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Deciphering protection mechanisms againstMycobacterium tuberculosis (Mtb) remains a
critical challenge for the development of new vaccines and therapies. We analyze the
phenotypic and transcriptomic profile in lung of a novel tuberculosis (TB) nanoparticle-
based boosting mucosal vaccine Nano-FP1, which combined to BCG priming conferred
enhanced protection in mice challenged with low-dose Mtb. We analyzed the vaccine
profile and efficacy at short (2 weeks), medium (7 weeks) and long term (11 weeks) post-
vaccination, and compared it to ineffective Nano-FP2 vaccine. We observed several
changes in the mouse lung environment by both nanovaccines, which are lost shortly after
boosting. Additional boosting at long-term (14 weeks) recovered partially cell populations
and transcriptomic profile, but not enough to enhance protection to infection. An increase
in both total and resident memory CD4 and CD8 T cells, but no pro-inflammatory cytokine
levels, were correlated with better protection. A unique gene expression pattern with
differentially expressed genes revealed potential pathways associated to the immune
defense against Mtb. Our findings provide an insight into the critical immune responses
that need to be considered when assessing the effectiveness of a novel TB vaccine.

Keywords: Mycobacterium tuberculosis, nanovaccines, immune protection, lung infection, transcriptomic analysis
INTRODUCTION

Despite being well-known and treated for years, tuberculosis (TB) is the leading cause of death from a
single infectious pathogen worldwide. The World Health Organization estimates that one third of the
world’s population carries the bacillus in a latent form, with a 10% probability of those infected to
develop TB during their lifetime, and that contributes to 10 million new cases of TB occur yearly (1).
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Control of the globalTBepidemichasbeenchallengedby the lackof
an effective vaccine. Bacille Calmette–Guérin (BCG) remains the
only licensed TB vaccine, although its efficacy against the
pulmonary form of TB in adulthood is highly variable (2, 3).
Unfortunately, the development of novel effective vaccines is
hampered by the limited knowledge we have of the mechanisms
that provide protection againstMycobacterium tuberculosis (Mtb).

The immune response againstMtb is complex and incompletely
characterized. Although evidence supports the fundamental role of
CD4+Tcells andcytokines (suchas interferongamma (IFNg) (4, 5),
tumor necrosis factor alfa (TNFa), interleukins 2 (IL-2) (6–9), and
12 (IL-12) (10, 11)) in TB, there are still no reliable correlates of
protection. In this scenario, it becomes difficult to predict the
outcome of the disease or to monitor the efficacy of novel vaccines.

Mucosal vaccination (12–18) and mucosal boosting of BCG,
combining the overall protection conferred by BCG with the
reinforcement of the mucosal immunity in the lungs (19–25),
have been considered attractive strategies against pulmonary TB.
Hart et al. (26) demonstrated that the combination of subcutaneous
BCG plus two intranasal boosts of a novel nanovaccine, Nano-FP1,
significantly reduced the bacterial burden in mouse lungs after TB
infection. Nano-FP1 is based on nanoparticles produced by the
emulsification of yellow carnauba (YC) palm wax with sodium
myristate (NaMA), coated with a fusion protein made of three
different antigens ofMtb: the secreted protein Ag85B, the 16-kDa
latency induced protein alpha crystalline (Acr) and the heparin-
binding hemagglutinin (HBHA). Similar boosting nanovaccines
based on other antigen combinations were also tested, but they did
not show improved efficacy against Mtb (R. Reljic, unpublished).
Among them is the Nano-FP2 vaccine, which displayed one single
antigen replacement in its fusion protein compared to Nano-FP1,
with antigen Ag85b replaced by the Mannose Binding Protein
64 (MPT64).

We intend to identify a phenotypic and/or transcriptomic profile
of the efficacy of the Nano-FP1 TB vaccine in mice. Herein, we
performed a systematic analysis of the novel Nano-FP1 prototype,
analyzing the cellular signature and gene expression profile triggered
in the pulmonary environment. Nano-FP2 was also tested as an
example on a non-protective vaccine candidate. The effect produced
by the intranasal boost with Nano-FP1 on previously BCG-
immunized mice was evaluated at short-term (2 weeks), medium-
term (7 weeks), and long-term (11 weeks) intervals. We found a
unique cellular and transcriptional profile at short-term,
characterized by alterations in CD4+ T cell populations and
marked changes in gene expression. Nonetheless, we observed that
the boosting effect was transient and it did not trigger an effective
immunologicalmemoryagainstTB long term.Ourfindings suggest a
critical role for the long-lived CD4+ T cell immunity that should be
mandatory when assessing the effectiveness of a novel TB vaccine.
MATERIALS AND METHODS

Mice
Six-week-old female specific pathogen-free C57BL/6 mice were
purchased from Envigo (Spain). The mice were maintained
under barrier conditions in a BL-3 biohazard animal facility at
Frontiers in Immunology | www.frontiersin.org 2
the University of Minho, Braga, Portugal, with constant
temperature (24 ± 1°C) and humidity (50 ± 5%). The animals
were fed a sterile commercial mouse diet and provided with
water ad libitum under standardized light-controlled conditions
(12 h light and dark periods). The mice were monitored daily,
and none of the mice exhibited any clinical symptoms or illness
during this experiment.

For the early response experiment, 6-week-old female specific
pathogen-free C57BL/6 mice were purchased from Scanbur
(Denmark), and housed in pathogen- free conditions at the
Animal Department of MBW, Stockholm University, Sweden.
Mice were acclimatized for at least 1 week before use and
supervised daily. The specified pathogen free condition of the
facility was confirmed by continuous use of sentinel mice.

All animal experiments were performed with ethical approval
from the hosting institutions and according the national
regulations and legislation of that country.

The study was approved by and performed in accordance
with guidelines of the CEEA Xunta de Galicia, code ES-
360570215601/17/INV. MED.02.OUTROS04/AGF/02. Early
response experiments were approved by and performed in
accordance with guidelines of the Stockholm North Ethical
Committee on Animal Experiments, permit number N170/15.
Nanovaccines Formulation
Two different vaccine candidates were used as intranasal (in)
boost to BCG, hereafter referred to as Nano-FP1 and Nano-FP2.
Both candidates consist of a combination of yellow carnauba
palm wax with sodium myristate (YC-NaMA) nanoparticles
(NPs) (Bethlehem, PA, USA) and a fusion protein (FP)
composed of an N-terminal histidine tag and the Mtb antigens
Acr (Rv2031c), Ag85B (Rv1886c), and the heparin-binding
domain of HBHA (Rv0475) (FP1) or MPT64 (Rv1980c), Acr
and HBHA (FP2). The vaccine formulation included 0.1% Yc-
NaMA NPs, 200 µg/ml of the corresponding FP and 400 µg/ml
PolyI:C (Sigma Aldrich) in saline solution, with 50 µl delivered to
the each mouse. Nano-FP1 was used as the prototype of interest,
taking into account previous studies reporting its protective
effect (26) and Nano-FP2 was used as a representative of a
nonprotective vaccine candidate (data not shown).

Study Groups and Immunization Protocol
The vaccination groups and schedules are shown in Figures 1A
and 2A. For subcutaneous (s.c.) priming vaccination, mice
received 0.5 million CFUs of BCG strain Pasteur. Twelve and
14 weeks later, mice from the Nano-FP1 and Nano-FP2 groups
were anesthetized with 100 µl of ketamine–xylazine and 50 µl of
the corresponding nanovaccine was intranasally administered. A
group of mice were also administered a 3rd boost of the
corresponding nanovaccine 25 weeks after sc. BCG. Animals
were divided in four experimental groups: Unvaccinated mice
(henceforth referred to as Naive group); mice vaccinated with
subcutaneous (s.c.) BCG alone (BCG group); mice vaccinated
with BCG s.c. and 12 weeks later an intranasal boost with Nano-
FP1 (BCG/Nano-FP1 group) or Nano-FP2 (BCG/Nano-FP2
group). Animals were studied at different time points (2, 7,
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and 11 weeks (after two intranasal challenges), and 14 weeks
(after an additional third intranasal challenge).

For the early immune experiment (24 h), mice were
subcutaneously vaccinated with either 0.5 million CFUs of BCG
or PBS. Twelve weeks later, they were administered intranasally one
dose of either Nano-FP1 or PBS. 24 h later, mice were sacrificed.
Animals were divided in four experimental groups (1): mice
receiving s.c and intranasal PBS as control (herein referred as
PBS/PBS-24h); (2) only vaccinated with BCG s.c. (BCG/PBS-24h),
(3) only with an intranasal boost of Nano-FP1 (PBS/Nano-FP1-
24h), and (4) animals received BCG s.c. and twelve weeks later one
intranasal dose of Nano-FP1 (BCG/Nano-FP1-24h).

Bacteria
The H37Rv strain of M. tuberculosis was grown in Middlebrook
7H9 liquid medium (BD Biosciences, San Diego, CA) for 7–10 days
and then sub-cultured in Proskauer Beck (PB) medium
supplemented with 0.05% Tween 80 and 2% glycerol, until the
mid-log phase. Bacterial stocks were aliquoted and stored at −80°C.
Frontiers in Immunology | www.frontiersin.org 3
Bacterial frozen stocks were used to infect mice via aerosol
route, using a Glas-Col inhalation exposure system. Bacterial
clumps were disrupted by forcing them through a 26G needle
before diluting the bacterial suspension in water (Aqua B. Braun)
to a concentration of 2 × 106 CFUs/ml to deliver 100 CFUs into
the lungs.

Infection and Sample Collection
Mice were challenged via the aerosol route with the H37Rv strain
at different time points (2–3, 7, and 11 weeks) following the last
boost of the intranasal nanovaccines. Sample collection was
conducted both pre- and post-challenge for each experimental
group. Mice from the “pre-challenge” group were euthanized
with CO2 and lung parenchyma, bronchoalveolar lavage (BAL)
and spleen were collected for analysis. The remaining animals
(“post-challenge” group) were sacrificed four weeks after
infection on each of the corresponding time points for organ
CFU count. Lung parenchyma and spleen were collected from
these mice for immunological assays.
A

B

C

FIGURE 1 | CFUs measurement in lung and spleen of Mtb infected mice. (A) Mice were left unvaccinated or vaccinated either with BCG alone (BCG) or BCG
followed by intranasal Nano-FP1 (BCG/Nano-FP1) or Nano-FP2 (BCG/Nano-FP2). At the points indicated after the second boost, mice were infected with Mtb
through the aerosol route. Lungs and spleen were collected 30 days after infection and plated to assess bacterial burdens in all groups, as described in Material and
Methods (n = 9–10 mice per group). Mtb colony-forming units (CFUs) were determined in the lungs (B) and spleen (C). Mann–Whitney-Wilcoxon test was used for
statistical analysis. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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Sample Processing
BAL was collected by irrigating lungs via trachea with a syringe
containing 1 ml of cold PBS. Lungs and spleen were aseptically
removed after BAL lavage and were homogenized and processed
for immunological assays. Prior to homogenization, lungs were
incubated in digestion medium DMEM (Dulbecco’s Modified
Eagle Medium, High glucose NEAA, no glutamine, Gibco)
supplemented with collagenase 0.15 mg/ml (Sigma Aldrich) at
37°C for 30 min. Spleens and collagenase-incubated lungs were
homogenized and filtered through a 40 mm nylon mesh cell
strainer (BD Biosciences, San Diego, CA) to obtain a
homogenous cell suspension. BAL, lung and spleen cells were
treated with red blood cell (RBC) lysing buffer (0.87% of NH4Cl
solution and 5% of PBS in water) for 5 min, and washed twice
with DMEM supplemented with 10% of heat-inactivated fetal
bovine serum. Leukocyte fraction was isolated by density
gradient centrifugation on an 80%/40% Percoll (GE
Frontiers in Immunology | www.frontiersin.org 4
Healthcare, Sigma Aldrich) gradient. In mice sacrificed post-
challenge, the left lung and half spleen were reserved for organ
CFU count.

Bacterial Counts
The number of viable bacteria in lung and spleen from infected
mice was determined by plating serial dilutions of the organ (left
lung or half spleen) homogenates onto Middlebrook 7H11 agar
(Difco Laboratories) supplemented with 10% OADC (Difco
Laboratories). Colonies were counted after 3 weeks of
incubation at 37°C with 5% CO2 atmosphere.

Antibodies and Surface Staining
For analysis of general immune populations and lymphocyte
composition in parenchyma lung and BAL, cell pools from 8 to
12 mice per group were used for the 2-week analysis and four
mice per group for the 7, 12, and 14 weeks analysis.
A

B

DC

FIGURE 2 | Immune cell populations in lung. (A) Groups of mice were vaccinated as described in Figure 1. (B) Lung immune cell populations at 2 weeks.
(C) Percentages of selected immune populations CD45+ CD4+ T cells and (D) neutrophils in lungs analyzed at different time points (2, 7, 11 and 14 weeks). Data
represent percentages of each cell population referred to the total of immune CD45-positive cells. *1 and *3: The percentage (%) of CD4+ T in the BCG/Nano-FP1
group was significantly higher than those in Naive, BCG and BCG/Nano-FP2 groups at 2 weeks. *2: The % of interstitial macrophages was significantly higher than
that one in Naive group at 2 weeks. *4: The % CD4+ T cells was significantly higher than that one in Naive group at 7 weeks.*5: The % of neutrophils was
significantly higher than that one in BCG group at 11 weeks. Kruskal–Wallis test and Dunn’s multiple comparisons test were used for statistical analysis. *p < 0.05.
January 2021 | Volume 11 | Article 589863
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Cells were incubated for 30 min with antibodies at 4°C,
washed with FACs buffer (PBS with 3% FBS and 0.1% of 10
mM sodium azide) and kept at 4°C until flow cytometry analysis.
List of antibodies used and references can be found in Table S1.

In the analysis of general immune populations, we identified
CD4+ T lymphocytes (CD45+ CD3+ CD4+ cells), CD8+ T
lymphocytes (CD45+ CD3+ CD8+ cells), B lymphocytes
(CD45+ CD3- CD19+ cells), neutrophils (CD45+ Ly6G+
CD11b+), inflammatory monocytes (CD45+ Ly6G− MHCII
− CD64+ CD11b+ Ly6C+), resident monocytes (CD45+ Ly6G
− MHCII− CD64+ CD11b+ CD11c+), NK cells (CD45+ Ly6G−
MHCII− CD64− CD11b+), alveolar macrophages (CD45+
Ly6G-CD64+ Siglec-F+), exudate macrophages (CD45+ Ly6G-
CD64+ Siglec-F− Ly6C+), interstitial macrophages (CD45+
Ly6G-CD64+ Siglec-F− Ly6C−), CD11b+ dendritic cells
(CD45+ Ly6G− CD64− CD24+ MHCII+ CD11b+), CD11b−
CD103+ dendritic cells (CD45+ Ly6G− CD64− CD24+ MHCII+
CD11b− CD103+) and eosinophils (CD45+ Ly6G− CD64−
CD24+ MHCII− CD11b+) in lung, following cytometry gating
strategy described in (27) and depicted in (Supplementary
Figure S1).

For lymphocyte composition analysis, we identified central
memory cells (CD45+ CD3+ CD4+/CD8+ CD44+ CD62Lhigh
CD127+), effector memory cells (CD45+ CD3+ CD4+/CD8+
CD44+ CD62Llow CD127+), effector cells (CD45+ CD3+
CD4+/CD8+ CD44+ CD62Llow CD127−) and lung resident
memory cells (CD45+ CD3+ [CD4+ CD44+ CD62Llow CD69+]
or [CD8+ CD44+ CD62Llow CD69+ CD103+]) following
cytometry gating strategy depicted in (Supplementary Figure S1).

Intracellular Cytokine Staining
Cell pools from 8–12 mice per group were used for the 2 weeks
analysis and three to four mice per group for the 7, 12, and 14
weeks analysis. Before intracellular cytokine staining, single cell
suspensions (obtained from lung or BAL) from immunized
animals (1 × 106 cells) were stimulated for 5 h as follows: BCG
group with Ag85 (5 µg/ml); BCG/Nano-FP1 group with Ag85 (5
µg/ml) and FP1 (5 µg/ml); BCG/Nano-FP2 group with Ag85 (5
µg/ml) and FP2 (5 µg/ml). 90 min after stimulation, 10 ng/µl of
Brefeldin A (Sigma Aldrich) was added to the cells, and
incubated for 3 h at 37°C to avoid cytokine release into the
culture media. Cells were stained for 30 min at 4°C with
antibodies directed to surface antigens in FACs buffer. Cells
were then fixed and permeabilized with FACs buffer with 0.05%
Saponin (Sigma Aldrich). Intracellular cytokine staining was
performed staining the cells with the intracellular antibodies
for 30 min at 4°C. After that, cells were washed with FACs buffer
and kept at 4°C until flow cytometry analysis, following
cytometry gating strategy depicted in (Supplementary Figure
S1). List of antibodies used and references can be found in
Supplementary Table S1.

Flow Cytometry and Data Analysis
Samples were run on an LSRII flow cytometer (BD Bioscience),
and data were analyzed using Flowlogic (version 7.1, FlowLogic;
UK) software. Graphpad Prism version 6.00 for Windows
Frontiers in Immunology | www.frontiersin.org 5
(GraphPad Software; CA, USA) was used for statistical analysis
and graph representation.

RNA Sequencing
RNA from BAL cells and immune lung infiltrate was extracted
using RNeasy Plus Micro Kit (Qiagen) according to the
manufacturer ’s recommendations. For early response
experiments, RNA was extracted from the post-caval lung
lobes using the RNeasy Plus Mini kit (Qiagen) according to
the manufacturer’s recommendations. RNA quality was assessed
based on RIN value using Agilent 2100 Bioanalyzer and the
Agilent RNA 600 Nano Kit (Agilent Technologies). Three
samples of pooled RNA were analyzed per condition, selecting
those with higher RIN value and RNA concentration. In the case
of mice sacrificed at 11 and 14 weeks, two BAL samples were
analyzed due to low RNA amount.

RNA sequencing was performed on an Ion Proton sequencer
(Ion Torrent, Thermo Fisher Scientific; CA, USA) at the
Genomic Service at the Centro de Apoio Cientı ́fico-
Tecnolóxico á Investigación of University of Vigo (CACTI).
Poly(A)-mRNA fraction was enriched using the Dynabeads®

mRNA DIRECTTM Micro Kit (Thermo Fisher Scientific).
Enriched mRNA was processed with the Ion Total RNA-Seq
Kit v2 (Life technologies-Thermo Fisher Scientific). cDNA
libraries with a percentage of DNA in 50 to 160 bp less than
50% passed the quality control and were then used for template
preparation. Enriched templates were loaded in an Ion PI Hi-Q
Chef Kit PI chip and used for RNA-sequencing. Ion Proton
Torrent Suite Software 5.4.0 filtered polyclonal reads (Ion Sphere
Particles with >1 unique library template population), adapter
dimers (reads where no or only a very short sequencing insert is
present) and low quality reads (reads with unrecognizable key
signal, low signal quality, and reads trimmed to < 25 bp). Usable
raw data were recorded on FastQ files.

RNA-seq Data Processing
FastQ files resulting from RNA-sequencing were processed using
the computational resources of the Galician Supercomputational
Centre (CESGA). FastQ files were analyzed using FastQC
software to confirm they had an average per base Phred quality
score 20 to 30. Index was generated using Rsem software (version
1.2.31) utilizing reference genome of Mus musculus Ensembl
Version GRCm38 and gene transfer format (.gtf) annotation
from Ensembl version GRCm38.90. Alignment and count
quantification were performed using STAR (version 2.5) and
Rsem (version 1.2.31) software respectively.

Differential Gene Expression Analysis
Differential gene expression between groups was assessed using
DESeq2 R package (version 1.20.0). Study groups were compared
to each other and the differential expression between groups was
evaluated based on the adjusted p-value and the absolute log2
fold change. Benjamini Hochberg correction was used to obtain
adjusted p-values. Genes with adjusted p-value < 0.05 and
absolute log2 fold change ≥ 0.6 were considered significant in
terms of differential expression.
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Pathway Enrichment Analysis
Pathway enrichment analysis of significantly differentially
expressed genes was performed using ReactomePA R package
(version 1.26.0) (28). Pathways and biological processes with p
value <0.05 were considered significantly enriched. Representation
of enrichment analysis in clusters was performed using
clusterProfiler R package (version 3.10.1) (29).

Quantitative Real-Time PCR Analysis
RNA-seq results were validated by quantitative real-time PCR
(RT-qPCR). Individual mice RNA were reverse transcribed to
cDNA using SuperScript II Reverse Transcriptase (Invitrogen).
cDNA and primers were mixed with PowerUp SYBR Green
MadeMix (Applied Biosystems) and analyzed in a 7900HT Fast
Real-Time PCR system (Applied Biosystems). A list of primers is
described in Supplementary Table S5. Four independent
biological replicates and technical triplicates of BCG/Nano-FP1
and BCG/Nano-FP2 groups were used for BAL analysis. Two to
four independent biological replicates and technical triplicates of
Naive, BCG, BCG/Nano-FP1, and BCG/Nano-FP2 groups were
used for lung parenchyma analysis. The b-actin gene was used as
internal control. Relative expression levels were calculated using
the comparative method 2−DCt. Log2 ratios of fold change were
calculated and compared in both RNA-Seq and RT-
qPCR platforms.
RESULTS

Memory After Vaccination With Bacille
Calmette–Guérin/Nano-FP1: The
Protective Effect After Boosting Decreases
With Time
It was reported that a regimen of BCG vaccination followed by
mucosal boosting with a novel nanovaccine Nano-FP1 provided
enhancedprotectionagainstMtb challenge compared toBCGalone
(26). However, theMtb challenge in these experiments was always
scheduled3weeks after the secondnanovaccineboost.Therefore, in
thisworkwe investigated thedurationof protectionprovidedby the
Nano-FP1nanovaccine.Todo this,micewere vaccinatedwithBCG
for 12 weeks at which point they received two i.n. boosts with the
nanovaccine Nano-FP1 two weeks apart (Figure 1A). The non-
protective Nano-FP2 (R. Reljic unpublished) was used as control.
To determine the duration of protection conferred by the prime-
boost regimen mice were challenged withMtb through the aerosol
route 2, 7, and 11 weeks after a second boost.

Our data confirmed that the combination of BCG priming
followed by boosting with Nano-FP1 was more effective than
only BCG in reducing the CFUs in lungs in mice infected 2 weeks
after the second boost. On the other hand, BCG/Nano-FP2 did
not improve upon the protection conferred by BCG alone.
Nonetheless, the protection effect induced by the BCG/Nano-
FP1 vaccine was lost after 7 and 11 weeks post vaccination
(Figure 1B) indicating that protection conferred by this regimen
is rapidly lost. To determine if memory could be recovered at
long term, we administered an additional intranasal boost at 11
Frontiers in Immunology | www.frontiersin.org 6
weeks with Nano-FP1 or Nano-FP2 vaccines. Although a
reduction in the lung CFUs was observed in the BCG/Nano-
FP1 group (0.39 log CFUs reduction on average in BCG/Nano-
FP1 group vs BCG), it was not as strong as the protection
achieved at 2 weeks (average 0.7 log CFUs reduction among
BCG/Nano-FP1 and BCG alone at 2 weeks) (p value < 0.05)
(Figure 1B).

CFUs analysis in spleen revealed that at 2 weeks no significant
differences were found among groups receiving BCG/Nano-FP1
or BCG alone (Figure 1C). Strikingly, at 7 and 11 weeks the
Nano-FP1 boost even hampered the observed BCG-systemic-
protection, increasing significantly the bacterial burden in spleen.

Our results pointed that two intranasal boosts with Nano-FP1
in animals previously BCG vaccinated conferred enhanced lung
protection to the Mtb infection at short-term compared to BCG
alone. However, this protection was lost after 7 weeks and
thereafter. Re-exposure by an extra vaccine boost reduced the
CFUs, but to a lesser extent than expected after recalling
immunological memory.

Protection Induced by Bacille Calmette–
Guérin/Nano-FP1 Associates With an
Increase in CD4 T Cells and Interstitial
Macrophages
With the aim to correlate the protection levels observed at the
various time points with the immune signature, we used flow
cytometry to define the immunophenotypic profile including T
cell phenotype and cytokine production (Figure 2A).

First, we identified total lung CD4+, CD8+ and B lymphocytes,
neutrophils, inflammatory and resident monocytes, NK cells,
alveolar, interstitial and exudate macrophages, conventional
dendritic and CD11b- CD103+ dendritic cells and eosinophils.
From all the cell subsets analyzed, we only found statistically
significant changes in the increased number of CD4+ T cells and
interstitial macrophages in the BCG/Nano-FP1 group 2 weeks
after the 2nd nanovaccine boost (Figure 2B). We also detected a
tendency of a lower percentage of neutrophils at this time,
although these differences were not statistically significant.

We wanted to find out how these populations behave at long
term in the lung, and found two features. First, the higher
proportion of CD4+ T cells observed at 2 weeks in the BCG/
Nano-FP1 group was partially lost at 7 weeks and completely gone
at 11 weeks (Figure 2C). Secondly, at 11 weeks the percentage of
neutrophils in the BCG/Nano-FP1 group increased abruptly
(Figure 2D).

No significant differences in cell subsets were observed in
lungs between the Naive and BCG groups at the time-points
studied (Supplementary Figure S2).

Bacille Calmette–Guérin/Nano-FP1
Induces an Increase in Resident Memory
CD4 T Cells
Next, we focused on changes in the lymphocytic T cell sub-
populations, analyzing the phenotype of T cell subtypes in lungs.
These included the central memory, effector memory, effector and
resident memory (RM) cells in both CD4+ and CD8+ subsets.
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Ahigher proportion of activated lymphocytes (CD4+ CD44+) in
lungs of BCG/Nano-FP1 immunized mice at 2 weeks (Figure 3A)
was observed, with an increasing significant proportion of CD4+

RM lymphocytes, when compared to the other groups (Figure 3B).
This predominant CD4+ CD44+ feature was partially lost at 7 and
11 weeks, which also correlates with the lower level of protection
against the Mtb infection at these time points. In contrast, after the
administration of the 3rd boost, CD4+ RM cells reached similar
levels to those showed at short-term. BCG/Nano-FP2 also seemed
to increase the proportion of activated CD4+CD44+ and CD4+ RM
cells, although not reaching statistical significance.

Besides, both nanovaccines augmented the proportion of
activated CD8+ CD44+ and CD8+ RM at short-term in a
similar fashion (Figures 3C, D). Unlike CD4+ behavior, at 14
weeks we found a smaller proportion of CD8+ both activated and
RM cells compared to 2 weeks. Moreover, no significant
differences were observed between Naive and BCG mice at the
time-points studied between different groups (data not shown).
The immunophenotypic analyses showed that vaccination with
BCG/Nano-FP1 induced significant changes in lung lymphocyte
population at short-term, more pronounced than BCG/Nano-
FP2, which were lost from 7 weeks and later on. We observed
changes in both CD4+ activated lymphocytes and CD4+ RM
cells. Also, administration of an extra boost of the nanovaccine
recovered those lung cell populations in a similar manner.

Bacille Calmette–Guérin/Nano-FP1
Induces Specific Profiles of Mono and
Polyfunctional CD4 T Cells
In order to assess the profile of cytokines induced by the BCG/
Nano-FP1 vaccine compared to the other vaccination regimes,
lung and spleen cells were checked for specific activation
following in vitro re-stimulation for 5 h with Mtb antigens. We
studied the production of IFNg, TNFa, IL-2, and IL-17 by
intracellular staining in activated CD45+ CD3+ CD4+/CD8+
CD44+ cells.

The number of CD4 cells producing one or combinations of
cytokines was higher in the BCG/Nano-FP1 group at 2 weeks,
but decreased at 7 weeks and even more at 11 weeks. However,
the 3rd boost increased again at 14 weeks the percentage of cells
producing either one or more cytokines, resembling the initial 2
weeks levels (Figure 4A). Examining in detail the polyfunctional
signature in mouse lungs at 2 weeks after receiving the Nano-FP1
vaccine, we found an increment of CD4+ T cells producing either
IFNg, TNFa, or IL-17, or combinations of IFNg+ TNFa+ and
IFNg+ TNFa+ IL-2+ (Figure 4B), compared to the other groups.

At 14 weeks, after the extra boost, a similar profile to the 2-
week signature was observed, with even higher percentages of
TNFa+ and IFNg+ TNFa+ producing cells (Figure 4C). Thus,
the 2-week effect on secreting cytokines induced by BCG/Nano-
FP1 can be rescued by an additional intranasal boost.

Regarding CD8+ T cells cytokine profile, we found that both
nanovaccines Nano-FP1 and Nano-FP2 increased the percentage
of cells producing IFNg alone or in combination with TNFa in a
similar manner (Supplementary Figure S3).

No significant differences were observed in lungs between
Naive and BCG groups of mice at the studied time-points.
Frontiers in Immunology | www.frontiersin.org 7
Similarly, no significant differences were found between lung
and bronchoalveolar cells, or splenocytes from the different
groups (data not shown).

The outstanding CD4+ cytokine response following Nano-
FP1 boosting at 2 and again at 14 weeks points toward a classical
memory boosting effect that nonetheless does not enhance TB
protection at long term.

Early Lung Transcriptome Alterations
Arise in Response to Nano-FP1
It is accepted that one of the most important factors in vaccination
strategies is the election of effective adjuvant and delivery systems.
To understand the possible causes of the short duration of
protective and immunological memory induced by the BCG/
Nano-FP1 vaccine, we first studied the ability of the nano-PolyIC
system to create, in a very early phase, a lung environment able to
support subsequent protective immune responses.

We analyzed mice lung transcriptome by RNA-Sequencing
just 24 h after the boost. Rapid and substantial transcriptomic
changes were observed after one single dose of Nano-FP1
intranasal administration. Differential gene expression analysis
of each group versus control revealed a total of 55, 162 and 717
Differentially Expressed (DE) genes in BCG-24h, PBS/Nano-
FP1-24h, and BCG/Nano-FP1-24h boosted groups, respectively
(Figure 5A). This immediate effect points toward the
mobilization of innate immune responses promoted by the
vaccine delivery system. Remarkably, the considerably higher
number of DE genes in BCG/Nano-FP1-24h mice reflects the
importance of BCG priming in the outcome.

Analysis of enrichment pathways of up and downregulated DE
genes, reflected how both BCG primed and non-primed Nano-FP1
shared some features, as upregulation of chemokine and Interferon
signaling pathways (Figure 5B, Supplementary Table S2).
Nonetheless, BCG/Nano-FP1-24h involved some unique pathways,
related to antigen presentation, immunological interaction and
synapses or triggering of complement, among others.

In summary, the analysis of changes induced by the BCG/
Nano-FP1 vaccine at this early time point regarding various
innate system related parameters, suggest a robust and powerful
adjuvant effect.

Bacille Calmette–Guérin/Nano-FP1
Induces Pronounced Changes in the
Transcriptomic Profiles of Both
Bronchoalveolar Lavage and Lung Shortly
After Boosting
Our following steps comprised the RNA-Sequencing analysis of
Naive, BCG, BCG/Nano-FP1 and BCG/Nano-FP2 vaccination
groups at short and long-term (2, 11, and 14 weeks). The aim was
to reveal possibleunique transcriptomicchanges correlatedwith the
enhanced TB protection conferred by BCG/Nano-FP1 at 2 weeks
and its subsequent disappearance. We analyzed independently
bronchoalveolar lavage (BAL) cellular fraction and lung
parenchyma to uncover potential specific mechanisms occurring
in different lung compartments.

Differential gene expression analysis comparing BCG, BCG/
Nano-FP1 or BCG/Nano-FP2 groups versus control group
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FIGURE 3 | Analysis of CD4 and CD8 T cell subtypes in lung. Groups of mice were vaccinated as described in Figure 1. Cells were analyzed by flow cytometry at
2, 7 and 11 weeks after the 2nd nanovaccine boost and at 14 weeks, 3 weeks after a third intranasal nanovaccine boost. (A, C) Data represent percentages of
activated (CD44+) CD4 or CD8 T cells referred to the total of CD4+ or CD8+ T cells, respectively. (B, D) Graphs represent mean percentages (%) of T cell subtypes
referred to the total of activated CD4+ or CD8+ T cells respectively ± standard error mean (SEM). Kruskal–Wallis test and Dunn’s multiple comparisons test were
used for statistical analysis. *p < 0.05. *1: BCG/Nano-FP1% of resident memory CD4 T cells is significantly higher than those in Naive and BCG groups at 2 weeks.
*2 and 3: BCG/Nano-FP1% of resident memory CD4 T cells are significantly higher than that those in BCG group at 7 and 14 weeks. *4, 5, 6 and 7: BCG/Nano-FP1
and BCG/Nano-FP2% of resident memory CD8 T cells are significantly higher than those in BCG group at 7 and 14 weeks.
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(Naïve), showed that at 2 weeks BCG/Nano-FP1 prompted
major changes in the transcriptome, with 2,543 and 1,974 DE
genes in BAL and lung, respectively (Figure 6A, Supplementary
Figures S4A, B).

At 11 weeks, we found a different scenario. The number of DE
genes in BCG/Nano-FP1 was markedly reduced to 623 and 616
genes in BAL and the lungs, respectively. After the 3rd boosting
(14 weeks), the number of DE genes in BCG/Nano-FP1 rose
again, reaching 929 genes in BAL and 2161 DE genes in the lungs
(Figures 6A, B). Moreover, we observed that this group
conserved part of its DE genes at these time-points
(Supplementary Figures S4C, D). The transcriptomic analysis
comparing samples at 2 and 14 weeks shows that both shared the
highest number of DE genes, with a total of 771 in BAL and 744
in the lungs (Supplementary Figures S4C, D).

Conversely, BCG/Nano-FP2 group displayed similar ciphers
of DE genes at 2, 11, and 14 weeks, while BCG group showed the
lowest number of DE genes compared to Naive in all studied
time-points in both BAL and lungs (Supplementary Figures
S4A, B).
Frontiers in Immunology | www.frontiersin.org 9
Biological Pathways Induced by Nano-FP1
Differ Over Time
We performed an enrichment pathway analysis to compare the
biological context induced by BCG/Nano-FP1 vaccination,
analyzing the up and downregulated DE genes at different time
points, revealing some compelling details.

In BAL, several immune-related routes were upregulated in
all, at 2, 11, and 14 weeks, such as: Immuno-regulatory
interactions between a lymphoid and a non-lymphoid cell,
immunological synapse, co-stimulation by CD28 family, PD-1
signaling, ER-Phagosome pathway, TCR, and chemokine
signaling (Figure 6C).

Some pathways upregulated exclusively at 2 weeks were IFNg
signaling, Integrin cell surface interactions, extracellular matrix
organization, RIPK1-mediated regulated necrosis, phagocytosis
(Role of phospholipids and Fc gamma receptor dependent
phagocytosis), or MHC-II antigen presentation.

Downregulated DE genes routes were mostly related with cell
cycle and cell metabolism in the three clusters. Other pathways
shared exclusively among 2 and 14 weeks involved Cytokine,
A

B C

FIGURE 4 | Analysis of CD4+ cytokine polyfunctionality in lung. Group of mice were vaccinated as described in Figure 1. Production of either INFɣ, TNFa, IL-2 and IL-17 or their
combinations were analyzed at 2, 7 and 11 weeks after two intranasal nanovaccine boosts or at 14 weeks, three weeks after a third intranasal nanovaccine boost. (A) Data
represent percentages of cytokine-producing activated CD4+ T cells at 2 or 14 weeks that produced 1 cytokine (INFɣ, TNFa, IL-2 or IL-17) or the combination of 2, 3, or 4 of
those cytokines, referred to the total of CD4 T cells. (B, C) Data represent percentages of cytokine-producing activated CD4+ T cells at 2 (B) or 14 weeks (C) referred to the total
of CD4+ T cells. Kruskal–Wallis test and Dunn’s multiple comparisons test were used for statistical analysis. *p < 0.05.
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Interleukin, B cell receptor (BCR), DAP12 and NF-kB signaling,
and the Complement cascade.

In the case of lung parenchyma, part of the upregulated genes
coincided with enriched pathways previously shared by 2 or 14
weeks in BAL, as co-stimulation by CD28, TCR signaling,
immunological synapse, or PD-1 signaling (Figure 6D).

Other routes matched with those pathways occurring
exclusively in BAL at 2 weeks, for example MHC-II antigen
presentation or role of phospholipids in phagocytosis. Moreover,
new unique pathways were found induced by the BCG/Nano-
FP1 vaccine at 2 weeks in the lung, as Reactive oxygen species
(ROS) and Reactive nitrogen species (RNS) production in
phagocytes, Scavenger receptors, endosomal TLR, signaling
through P2Y receptors, Sphingolipid metabolism or regulation of
Insulin-like Growth Factor. Compared to BAL, a smaller fraction
of pathways was shared among 2 and 14 weeks, including
Frontiers in Immunology | www.frontiersin.org 10
Cholesterol biosynthesis, Cytokine and Interleukin signaling, ER-
Phagosome pathway, Antigen presentation or Metabolism
of carbohydrates.

Distinct biological mechanism related with DE genes were found
in the lung compartments of BAL and parenchyma. Although most
immune-related routes were found at the three time points studied,
samples from animals obtained at 2 weeks after immunization or
just after the third boost (at 14 weeks), displayed a more resembling
profile in BAL than in lung parenchyma.

Bacille Calmette–Guérin/Nano-FP1 Shows
a Unique List of Differentially Expressed
Genes at 2 Weeks
The large number of DE genes obtained in the BCG/Nano-FP1
group hindered a more detailed analysis of single genes involved
in the Nano-FP1 boosting protective effect at short-term. Our
A

B

FIGURE 5 | Transcriptomic changes in lung cells, 24 h after one intranasal nanovaccine boost. (A) Volcano plot representation of the differential expression analysis
between experimental and control groups 24 h after one boost with the BCG/Nano-FP1 vaccine. Animal received s.c. either PBS or BCG 12 weeks earlier, followed
by one intranasal administration of either PBS (PBS/PBS and BCG/PBS groups, respectively) or Nano-FP1 vaccine (PBS/Nano-FP1 and BCG/Nano-FP1 groups,
respectively). Two to three samples of pooled mice were analyzed per group. The differential expression analysis was made using DESeq2 R package, comparing all
annotations of the reference genome (52636 annotations). Significantly DE genes (p adjusted < 0.05 and fold change ≥ 1.5) colored in red (upregulated) or blue
(downregulated). Names of top-10 p-adjusted DE genes are plotted. (B) Pathway enrichment analysis of DE genes using ReactomePA package. Up and
downregulated DE genes of each experimental groups were separated in clusters. Top-10 p-adjusted enriched pathways of each cluster of genes are represented.
Count: number of DE genes involved in the pathway; “.
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next approach involved the filtering of the genes differentially
expressed in BCG/Nano-FP1 at 2 weeks to obtain a reduced list
of possible candidate biomarkers of Mtb enhanced protection.

BCG/Nano-FP1 group was pairwise compared by differential
expression analysis to the other vaccination groups (Naive, BCG
and BCG/Nano-FP2 for every time-point (2, 11, or 14 weeks).
Then, three characteristic lists of genes of BCG/Nano-FP1 for 2,
Frontiers in Immunology | www.frontiersin.org 11
11, and 14 weeks were obtained by the intersection of the
differentially expressed (DE) genes set in mentioned pairwise
comparison, i.e. genes differentiating BCG/Nano-FP1 from every
other group. From the new sets of genes in each time point, we
selected the relative complement of BCG/Nano-FP1 at 2 weeks’
genes. Thus, we obtained a list of candidate genes (22 in BAL
and 29 in lung) (Figure 7, Table 1) that were exclusively DE in
A B

DC

FIGURE 6 | Transcriptomic changes in BAL and lung cells at short, long term and after re-immunization in the BCG/Nano-FP1 group, compared with naive mice.
Animals in the BCG/Nano-FP1 group received s.c. BCG and 12th weeks later, the nano-FP1 vaccine. They were studied at different time points (2 and 11 weeks
(after two intranasal challenges), and 14 weeks (after an additional third intranasal challenge).Volcano plot representation of the differential expression analysis of
genes obtained from the BCG/Nano-FP1 group, compared to control Naive group (unvaccinated) in bronchoalveolar lavage (BAL) (A) and lung parenchyma (B).
Three samples of individual or pooled mice were analyzed per group. The differential expression analysis was made using DESeq2 R package, comparing all
annotations of the reference genome (52636 annotations). Significantly DE genes (p adjusted < 0.05 and fold change ≥ 1.5) colored in red (upregulated) or blue
(downregulated). Names of top-10 p-adjusted DE genes are plotted. Pathway enrichment analysis of DE genes in BCG/Nano-FP1 compared to control Naive using
ReactomePA package in BAL (C) and lung parenchyma (D). Up and downregulated DE genes of each experimental groups were separated in clusters. Top-50 p-
adjusted enriched pathways of each cluster of genes were represented. Count: number of DE genes involved in the pathway.
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the BCG/Nano-FP1 group at 2 weeks, at its highest point of Mtb
protection. The filtering strategy scheme is described in
Supplementary Figures S4E, F.

Most of the candidate genes were related to immune defence
mechanisms. They include: upregulated T cell receptor (Trbv16,
Trav13-2, Trav3-3) and genes coding for immunoglobulin chains
(Ighg2b, Igkv1-135, Ighv9-3, Igkv1-133, Igkv1-117, Ighg2c);
cytokine-related genes (Ccl17 downregulated, Ccl8 upregulated);
a couple of genes related to macrophages including upregulated
Angptl2 and downregulated Mgl2; upregulated genes coding for
Complement cascade (C1s1 andC3), upregulatedH2-M2 as part of
MHC class Ib, increased expression of Nitric oxide synthase Nos2
and Toll-like receptor Tlr12, genes of extracellular matrix related
proteins, or downregulated cathepsin K gene (Ctsk). Three DE
geneswere shared inBAL and Lung, two of themupregulated:Htra
1 (serine protease HTRA1) andT cell receptor alpha variable (13-
2), and one downregulated, Cathepsin K.
Validation of Differential Gene Expression
by RT-qPCR
To confirm the reliability of the gene expression results by RNA-
Seq, we validated by RT-qPCR a total of 17 DE genes from the
list of top-expressed candidate genes at 2 weeks: Nos2, H2M2,
Trbv16, Itgam, Cd38, Htra1, Ccl17, Gmpr, Mlph, F7, Bok, and
Cspg4 in BAL and Cdo1, Ms4a7, Trbv16, Htra1, Car4, Cox6b2,
and Ctsk in lung parenchyma samples. Due to low RNA amount,
we analyzed BCG/Nano-FP1 vs BCG/Nano-FP2 groups in BAL.
To increase robustness, we used biological replicates from
independent mice, and we compared log2 fold changes
obtained by both methods.

As it is shown in Table 2, we found similar expression levels
in all comparisons, validating the results obtained by RNA-Seq
for these genes.
Frontiers in Immunology | www.frontiersin.org 12
DISCUSSION

Several novel TB vaccine candidates are currently in Phase II/III
clinical trials (1) but despite major advances in TB research and
vaccine development, BCG remains the only licensed TB vaccine
to be used in humans. Development of new and more effective
TB vaccines is a global priority. However, the lack of validated
immune correlates of protection is a major hurdle in the
development of novel vaccines.

Respiratory mucosal vaccination is proposed to be the most
effective strategy, mimicking the natural route ofMtb infection in
the lungs and thus inducing a better local immune response (16,
18, 30). Further, intranasal mucosal route has garnered attention
due to its non-invasiveness and accessibility, allowing easy
repeated vaccination if necessary (12–15, 17). It has also been
observed in novel vaccination strategies that a better outcome
could be achieved by the combination of systemic BCG-given
immunity reinforced by mucosal boosting. Although BCG has
moderate and heterogeneous efficacy on TB, it has a proven role
in lowering infant mortality (31). Therefore, BCG vaccination is
still a common practice in many countries which is advantageous
as an effective priming for this type of vaccination strategy.

In the current study, we aimed to analyze the factors contributing
to the duration of immunologicalmemory after vaccination and also
to make a correlation between immunological responses and
protection. For this, we have used two candidate vaccines namely
Nano-FP1 andNano-FP2 together with BCG and extended the time
of infection after vaccination fromthe short time (2weeks) to 7weeks
and later. We consider of major importance when assessing novel
vaccines, not only to determine the responsiveness of the immune
system, but the durability of protection. We investigated the effect of
these nanovaccines at different time-points and identified the
protection-related immunological signature and genes mobilized in
response to the vaccine.
A B

FIGURE 7 | Candidate genes in BAL and Lung in the BCG/Nano-FP1 group at 2 weeks. After filtering, a list of 22 and 29 candidate genes obtained in BAL (A) and
lung (B), respectively, were selected by the differential expression analysis in the BCG/Nano-FP1 group (in terms of log2 fold Change), compared to control mice.
Naive colored in red (upregulated) or blue (downregulated) among vaccination groups: BCG (received s.c BCG 12 weeks earlier); BCG/Nano-FP1 and BCG/Nano-
FP2 (received sc. BCG 12th weeks earlier followed by two (analyzed at weeks 2 and 11) or three (analyzed at week 14) intranasal administrations of the Nano-FP1 or
Nano-FP2 vaccines, respectively).
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Our results confirm previous data showing the efficacy of the
BCG/Nano-FP1 vaccine in animals infected short time (2 weeks)
after a second boost with the nanovaccine, by lowering the number
of CFUs and triggering several changes in immune cell populations
(26). However, both the protection and the phenotype profile were
partially lost after 7weeks and beyond.We found several changes in
Frontiers in Immunology | www.frontiersin.org 13
immune populations at 2 weeks after the 2nd Nano-FP1 boost, with
an increased proportion of both CD4+ and CD8+ T cells, higher
percentages of RM CD4+ and CD8+ T cells, and CD4+ cells
synthetizing cytokines (IFNg, TNFa, and/or IL-2), either
monofunctionally or polyfunctionally. A partial modulation of
the immune profile was also observed in mice receiving the
TABLE 1 | List of candidate genes in bronchoalvelolar lavage and lung cells, differentially expressed in the BCG/Nano-FP1 group at 2 weeks, compared to the other
groups (naïve, BCG, BCG/Nano-FP2).

Bronchoalveolar lavage

Gen symbol Ensemble gene ID Protein codifying Log2 fold Change

Nos2 ENSMUSG00000020826 Nitric oxide synthase, inducible 3.72
H2-M2 ENSMUSG00000016283 Histocompatibility 2, M region locus 2 3.68
Trbv16 ENSMUSG00000076473 T cell receptor beta, variable 16 3.54
Itgam ENSMUSG00000030786 Integrin alpha-M 3.29
Cd38 ENSMUSG00000029084 ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 1 3.10
Htra1 ENSMUSG00000006205 Serine protease HTRA1 2.86
Trav13-2 ENSMUSG00000076846 T cell receptor alpha variable 13-2 2.61
Cnn3 ENSMUSG00000053931 Calponin-3 2.59
Igf2r ENSMUSG00000023830 Cation-independent mannose-6-phosphate receptor 2.46
Procr ENSMUSG00000027611 Endothelial protein C receptor 2.25
C1s1 ENSMUSG00000038521 Complement component 1, s subcomponent 1 2.14
Olfml3 ENSMUSG00000027848 Olfactomedin-like protein 3 2.07
C3 ENSMUSG00000024164 Complement C3 1.14
Ctsk ENSMUSG00000028111 Cathepsin K −0.86
Epas1 ENSMUSG00000024140 Endothelial PAS domain-containing protein 1 −1.05
Mgl2 ENSMUSG00000040950 Macrophage galactose N-acetyl-galactosamine-specific lectin 2 −1.14
Ccl17 ENSMUSG00000031780 C-C motif chemokine 17 −1.14
Gmpr ENSMUSG00000000253 GMP reductase 1 −1.43
Mlph ENSMUSG00000026303 Melanophilin −1.44
F7 ENSMUSG00000031443 Coagulation factor VII −1.55
Bok ENSMUSG00000026278 Bcl-2-related ovarian killer protein −1.66
Cspg4 ENSMUSG00000032911 Chondroitin sulfate proteoglycan 4 −1.91
Lung parenchyma
Gen symbol Ensemble gene ID Protein codifying Log2 fold Change
Cdo1 ENSMUSG00000033022 Cysteine dioxygenase type 1 3.19
Gpr162 ENSMUSG00000038390 Probable G-protein coupled receptor 162 3.03
B4galnt4 ENSMUSG00000055629 N-acetyl-beta-glucosaminyl-glycoprotein 4-beta-N-acetylgalactosaminyltransferase 1 2.92
Ms4a7 ENSMUSG00000024672 Membrane-spanning 4-domains, subfamily A, member 7 2.73
Ccl8 ENSMUSG00000009185 C-C motif chemokine 8 2.41
Ighg2b ENSMUSG00000076613 Immunoglobulin heavy constant gamma 2B 2.37
Igkv1-135 ENSMUSG00000096336 Immunoglobulin kappa variable 1-135 2.32
Lgals3bp ENSMUSG00000033880 Galectin-3-binding protein 2.29
Ighv9-3 ENSMUSG00000096459 Immunoglobulin heavy variable V9-3 2.24
Tmeff1 ENSMUSG00000028347 Tomoregulin-1 2.12
Trav13-2 ENSMUSG00000076846 T cell receptor alpha variable 13-2 2.10
Ighg2c ENSMUSG00000076612 Immunoglobulin heavy constant gamma 2C 2.08
Rgs16 ENSMUSG00000026475 Regulator of G-protein signaling 16 2.03
Angptl2 ENSMUSG00000004105 Angiopoietin-related protein 2 2.01
Trbv16 ENSMUSG00000076473 T cell receptor beta, variable 16 1.94
Tlr12 ENSMUSG00000062545 Toll-like receptor 12 1.84
Htra1 ENSMUSG00000006205 Serine protease HTRA1 1.81
Igkv1-133 ENSMUSG00000094491 Immunoglobulin kappa variable 1-133 1.58
Trav3-3 ENSMUSG00000094828 T cell receptor alpha variable 3-3 1.52
Ighv8-8 ENSMUSG00000104452 Immunoglobulin heavy variable 8-8 1.49
Cpne2 ENSMUSG00000034361 Copine-2 1.48
Lpcat2 ENSMUSG00000033192 Lysophosphatidylcholine acyltransferase 2 1.38
Igkv1-117 ENSMUSG00000094335 Immunoglobulin kappa variable 1-117 1.09
Dusp4 ENSMUSG00000031530 Dual specificity protein phosphatase 4 0.90
Ctsk ENSMUSG00000028111 Cathepsin K −0.76
Dmd ENSMUSG00000045103 Dystrophin −0.85
Car4 ENSMUSG00000000805 Carbonic anhydrase 4 −1.00
Cox6b2 ENSMUSG00000051811 Cytochrome c oxidase subunit 6B2 −1.06
6720489N17Rik ENSMUSG00000072066 KRAB domain-containing protein −1.25
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Nano-FP2, which could be explained as a boost of the BCG
immunization, by the intranasal administration.

At short term after immunization, our results are in accordance
with the central dogma of TB immunity, where CD4+ Th1 cells
represent the major T cell subset that participates in the immune
response toMtb (4–6, 32, 33). Also, their secreted proinflammatory
cytokines (IFNg, TNFa, and IL-2) are essential for control of
bacterial growth in both animal models and humans, by the
activation of macrophages (4–6, 32, 33). More recently IL-17+
(34) and polyfunctional CD4+ T cells, able to produce multiple
cytokines, were also associated with protection (7–9, 35–37).
Resident memory (RM) vaccine-induced T cells have been
postulated as a new desired target due to their lung-homing
capacity, with promising results (17, 25), including Hart et al.
(26). Our work confirms previous results, with elevated
percentages of CD4+ and CD8+ RM cells in BCG/Nano-FP1
group. However, this profile was lost at later time points.

Since the phenotypic profile observed at 2 weeks was lost from 7
weeks on, we wondered whether the administration of a third
intranasal nanovaccine boost could recover the immune phenotype.
In fact, most of the mobilized CD4 population observed at week 2,
including total and RMCD4+ T cells, reached similar levels to short-
term and a clear increase was observed in the number of total
cytokine-secreting cells compared to the 2 weeks profile, especially
in the number of TNFa+ and IFNg+ TNFa+ producing CD4+ cells.
On the contrary, the levels of total and RMCD8+ cells did not reach
the same profile found at 2 weeks. One limitation of this study is the
Frontiers in Immunology | www.frontiersin.org 14
absence of intravascular staining to discriminate lung parenchyma
immune cells from those from blood, a technique that has gained
attention in the last decade (38–42). The analysis of the T cell
homing markers indicates an important role of the tissue-resident
cells in the response to the BCG/Nano-FP1 vaccine, although
further studies could confirm the origin of those lymphocytes in
lung parenchyma. Moreover, a fully understanding of the immune
cell dynamics and migration might reveals new insights into the
effects induced by the nanovaccine.

In summary, and opposed to the 2-week scenario, the recovery
of the immunological profi le, and even the cytokine
polyfunctionality induced by the Nano-FP1 vaccine, was not
enough to exert the expected increased protective effect against
theMtb, being even inferior to the levels reached at 2 weeks. These
results suggest that Nano-FP1 repeated boosting set positive lung
conditions at short term (2 weeks) that lowered bacterial load, but
ultimately did not trigger an effective memory response at long
term. Furthermore, our findings call for increased efforts when
characterizing novel vaccines, by assessing both short and long-
term outcomes.

In order to obtain more information, we were encouraged to
analyze which genes were mobilized by BCG/Nano-FP1. We first
investigated the type of response induced as soon as 24 h after the
intranasal boost. We reasoned that analysis at this very short
time would reveal the main innate effect of the vaccine and
delivery system before the development of the adaptive
immunity and in consequence, assess the capacity of the
TABLE 2 | Comparison of the expression levels of 17 differentially expressed genes by RNA-Seq and RT-qPCR.

Bronchoalveolar lavage

Gen symbol BCG/Nano-FP1 vs Naive 2 weeks

RNA-Seq Log2 fold Change RT-qPCR mean Log2 fold Change ± SEM

Nos2 3.66 4.24 ± 0.65
H2-M2 1.64 2.00 ± 0.33
Trbv16 1.97 2.21 ± 0.24
Itgam 0.96 1.74 ± 0.33
Cd38 1.42 1.24 ± 0.39
Htra1 2.14 3.17 ± 0.48
Ccl17 −1.07 −0.71 ± 0.37
Gmpr −0.98 −1.08 ± 0.19
Mlph −1.37 −1.49 ± 0.47
F7 −0.94 −0.72 ± 0.26
Bok −1.51 −1.56 ± 0.36
Cspg4 −1.59 −1.95 ± 0.080

Lung parenchyma

Gen
symbol

BCG/Nano-FP1 vs Naive
2 weeks

BCG/Nano-FP1 vs BCG
2 weeks

BCG/Nano-FP1 vs BCG/Nano-FP2
2 weeks

RNA-Seq Log2 fold
Change

RNA-Seq Log2

fold
Change ± SEM

RNA-Seq Log2 fold
Change

RNA-Seq Log2

fold
Change ± SEM

RNA-Seq Log2 fold
Change

RNA-Seq Log2

fold
Change ± SEM

Cdo1 3.19 3.67 ± 0.25 2.68 3.45 ± 0.25 0.95 0.56 ± 0.25
Ms4a7 2.73 3.48 ± 0.25 1.97 2.98 ± 0.25 1.12 0.97 ± 0.25
Trbv16 1.94 2.52 ± 0.36 1.73 2.25 ± 0.36 1.61 2.06 ± 0.36
Htra1 1.81 1.92 ± 0.51 1.10 1.32 ± 0.51 1.69 1.89 ± 0.51
Ctsk −0.76 −1.03 ± 0.22 −0.60 −0.34 ± 0.22 −1.04 −1.17 ± 0.22
Car4 −1.00 −1.35 ± 0.35 −0.74 −0.87 ± 0.35 −0.99 −1.04 ± 0.35
Cox6b2 −1.06 −1.24 ± 0.16 −1.00 −0.80 ± 0.16 −0.90 −0.60 ± 0.16
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vaccine to create an appropriate environment in the lungs. This
analysis asserted how one single Nano-FP1 boost prompted
immediate and substantial transcriptomic changes.
Nevertheless, comparative transcriptomic profiling among
primed and non-primed Nano-FP1 provides compelling
evidence of the relevance of BCG priming for the outcome.
Furthermore, BCG/Nano-FP1 triggered mobilization of genes at
2 and 14 weeks in both BAL and lung parenchyma, but the
response decreased at 11 weeks, suggesting its transient nature.

The main enriched pathways identified in the nanovaccine
groups at 2 and 14 weeks in BAL were associated with many
immune-related pathways such as cytokine signaling, TCR and
BCR signaling or complement cascade. DAP12 signaling was
also observed, involving DAP12-mediated activation signals in
NK cells, granulocytes, monocytes/macrophages, and DCs (43,
44), although a published study associated activation of DAP12
in APCs with the delay in Th1 immunity in TB (45).

Moreover, we found pathways upregulated exclusively at 2
weeks, such as IFNg signaling, cytokine known to be essential in
TB defence (4–6) and antigen presentation by class II MHC,
supporting a potentially significant role of CD4 T cells.
Furthermore, Fc gamma receptor dependent phagocytosis
pathway was upregulated, suggesting the contribution of that
mechanism in elimination of invading pathogens mediated by
immunoglobulins. Lastly, extracellular matrix organization and
integrin interactions were also exclusively upregulated at 2
weeks. A role for the extracellular matrix has also been
reported in regulating the host-pathogen interaction in TB (46).

In lung parenchyma, we found more differences among the
transcriptome profiles in nanovaccine groups at 2 and 14 weeks.
Around 1300 DE genes appeared unique to the BCG/Nano-FP1
group at 14 weeks, compared to the other time-points, which was
ten timesmore than thoseDEgenes found inBAL (Supplementary
Figure S4). Regarding pathway enrichment analysis, we found that
at 2 weeks, samples displayed a higher number of pathways with
upregulated DE genes, most of them coinciding with immune-
related pathways found inBAL. These intriguing differences among
lung sections could reflect specific mechanisms involved in the
enhancement (2weeks) ornot (14weeks) inTBprotectionbyBCG/
Nano-FP1.Moreover, it shouldalsobeconsidered that the effectof a
single (14 weeks) or double (2 weeks) boost with the nanovaccine
could be the responsible for those differences, with a single dose
triggeringmore easily changes inBAL than in the lungparenchyma.
One of themost significant pathways shared among 2- and 14-week
samples was surprisingly the cholesterol biosynthesis pathway.
Although directly not immune-related, cholesterol has been
reported as necessary forMtbmetabolism (47–49).

However, some new signatures, uniquely related to the 2
weeks post-immunization, were found in lung parenchyma, such
as ROS and RNS production in phagocytes, Scavenger receptors,
endosomal TLR, signaling through P2Y receptors, Sphingolipid
metabolism or regulation of Insulin-like Growth Factor. ROS
and RNS production have been well known as key macrophage
bactericidal responses to Mtb, although the mycobacteria have
developed sophisticated mechanisms to avoid them (50). Toll-
like receptors play a key role in both innate immune responses
Frontiers in Immunology | www.frontiersin.org 15
and the initiation of adaptive immunity to Mtb, leading to
phagocytic activation. TLRs including 2, 4, 9, and 8 are known
to play critical roles in recognition of Mtb (51, 52). Regarding
P2Y receptors, they activate intracellular signaling cascades to
regulate a variety of cellular processes, including their use by
macrophages to combat Mtb (53). Also, scavenger receptor
pathways could participate in the Mtb infection outcome.
Some scavenger receptors have been directly related to host
and pathogenic cholesterol uptake, and to mycobacterial
recognition by macrophages (54, 55).

No major changes in cell populations or transcriptome were
found in the BCG-vaccinated groups, although its protective
effect was evident. We cannot provide a better explanation than
to propose different mechanisms of protection are involved and
that the nanovaccine is promoting a pathway dependent of BCG,
but BCG itself is inducing additional different pathways that are
essential for protection.

As a large list of genes identified related with the
transcriptional signature of nanovaccine-vaccinated mice, the
refined analysis identified unique transcriptomic signature by
BCG/Nano-FP1 at 2 weeks, obtaining a list of 22 genes in BAL
and 29 in lung parenchyma (Table 1). Several T cell receptor
(Trbv16, Trav13-2, Trav3-3), immunoglobulin chains-coding
genes (Ighg2b, Igkv1-135, Ighv9-3, Igkv1-133, Igkv1-117, Ighg2c)
and cytokine-related genes (Ccl17, Ccl8) were upregulated.

A couple of genes related to macrophages were identified,
including the upregulated Angptl2, a secreted factor able to
attract and activate macrophages, and Mgl2 Macrophage
galactose N-acetyl-galactosamine-specific lectin 2, which was
downregulated. Nos2 was also upregulated in BCG/Nano-FP1
group. Nos2 enzyme produces nitric oxide, which mediates
bactericidal actions in macrophages, and has been described
important in TB host defence. Among mechanism involved in
triggering of the immune response, we found upregulated C1s1
and C3 coding for Complement proteins, and H2-M2 as part of
MHC class Ib. Another key type of receptors that initiate
immune responses to pathogens, TLRs, were represented with
the augmented expression of Tlr12. Although little is known
about this protein, recently a role of TLR12 was described in
activating macrophages by Mtb antigens (56).

Lastly, we observed expression changes in some of the
extracellular matrix related proteins, which may play an
important role in extracellular matrix degradation in TB
disease: serine protease HTRA1 (Htra1) was upregulated, and
cathepsin K gene (Ctsk) was downregulated in both BAL and
lung. The collagenase has been reported previously to contribute
to TB cavitation (57).

In keeping with previous observations, we believe this list of
genes could be a valuable source of potential biomarkers
correlated with protection, as they are driving local lung
responses to Mtb infection.

Validation of RNA-Seq results was performed by quantitative
RT-qPCR analysis of some of the top-fold change DE genes of
BCG/Nano-FP1 group at 2 weeks. 17 genes were studied and
both techniques showed similar gene expression levels (Table 2),
supporting the reliability of our overall findings on the candidate
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genes and biological pathways, that might play a role in
TB protection.

Some of the validated genes are related to key defense
pathways. Upregulated H2-M2 and Trbv16 genes might
participate in increasing antigen presentation and recognition
(as they codify for proteins of MHC-I and TCR, respectively),
while overexpressed Cd38 and Itgam might reflect changes in
leucocyte populations, activation or migration (58, 59). As
mentioned, upregulated Nos2 has long been known as a key
element in ROS anti-mycobacterial response (60). Decreased
expression of Ccl17 might favor the deviation of the immune
population toward a Th1 response (61).

Our results also suggest the importance of other mechanisms
in TB infection, for instance, upregulated membrane compound
Ms4a7 was previously reported as altered in TB studies (62),
being involved in signal cell transduction. The downregulated
gene Bok is one of the less studied members of the BCL-2 family,
and no critical function has been assigned yet, although they
work as critical regulators of apoptosis (63). Our findings also
indicate an important role for the extracellular matrix
organization, a pathway upregulated in the enrichment analysis
of BCG/Nano-FP1 BAL at 2 weeks, with three validated genes
possibly participating in the process: Htra1 (64), Ctsk (57) and
Cspg4 (65).

For other validated genes, although presenting major fold
change differences, we could not provide feasible hypotheses for
their potential role in TB protection or immune system
functioning, as is the case of Cdo1 (Cysteine Dioxygenase Type
1, upregulated), F7 (Coagulation Factor VII, downregulated),
Gmpr (Guanosine monophosphate reductase 1, downregulated)
or Mlph (Melanophilin, downregulated). We encourage future
studies to target the wide range of altered pathways and
biologically appealing DE genes found in this work.

Results obtained from both phenotypic and gene expression
analysis suggest that the protective state achieved at short term
after the nanovaccine boosting might be a combination of both
lymphocytic and innate immune fractions. However, the precise
role in bacterial control of the different leukocyte populations is
poorly understood. While the participation of T cells, especially
tissue-resident T cells, is known to be essential in TB protection,
several research lines have moved toward the study of the innate
fraction, particularly in light of the critical importance of early
bacterial control on the outcome of the infection (66–69). We
detected changes on gene expression as soon as 24 h after the first
nanovaccine boosting, pointing toward the action of innate
immune cells. Whether these changes are due to long-term
epigenetic reprograming (“trained immunity”) or not, remains
to be cleared. Further work involving depletion of specific
immune populations and adoptive transfer experiments could
help to establish the contribution of each population to the
protective outcome. Analysis of the post-translational
modifications driven by the nanovaccine on the innate cell
population, will be considered in future investigations.

In summary, we show here that immune responses and long-
term protection are not well correlated. Protection against Mtb
infection promoted by the BCG/Nano-FP1 vaccine candidate
Frontiers in Immunology | www.frontiersin.org 16
and possibly other vaccines, is of short duration and may require
a number of frequent boosts to keep the protective ability of the
vaccine. A partial recovery of the immunological profile and
protection could be improved, but the maintenance of this long-
term protection requires further investigation. Several
mechanisms have been identified that could explain the
enhanced protection of the vaccine at 2 weeks after the
intranasal boost. We provide a list of genes that are exclusively
up or downregulated during the “protection window,” which
could provide new information for TB vaccine design. Further,
we consider that TB protection is established by a complex
cooperation of several immune populations, including CD4+,
CD8+ and innate cells, driving specific and a tight gene
regulation. Thus, this study proposes a list of genes and
distinct molecular pathways to be considered as important
when directing future TB vaccine efforts and research.
DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The name of the repository and accession
number can be found here: https://www.ebi.ac.uk/arrayexpress/,
E-MTAB-9449.
ETHICS STATEMENT

The experimental animal procedures were approved by Vigo
University Committee and authorized by the competent
authority (Xunta de Galicia, Conselleria do Medio Rural,
Pontevedra, Spain) and by Stockholm North Ethical Committe
on animal experiments.
AUTHOR CONTRIBUTIONS

AM-P performed RNA purification, analyzed the experimental
data, and wrote the paper with input from all other authors. AM-P,
AI, OE, and CMF performed most animal procedures and sample
processing. AC helped with the animal vaccinations. ET, AGC, and
CMF provided counseling. LA, A-LS and MLG contributed to the
early response experiments procedures and sample processing. MS
and RR contributed to the counseling and provided nanovaccines
and peptides. AG-F conceived the study, made the drafting and the
critical revision of the manuscript. All authors contributed to the
article and approved the submitted version.
FUNDING

This work was supported by the projects EU Horizon2020:
“Eliciting Mucosal Immunity in Tuberculosis”(EMI-TB)
project (Grant Number 643558); Portugal National funds,
through the Foundation for Science and Technology (FCT) -
January 2021 | Volume 11 | Article 589863

https://www.ebi.ac.uk/arrayexpress/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
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