FIGURE 2 | Dynamic Network Analysis (DyNA) suggests distinct dynamic inflammatory programs in trauma patient sub-groups. Dynamic Network Analysis was
carried out on the systemic inflammatory mediator data of Groups 1–3, and network complexity was quantified as described in the Materials and Methods.
(A) Group 1 had a consistently higher network complexity than the other two sub-groups, while Group 2 network complexity stayed consistently low without any
peaks. Group 3 network complexity stayed low at the same level as Group 2 for the first 6 days before increasing towards the level of Group 1 at day 7. (B) The
total network connections for each inflammatory mediator in each trauma survivor sub-group were tallied. Group 1 showed the highest degree of connectivity per
mediator over a time course of 7 days, with the most connected mediators being IL-5, IL-15, IL-1RA, MIP-1b, and IL-1b. Group 2 and Group 3 showed similar
degrees of individual mediator connectivity though at a lower level than in Group 1. The most connected mediators in Group 2 were IL-21, IL-22, IL-33, IL-17E/IL-25,
and IL-1b, whereas the most connected mediators in Group 3 were IL-17A, MIP-1a, IL-1RA, IL-15, and IL-33.
TABLE 2 | Significantly different inflammatory mediators among Group 1 (n =
85), Group 2 (n = 41), and Group 3 (n = 101).

Inflammatory Mediator p-value

Eotaxin 0.0256
GM-CSF <0.0001
IFN-a 0.0012
IFN-g <0.0001
IL-1b <0.0001
IL-1RA <0.0001
IL-2 <0.0001
IL-4 <0.0001
IL-5 <0.0001
IL-7 <0.0001
IL-8 0.0426
IL-13 <0.0001
IL-15 <0.0001
IL-17A <0.0001
IL-22 <0.0001
IL-23 0.0041
IL-17E/IL-25 0.0246
IL-33 0.0217
MIG 0.0419
MIP-1a <0.0001
MIP-1b <0.0001
sIL-2Ra <0.0001
TNF-a 0.0102
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systemic inflammatory responses in each trauma patient sub-
group over the time course of the first 7 days after admission. We
first utilized PCA to define principal characteristics of each
trauma patient sub-group (Figures 4A–C). In Group 1, IL-22,
IL-33, IL-23, IL-17E/25, and IL-13 were the most relevant
inflammatory mediators (Figure 4A). In Group 2, IL-1b, IL-
22, IL-13, IL-4, and IL-33 were the most relevant inflammatory
mediators (Figure 4B). In Group 3, IL-10, IL-13, IL-22, IL-4, and
IL-33 appeared as the principal characteristics of the
inflammatory response (Figure 4C).

We next used Fisher Score Analysis (35) to determine the
inflammatory mediators that best segregated the three groups
within the first 24 h. With a Fisher Score exceeding 0.6, IL-22, IL-
33, and IL-17E/IL-25 were the most segregating mediators. The
next most relevant mediators were IL-9, IL-21, IL-23, IL-1b, and
IL-4, which exceeded a Fisher Score of 0.3 (Figure 5).

In line with the results of patient-specific PCA/hierarchical
clustering, Fisher Score Analysis including the 9 non-survivors
showed similar results in terms of contribution to the segregation
but exhibited overall lower Fisher Scores (Figure S5). Taken
together, these results point to differential Th17-related and
epithelial-derived protective responses as the predominant
early differentiators of systemic inflammation following
blunt trauma.

Spearman Correlation Suggests Distinct
Dynamics of IL-17A–Producing T Cell Sub-
Populations in Trauma Patient Sub-Groups
The cytokine IL-17A is a major component of innate immunity
that contributes to systemic inflammation (40). Various cells
produce this cytokine, including pathogenic Th17 cells that co-
express IL-17A and GM-CSF and down-regulate IL-10 (in a
manner that is potentiated by IL-23), as well as non-pathogenic
Th17 cells, a reciprocal cell population that co-expresses IL-17A
and IL-10 (41). We demonstrated recently that trauma non-
survivors exhibit a positive correlation between IL-17A and GM-
CSF—while exhibiting a negative correlation between IL-17A
and IL-10—thus suggesting a shift toward pathogenic Th17 cells
that characterize, and may be involved in, the systemic
Frontiers in Immunology | www.frontiersin.org 7
inflammation associated with mortality in trauma patients. In
that study, matched survivors showed no correlation between IL-
17A and either GM-CSF or IL-10 (10).

We utilized the same methodology to gain insights into Th17
sub-populations in the three trauma patient sub-groups. Patients
in Group 1 exhibited no significant correlation between IL-17A
and GM-CSF (r= −0.05; p= 0.25; Figure 6A) nor between IL-17A
and IL-10 (r= 0.07; p = 0.07 Figure 6B). In contrast, Group 2
patients showed a significant, positive correlation between IL-
17A and GM-CSF (r= 0.30; p< 0.0001; Figure 6D), as well as a
significant, positive correlation between IL-17A and IL-10 (r=
0.24 p< 0.0001; Figure 6E). Group 3 patients showed a
significant, positive correlation between IL-17A and GM-CSF
(r = 0.24; p < 0.0001; Figure 6G) but did not exhibit a significant
correlation between IL-17A and IL-10 (r = 0.02; p = 0.55; Figure
6H). Thus, we suggest differential Th17 responses across the
three sub-groups.

gd 17 T cells represent another IL-17A–producing immune
cell population and are known to produce IL-17A and IL-22 (42,
43). To test for the potential presence of these cells, we carried
out a Spearman correlation analysis for IL-17A vs. IL-22 in all
three groups (Figures 6C, F, I). This analysis suggested the
presence of gd 17 T cells in Groups 1 and 3. We next segmented
the correlation analyses over time by carrying out the same IL-
17A/GM-CSF, IL-17A/IL-10, and gd 17/IL-22 correlations over
1-day time intervals from hospital admission to 7 days post-
admission (Figure 7, Table S1). This analysis suggested
potentially differential dynamics of pathogenic and non-
pathogenic Th17 cells as well as gd 17 T cells. In Group 1,
correlation values suggestive of the presence of non-pathogenic
Th17 as well as gd 17 T cells were highest from day 2 to day 7. In
Group 2, inferred Th17 cell subset dynamics were similar for
both pathogenic and non-pathogenic Th17 cell subsets, and gd
17 T cells were not inferred. In Group 3, correlation values
suggestive of gd 17 T cells were inferred to predominate across all
7 days of observation. In contrast, pathogenic Th17 cells were
apparent up to day 2, after which time this analysis suggested
similar phenotypes of pathogenic and non-pathogenic Th17
subsets through day 7.
A B C

FIGURE 3 | Dynamic Bayesian Network (DyBN) inference suggests distinct early inflammation programs in trauma patient sub-groups. Dynamic Bayesian Network
inference was carried out on the systemic inflammatory mediator data of Groups 1–3 as described in the Materials and Methods. All groups contained a core motif
consisting of IL-23 and IL-17E/IL-25, in which IL-23 was a central node. (A) Group 1 contained only the central motif of IL-23 and IL-17E/IL-25. (B) Group 2 showed
the most complex inflammatory network, consisting of MCP-1 driven by MIG, along with of IL-22 driven by IL-23 and feedback by MIG. (C) Group 3 included MIG
as a downstream mediator driven by IL-23.
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DISCUSSION

In the present study, we defined three early, dynamic systemic
inflammatory endotypes in blunt trauma patients using
individual-specific PCA combined with hierarchical clustering
(28, 31), which also stratify the patients’ later clinical outcomes.
These three endotypes are characterized by distinct dynamic
inflammatory networks. In contrast to existing dogma in which
early post-injury responses are dominated by classical innate
immune cytokines such as TNF-a, IL-6, and IL-10, but
supported by prior studies from our group and others (10, 11),
Frontiers in Immunology | www.frontiersin.org 8
our results suggest that pro-inflammatory type 3 (e.g., IL-17A
and IL-23) and related, epithelium-derived, tissue-protective
(IL-21, IL-22, and IL-25) responses might play a dominant role
following severe blunt injury. The complex and dynamic
interactions among these cytokines may result in distinct
trajectories of Th17 cell subsets and gd 17 cells, as inferred
from a dynamic variant of correlation analysis utilized previously
(10). These different core, early responses were also associated
with distinct multiple organ dysfunction trajectories, reinforcing
the concept that inflammation and organ dysfunction are
intertwined processes (6, 26) and that organ dysfunction may
be affected differentially depending on the presence of distinct
cell subsets (10).

We have hypothesized previously that three states can emerge
from the complex interplay of positive and negative feedbacks
inherent in the dynamics of trauma-induced inflammation (5).
An adaptive and properly regulated inflammatory response
represent the optimal balance of positive and negative feedback
and promotes tissue healing and regeneration. However,
uncontrolled inflammation can become self-sustaining due to
excessive positive feedback or insufficient negative feedback (4,
44). A third, less appreciated state likely involves excessive
negative feedback, resulting in an inadequate/overly damped
inflammatory response (5). The initial responses to trauma
involve the local activation of tissue macrophages along with
the influx and activation of monocytes and neutrophils (3, 45).
Early studies in experimental animals and trauma patients also
pointed to the impact of trauma on the lymphoid compartment,
with a profound Th2 shift and immunosuppression following
trauma/hemorrhagic shock (14, 46). Subsequent studies pointed
to the early activation of regulatory T cells (Treg) following
trauma, thereby providing one possible mechanism by which to
account for this immunosuppression (46–48). These
mechanisms may all contribute the well-established reduction
in major histocompatibility complex class II expression and
antigen presentation following trauma (7, 49–51).

A key inference from our studies is that differential dynamics
of IL-17A–producing lymphocyte subsets may underpin the
divergent systemic inflammatory responses of trauma patients.
Th17 cells are generally pro-inflammatory, acting via the
release of mediators such as IL-17A and IL-22 and play an
important role in autoimmune diseases (e.g., Crohn’s disease)
(52–54). Tregs release the generally anti-inflammatory and
immunosuppressive mediators IL-10 and TGF-b1 (55, 56).
Recent studies suggest that Th17 and Tregs play a major, early
role in organ dysfunction (10, 11, 29, 46, 55), and point to the
balance between so-called “pathogenic” (characterized by the
release of IL-17A and GM-CSF) and “non-pathogenic”
(characterized by the release of IL-17A and IL-10) Th17 cell
subsets (41, 57) in the context of traumatic injury in humans (10,
29). Our results suggest that an upregulation of the “pathogenic”
Th17 axis is associated with worse outcomes after trauma, in
agreement with prior studies (10, 11). In extension of these
previous findings (10, 11), our results further suggest a parallel
upregulation of both “pathogenic” and “non-pathogenic” Th17
phenotypes as the optimal state following trauma, based on the
A

B

C

FIGURE 4 | Principal component analysis of trauma patient sub-group data
suggests a role for Type 3 immunity, in part regulated by Th17 cells, in the
circulating inflammatory response to traumatic injury. Principal component
analysis was carried out on the systemic inflammatory mediator data of
Groups 1–3 as described in the Materials and Methods. (A) In Group 1,
IL-22, IL-33, IL-23 IL-17E/IL-25, IL-13, and IL-10 were the principal
characteristics. (B) In Group 2 patients, IL-1b, IL-22, IL-13, IL-4, IL-33, and
IL-17A were the principal characteristics. (C) In Group 3, IL-10, IL-13, IL-22,
IL-4, IL-33, and IL-1b were the principal characteristics.
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trajectories of multiple organ dysfunction associated with each
trauma endotype.

Our DyBN analyses implicated IL-23 as a core differentiator
of the three computationally identified patient sub-groups. A key
hallmark of these analyses was the differential impact on IL-22 in
Group 2 but not Groups 1 or 3. This cytokine is produced
predominantly by IL-23–polarized pathogenic Th17 cells.
Notably, IL-23 is a major inducer of IL-22 by Th17 cells (58).
Thus, our DyBN results further support a role for Th17 and gd 17
T cells in the differential inflammatory and clinical trajectories of
these patient sub-groups. Functionally, IL-22 is modulated by the
transcription factors STAT3, RORgt, and aryl hydrocarbon
receptor (58). Notably, Th17 cell differentiation and plasticity
are regulated to a large extent by RORgt; thus, future studies
could address the potential roles of these transcription factors in
relevant tissues following severe traumatic injury.

IL-22 may also play a role as a product of gd 17 T cells, which
represent another IL-17A–producing immune cell population
that has been implicated in inflammatory pathology (42, 43).
Importantly, various studies suggest that these cells may respond
more rapidly than Th17 cells and thereby accelerate Th17-
mediated inflammatory responses (42). These cells are known
to produce IL-17A and IL-22 (42). Our correlation analyses
suggest the presence of these cells in Groups 1 and 3, and that
these cells play a particularly important role in the responses of
Group 3.

A surprising result, in line with our core hypothesis of three
dynamic trajectories of inflammation (5), is that overly damped
inflammation (Group 3), like overly exuberant inflammation
(Group 1), is associated with prolonged multiple organ
dysfunction and adverse clinical outcomes including longer
ICU stays and days on mechanical ventilation. Our studies are
Frontiers in Immunology | www.frontiersin.org 9
in agreement with the notion of a dynamic process that starts
with a pro-inflammatory phase, which in turn initiates a repair
response in which key inflammatory cells switch their
phenotypes from pro-inflammatory to repair (4). Studies in
our group utilizing a larger trauma patient cohort that includes
the 227 survivors studied herein further support this notion,
finding that 8 inflammatory mediators (IL-22, IL-9, IL-33, IL-21,
IL-23, IL-17E/25, IP-10, and MIG) were significantly suppressed
during the initial 24 h and up to day 7 post-injury in survivors
with severe injuries (ISS ≥25) vs. survivors with mild (ISS = 1–
15) or moderate (ISS: 15–24) injury (Cai et al., submitted). Our
suggestion that gd 17 T cells, which produce IL-22, are present
predominantly in Group 3 may indicate a potential role for IL-22
in dampening this inflammatory response. In addition,
pathogenic Th17 cells can differentiate into regulatory T cells
(59, 60), and it is intriguing to speculate that this plasticity might
be involved in the phenotype of overly damped inflammation in
trauma patients.

Our studies also point to a process for defining endotypes in
other inflammatory disease settings. We employed a stepwise
series of computational analyses involving individual-specific
PCA combined with unsupervised hierarchical clustering to
segregate core inflammatory response, defining pathways in
each group by inferring dynamic networks, and delineating the
mediators that segregate across groups using Fisher score
analysis. A key aspect of this approach is that it encompasses a
dynamic response in a single data vector [an “inflammation
barcode” (28)] through the use of individual-specific PCA. This
methodology is likely expandable to include other types of data
(e.g., single-cell RNA sequencing, metabolomics, etc.) as well as
being applicable to other complex disease settings. While data-
driven analyses such as PCA are, strictly speaking, not amenable
FIGURE 5 | Fisher Score analysis points to Th17-related immune mediators the main differentiators among trauma patient sub-groups. Fisher Score analysis was
carried out on the systemic inflammatory mediator data of Groups 1–3 as described in the Materials and Methods. The mediators IL-22, IL-33, and IL-17E/IL-25
were the mediators that best segregated among Groups 1–3, with IL-9, IL-21, IL-23, IL-1b, and IL-4 being the next best segregators.
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to direct biological interpretation (32), we have utilized PCA to
suggest key pathways involved in porcine endotoxemia and used
these insights to structure individual-specific mechanistic
mathematical models of inflammation (61). We have also used
PCA in concert with hierarchical clustering to segregate the core
systemic inflammatory responses of patients suffering secondary
to trauma (28) (Gruen et al., unpublished observations) as well as
acute liver failure (31). In contrast to the present study, our prior
studies used this approach strictly as a means of differentiating
patients based on early inflammatory dynamics in settings in
Frontiers in Immunology | www.frontiersin.org 10
which the unprocessed data could not segregate patient
subgroups, without addressing the specific pathways
characteristic of each subgroup (28, 31).

While we have implicated type 17 immunity previously in the
initiation and propagation of self-sustaining systemic
inflammation associated with a small subset of patients that go
on to die following admission to the ICU subsequent to
traumatic injury, the computational strategy we employed now
leads us to hypothesize that type 17 immunity and the protective
cytokines that regulate this pathway are central to the
A B

D E F

G IH

C

FIGURE 6 | Spearman correlations of IL-17A vs. GM-CSF, IL-10, or IL-22 suggest differential presence of IL-17A–producing T cell subsets in trauma patient sub-
groups. Spearman Correlations were carried out using the data on IL-17A, GM-CSF, and IL-10 from days 0 to 7 post-admission in Groups 1–3. Significant
correlations between IL-17A and GM-CSF were inferred to suggest the presence of pathogenic Th17 cells, significant correlations between IL-17A and IL-10 were
inferred to suggest the presence of non-pathogenic Th17 cells, and significant correlations between IL-17A and IL-22 were inferred to suggest the presence of gd 17
T cells. Group 1 showed no correlation between either IL-17A and GM-CSF (r = −0.05, p = 0.25) (A) or between IL-17A and IL-10 (r = 0.0737, p = 0.0738) (B). In
contrast, Group 2 showed a positive correlation between IL-17A and GM-CSF (r = 0.30, p < 0.0001) (D) and a positive correlation between IL-17A and IL-10 (r =
0.24, p < 0.0001) (E). Group 3 showed only a positive correlation between IL-17A and GM-CSF (r = 0.24, p < 0.0001) (G) and no correlation between IL-17A and
IL-10 (r = 0.02, p = 0.55) (F). Significant correlations between IL-17A and IL-22 suggest the presence of gd 17 T cells in all groups: (C) Group 1 (r = 0.12, p =
0.004), (F) Group 2 (r = 0.16, p = 0.007), (I) Group 2 (r = 0.25, p < 0.0001).
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inflammatory response of all blunt trauma patients. Despite
limitations that include the inclusion of only blunt (not
penetrating) trauma patients, the focus on a subset of possible
inflammatory mediators, and the lack of a multi-center study
Frontiers in Immunology | www.frontiersin.org 11
design, our results suggest that greater diagnostic and therapeutic
focus should be paid to type 17 and associated responses in the
setting of traumatic injury.
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FIGURE 7 | Dynamic Spearman correlations of IL-17A vs. GM-CSF, IL-10, or
IL-22 suggest distinct trajectories of IL-17A–producing T cell subsets in
trauma patient sub-groups. Spearman Correlations were carried out over 1-
day time intervals using the data on IL-17A, IL-22, GM-CSF, and IL-10 in
Groups 1–3. Significant correlations between IL-17A and GM-CSF were
inferred to suggest the presence of pathogenic Th17 cells, significant
correlations between IL-17A and IL-10 were inferred to suggest the presence
of non-pathogenic Th17 cells, and significant correlations between IL-17A
and IL-22 were inferred to suggest the presence of gd 17 T cells. (A) In
Group 1, non-pathogenic Th17 cells reached significant (p < 0.05) r values
between days 3 and 5 post-admission and were inferred to predominate over
pathogenic Th17 cells from day 2 to 7. (B) In Group 2, both pathogenic and
non-pathogenic Th17 cell subsets showed similar r values, with a steady rise
during the time course of 7 days after admission. (C) In Group 3, pathogenic
Th17 cells appeared to predominate over non-pathogenic Th17 cells up to
day 2. Thereafter, pathogenic and non-pathogenic Th17 cell subsets
appeared to follow similar dynamics through day 7. Significant correlations
between IL-17A and IL-22 were observed only in Group 1 (days 3–4) and
Group 3 (all days). For exact r- and p-values, see Table S1.
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