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Converging evidences showed that people with diabetes mellitus (DM) have significantly
higher risk for different cancers, of which the exact mechanism underlying the association
has not been fully realized. Short-chain fatty acids (SCFAs), the fermentation products of
the intestinal microbiota, are an essential source for energy supply in gut epithelial cells.
They have been reported to improve intestinal barrier integrity, prevent microbial
translocation, and further dampen inflammation. Gut dysbiosis and reduction in SCFA-
producing bacteria as well as SCFAs production in the intestine are commonly seen in
metabolic disorders including DM and obesity. Moreover, inflammation can contribute to
tumor initiation and progression through multiple pathways, such as enhancing DNA
damage, accumulating mutations in tumor suppressor genes Tp53, and activating nuclear
factor-kappa B (NF-kB) signaling pathways. Based on these facts, we hypothesize that
lower levels of microbial SCFAs resulted from gut dysbiosis in diabetic individuals,
enhance microbial translocation, and increase the inflammatory responses, inducing
tumorigenesis ulteriorly. To this end, we will discuss protective properties of microbial
SCFAs and explore the pivotal roles SCFAs played in the link of DM with cancer, so as to
take early precautions to reduce the risk of cancer in patients with DM.
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INTRODUCTION

Diabetes mellitus (DM) is characterized by different metabolic abnormalities, including
hyperglycemia, insulin secretion deficiency, insulin dysfunction, and energy metabolism
disturbances (1, 2). The World Health Organization (WHO) reported about 422 million people
have DM in the world. Morbidity and prevalence of DM have been steadily rising over the past few
decades. Aside from DM, cancer ranks as the second main cause of death in the developed world
and the third cause for death in developing nations (3). DM and cancer share several common
characteristics, such as microbial imbalance and bacterial translocation (4–6). Unfortunately, these
two diseases are frequently coexistent and can affect each other, worsening the prognosis of patients.
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Generally compared with non-diabetic people, the incidence
of cancer in diabetic patients increased by approximately 20–
25%, depending on specific cancer type and site (7, 8), which has
been observed in both Asian and Western populations (9).
People with diabetes accompanied by cancer also experienced
higher mortality risk, in contrast with the group with only cancer
(10). Practically speaking, when comparing to the general
population, the significantly increased risk of cancer in diabetic
individuals has been proved in hepatocellular and pancreatic
carcinomas, which were 2.5 and 1.94 times higher respectively
(11, 12). Friberg et al. demonstrated that in diabetic women, the
risk for endometrial cancer nearly doubled (13). The
epidemiological literature indicates that patients with DM are
at modestly increased risk (by 19–42%) of developing colorectal,
gastric, kidney, breast, and bladder cancers (14–16). Numerous
studies have also declared the positive associations of DM with
non-Hodgkin lymphoma, leukemia, and myeloma, which is
about 19–22% higher in patients with only type II DM (17–
19). Regarding type I DM cohorts, in comparison with the non-
diabetics, increased risk of several cancers might be reported in
multiple research cohorts, yet inconsistent if all studies are
considered (20–22).

However, regarding the existing correlation of DM with
cancer, the mechanisms remain to be established. Identifying
and utilizing the intermediate links between the two diseases are
essential to reduce the risk of cancer and improve the symptoms
of DM. Short-chain fatty acids (SCFAs), as functional microbial
metabolites (23), might be a possibility to unlock the tie. Herein,
we will go further behind this correlation and focus on SCFAs,
which may be involved in the progress of DM developing
into cancer.
HYPOTHESIS

Based on recent evidences, we hypothesize that lower abundance
of SCFAs resulted from gut microbial dysbiosis in diabetics could
induce the destruction of the gut mucosal barrier, increase
microbial translocation, and promote inflammation responses,
further boosting inflammatory-malignant transformation and
enhancing risk of tumorigenesis (Figure 1).
GUT MICROBIOTA DYSBIOSIS AND
LOWER SCFAS IN DM

The intestinal barrier is the functional defense line, consisting of
microbiota, intestinal epithelial cells (IECs), and mucosal
immunity (24). The gut microbiota are collectively referred to
as eukaryotes, archaea, and bacteria, among which bacterial
phyla are the most abundant (25). Investigations identified that
keeping the diversity and quantity of human gut microbiota,
which can protect the host against pathogens by competition for
niches and nutritive supply, improvement of immune functions,
and regulation of metabolism, is of critical importance in
Frontiers in Immunology | www.frontiersin.org 2
maintaining intestinal homeostasis (26, 27). Akkermansia
muciniphila was reported to improve intestinal epithelial
monolayer integrity by stimulating colonic mucin secretion,
increasing the thickness of the gut mucus layer, and binding
directly to intestinal cells (28, 29). On the contrary, dysregulation
of gut microbiota composition, also called dysbiosis, could
impair the balance between the commensal species and various
pathogens, as well as decrease the release of metabolic SCFAs and
antimicrobial molecules such as bacteriocins (30). Depleted
Firmicutes and increased Proteobacteria such as Enterobacter
cloacae and Enterobacter species contribute to the disruption of
IECs, which in turn induces the translocation of intestinal
microbiota and their toxins, leading to infectious threats (31,
32). Dysbiosis may also regulate IECs to release intestinal
miRNAs, which could orchestrate the immune responses via
TLR dependent pathways or PRR families to fight against
pathogens (33). Other than SCFAs and bacterial toxins,
microbiota might influence the intestinal barrier through other
signal pathways, including bile acids metabolism and
endocannabinoid system (34, 35).

Emerging evidences indicated DM is significantly correlated
with gut microbiota dysbiosis, which harms the integrity of the
gut wall and promotes the shift of endotoxemia from the
intestinal cavity into the circulatory system, hence triggering
inflammation, autoimmune responses, and oxidative stress (36).
Larsen et al. demonstrated that microbial dysbiosis could
provoke changes in composition and distribution of gut
microorganisms, particularly intestinal bacterial species in the
mucosa, and metabolic activities (37). Compared to non-
diabetics, Lactobacillus spp and Betaproteobacteria groups were
highly enriched in diabetics, which was positively connected to
plasma glucose and could trigger inflammation effect in DM (38–
40). Considerable studies indicated that the abundance of
Akkermansia muciniphila, Firmicutes, and Clostridium spp was
significantly decreased among individuals with DM, inducing
unfavorable effects on nutrient metabolic control, glucose
tolerance, and inflammation responses (41–43). In addition,
the diabetics possessed lower abundance of SCFA-producing
organisms, including Roseburia intestinalis and Faecalibacterium
prausnitzii, which led to reduced anti-inflammatory SCFAs
levels, especially butyrate (37, 44, 45). Similar results have been
observed in animal studies describing that the levels of SCFA-
producing bacteria and SCFA production declined remarkably in
diabetic mice versus the diabetes-free group (46, 47). Deficiency
in SCFA production could promote intestine microbes to spread
into the systemic circulation, thereby inducing or aggravating
systemic inflammatory responses (48, 49).

Notably, intestinal SCFA producers and their metabolites
SCFAs are reported to play crucial roles in the pathophysiology of
DM. Compared to healthy controls, type 1 diabetes mellitus
(T1DM) patients harbored decreased population of SCFA-
producing bacteria and circulating SCFAs, in line with markedly
decreased genes contributing to SCFAs synthesis, which is
associated with disturbed microbiota composition (50–52). Gut
metagenome data also revealed that subjects with type 2
diabetes mellitus (T2DM) were characterized by a decrease in
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SCFA-producing microbiota and SCFA abundance, issued from
altered gut microbiota, impaired intestinal barrier, and increased
plasma levels of lipopolysaccharides (LPS) (53–55). For diabetics,
the favorable effects of SCFAs were mainly identified in reducing
serum glucose levels, improving insulin resistance, mitigating
inflammation, and enhancing secretion of protective glucagon-
like peptide 1 (GLP-1) (56–58). Conversely, dietary interventions
with SCFAs were shown to alleviate T1DM in mice models, as
evidenced by decreased auto-immune T cell counts, suppressed B
cell proliferation, and expanded autoimmune FoxP3+ Treg cell
repertoire in the colon, spleen, and systemic lymph nodes (46, 58).
By providing SCFA-releasing diets to T2DM patients, it could
significantly improve metabolic disorders by enriching SCFA-
producing microbes mass, ameliorating individual glucose
tolerance, and reducing levels of hemoglobin A1c (59–61).
Frontiers in Immunology | www.frontiersin.org 3
Herein, we discuss the latest developments in the protective
effects of SCFAs and appreciate their potential involvement
in diseases.
EFFECTS OF SCFAS ON INFLAMMATION,
IMMUNITY, AND METABOLISM

SCFAs, predominantly acetate, butyrate, and propionate, are
anaerobic fermentation metabolites of fiber produced by
intestinal microorganisms (62). SCFAs act as the principal
energy source for colorectal cells, enhancing intestine
epithelium integrity (63). Besides, as leading messenger
molecules between gut microbiota and host health, SCFAs can
enter the blood circulation, protect the gut barrier, regulate
FIGURE 1 | Flowcharts representing the association of diabetes, short-chain fatty acids (SCFAs), inflammation, and tumor. Due to gut microbiota dysbiosis in
people with diabetes, both SCFAs-producing bacteria and the produced SCFAs decreased. Reduction in SCFAs could weaken anti-inflammatory responses in
diabetics through diverse mechanisms, such as increasing gut permeability, inducing microbial translocation, and attenuating binding capabilities of SCFAs to both
GPCRs and HDAC. Hence, the inflammation was exacerbated in diabetic patients. Increased inflammation may lead to tumorigenesis in normal cells through
accumulated genetic mutations, which proceeded from DNA damage. Moreover, various inflammatory immune cells can secrete abundant inflammatory mediators
such as cytokines, chemokines, and growth factors, which may activate key transcription factors, including NF-kB and STAT3. This could initiate tumor growth in
normal cells, or boost malignant processes in tumor cells including angiogenesis, dissemination, and invasion. In turn, inflammatory reactions were aggravated under
sustained tumor-associated inflammation, thus forming a vicious and positive feedback loop between inflammation and tumor.
December 2020 | Volume 11 | Article 590685
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inflammatory responses, and influence immune functions of
distal tissues (64).

SCFAs can promote the intestinal epithelium function,
mainly by hypoxia-inducible factor-1 (HIF-1), which is a
transcription factor stabilizing intestinal epithelial barrier (65).
Antibiotic-mediated microbiota depletion reduces intestinal
levels of HIF and causes epithelium impairment, which could
be restored by supplementing butyrate. However, the effects of
butyrate on gut epithelial barrier protection vanished when
lacking HIF (29). In addition, SCFAs can restore the intestinal
barrier integrity by inducing gene expressions of inter-epithelial
junction protein Claudin-1, and activating other transcription
factors such as STAT3 and SP1, even in inflammatory conditions
(66, 67). Another involved mechanism is that SCFAs could
induce IECs to produce antimicrobial peptides (AMPs), recruit
neutrophils and anti-inflammatory cytokines, suppress
activation of NLRP3 inflammasome, and further protect the
intestinal barrier from damage by pathogens (68, 69).

When SCFAs were supplemented in vivo, they were shown to
preserve the molecular barrier of intestinal epithelium. Vieira et al.
reported that oral SCFAs could significantly improve intestinal
trophism and inhibit leukocytes and other immunocytes
infiltration, further attenuating the inflammatory state of gut
barrier in rats with acute ulcerative colitis (70). SCFAs treatment
may also constitute substrates for gut mucosa and ameliorate
intestinal damage, by restoration of glutathione levels and
reduction in proinflammatory mediators, including nitric oxide
(NO) and tumor necrosis factor-a (TNF-a) in rat models of colitis
(71). In addition, rectal administration of SCFAs could promote
mucus secretion and intestinal repair, by increasing abundance of
mucus-associated bacteria and expression of genes required for
pathogens elimination, such as IL-17A and IL-1b in mice with
enteritis (72, 73).

Säemann et al. reported that administration of SCFAs could not
only reduce secretion of pro-inflammatorymarkers such asTNF-a,
IL-6, and IL-12 but also increase release of anti-inflammatory
markers including IL-10 in cultured human peripheral blood
mononuclear cell (PBMCs) in vitro (74), providing important
clues to cognize the anti-inflammatory actions of SCFAs. With
evidence-based potentiated generation of anti-inflammatory
regulatory T cells, inhibited release of reactive oxygen species, and
suppressed production of pro-inflammatory cytokines including
TNF-a and IL-1b, anti-inflammatory effects of dietary SCFAs have
beenconfirmed indifferent animalmodels, suchas steatosis, allergic
airway inflammation, and chronic kidney disease (CKD) (64, 75,
76). In addition, clinical investigations revealed that the
inflammatory potential, analyzed by the TNF-a/IL-10 ratio, was
significantly higher in the diabetic group than the healthy ones,
whichmay be counteractedbydietaryfiber that canproduce SCFAs
(77, 78), corroborating the inflammation inhibitory potential of
SCFAs. In most cases, reduced inflammatory conditions and
improved immunity are inseparable.

Several mechanisms have already been explored on the anti-
inflammation influences of SCFAs (1). Permeability: Increased
permeability is believed to induce microbial translocation, which
could trigger an inflammatory cascade (79). Chen et al. confirmed
Frontiers in Immunology | www.frontiersin.org 4
that the representative SCFA, butyrate, is a crucial substrate for
promoting epithelial cell growth, which can maintain the colonic
epithelium, prevent excessive gut permeability, and even induce
innate immune responses to injury and invasive microorganisms if
necessary (80) (2). Nuclear factor-kappa B (NF-kB): NF-kB is a
critical transcription factor for inducing expressions of multiple
inflammation related genes. Studies have shown that butyrate can
inhibit NF-kB activation in human macrophages and epithelial
cells (81, 82) (3). Histone deacetylation (HDAC): HDAC
inhibitors were initially developed as cancer-combating agents.
Nowadays HDACs inhibitors are attracting much more interest as
anti-inflammatory agents, independent of their known
proapoptotic or cell cycle arrest actions on malignant cells (83).
SCFAs are natural HDACs inhibitors, facilitating expressions of
anti-inflammatory genes in the immune cell, promoting T
lymphocytes as they differentiate into effector T cells such as
Th1 and Th17 cells subsets, and boosting their immune responses
in inflammation (84, 85). Kim et al. also revealed that by
promoting activation and differentiation of B cells to plasma B
cells, SCFAs accelerated the production of most antibodies types,
including IgG and IgA (86) (4). G-protein coupled receptors
(GPCRs): SCFAs could activate GPR41 and GPR43 in intestinal
epithelial cells, leading to transmission of mitogen-activated
protein kinase signaling, and rapid secretion of chemokines and
cytokines (87, 88). Singh et al. showed that via activating
GPR109A in macrophages and dendritic cells, SCFAs make
them highly efficient inducers of regulatory T cells, particularly
FoxP3+ T cells, to limit inflammation and control carcinogenesis
(88). So SCFAs not only act as anti-inflammatory bacterial
metabolites but also function as immune boosters to prepare the
host to better exterminate pathogens.

Furthermore, SCFAs are among the most extensively studied
microbial metabolites that intervene in host metabolism. By
binding to GPR43 and GPR41, SCFAs are able to raise plasma
levels of GLP-1, peptide YY (PYY), and leptin, resulting in
reduced food intake, enhanced glucose metabolism, and
improved glucose homeostasis (89–91). Fascinating animals
researches also indicated that butyrate and propionate may
both activate gene expression germane to intestinal
gluconeogenesis, through cAMP-dependent pathway and
GPR41-dependent gut-brain circuits respectively, eventually
improving glycaemia control and ameliorating insulin
sensitivity (92, 93). Another vital function of SCFAs is
intracellular metabolic integration to produce energy such as
adenosine triphosphate (ATP) (94). Canfora et al. demonstrated
that infusions of SCFA mixtures in the colon boosted energy
consumption, enhanced fat oxidation, and decreased lipolysis in
metabolic profiles (95).

In order to achieve these benefits, the production of SCFAs can
be encouraged in various ways, such as natural sugar and high-fiber
intake (96, 97). However, it is necessary to determine the dosage
range of SCFAs before they can be applied in clinic, as superfluous
SCFAs might exert some adverse effects, such as accelerating
cholesterol synthesis and lipid accumulation within the liver (98,
99). Excessive acetate and butyrate may also be involved in host fat
storage by enhancing energy intake and intestinal polysaccharide
December 2020 | Volume 11 | Article 590685
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degradation, thereby contributing to weight gain and obesity
phenotype in obese mice (100, 101).

Considering their extreme importance in resisting
inflammation in the gut, SCFAs are regarded with mighty
potential for certain diseases including metabolic conditions
and cancer, providing strong theoretic foundation to launch
SCFAs-based clinical trials for cancer treatment. However, the
causative role of SCFAs abundance in diabetics with respect to
carcinogenesis needs further elucidation.
ROLES OF INFLAMMATION AND SCFAS
IN THE CONTEXT OF CANCER

Inflammation usually involves the activation, recruitment, and
functioning of innate and adaptive immune cells, which is
essential for the host to defend against pathogens, repair damaged
tissues, and regulate tissue homeostasis (102). Acute inflammation
is protective and normally self-limited, which would be terminated
after eliminationofharmful triggersor completionof the restorative
process (103).This self-limitingpropertyof acute inflammationwas
also verified by Bannenberg and his colleagues inmouse peritonitis
models, induced by zymosan (104). Once acute inflammatory
responses are out of control and cause tissue damage, it will
amplify inflammation and progress to chronicity (105), hence
predisposing people to cancer development. More importantly,
inflammatory immune cells together with fibroblasts and vascular
endothelial cells constitute the stroma network for cancer cell
survival, namely the tumor microenvironment (TME) (106),
which can boost tumor occurrence, tumor promotion, malignant
transformation, andmetastatic transmission (107, 108). In general,
tumor extrinsic inflammation can be caused by certain factors
including infection, metabolic diseases, autoimmune diseases, and
smoking, while tumor intrinsic inflammation can be triggered by
cancer-related gene mutations or by recruiting and activating
inflammation-fighting cells (109). Inflammation, irrespectively of
its inducement or appearance, owns a significant effect on
carcinogenesis. Typical pro-inflammatory cytokines IL-17 and IL-
23, which can promote tumor development and progression
respectively, were both upregulated in mouse models of colorectal
cancer (CRC) (110, 111). In turn, tumorigenesis may enhance pro-
tumorigenic inflammation, illustrating the essential circle between
inflammation and cancer. Collectively, epidemiological studies
showed that inflammation is linked to the initiation of around
20% of cancers (112). To be specific, chronic inflammations caused
by the hepatitis virus andHelicobacter pylori are associatedwith the
majority of hepatocellular and gastric carcinomas respectively
(113–115). Approximately 2% of CRC develops in patients with
ulcerative colitis (UC) (116, 117). Chronic airway inflammations
with tobacco smoke and airborne particulates are the major risk
factors for lung cancer (118, 119).

Although the predisposing factors or sources may vary,
inflammation always goes together with increased risk of cancer,
oncogenic transformation, and malignant progression via multiple
approaches (1). Enhancement of DNA damage. During
inflammatory conditions, both inflammatory and epithelial cells
Frontiers in Immunology | www.frontiersin.org 5
can release chemicals like reactive oxygen and nitrogen species
(RONS), which may cause DNA lesions (120). Furthermore, the
generated DNA damage signals and cytotoxicity can promote
inflammation, inducing a continuous vicious circle between DNA
lesions and DNA repair, which can further enhance DNA damage.
Subsequently, this feedback loop induces geneticmutations, genome
instability, and eventual tumorigenesis (121, 122). Chen et al.
reported that 7,12-Dimethylbenz[a]anthracene (DMBA), a mighty
genotoxic agent, could activate the cGAS–cGAMP–STINGpathway,
inducing inflammation-driven cutaneous carcinogenesis in mouse
models (123). Singhal et al. havemanifested thatDMBAwasengaged
inmammary carcinogenesis as well as the distant metastasis in skin-
tumor-sensitive (STS) female mouse strains, mimicking DMBA‐
induced human breast cancer (124) (2). Inactivation of anti-
oncogene and activation of oncogenes. Without additional
inducers, chronic inflammation can induce accumulated
mutational in-activations of tumor suppressor genes such as Tp53
in the epithelial cells, leading toupregulationofmicrotubulemodulin
stathmin1 and increased chemoresistance in breast and colon cancer
cell linesorpatient specimens (125–127).Moreover, accumulationof
activatedmutations inepithelial oncogenes (K-ras andc-Myc) canbe
promotedby inflammation-inducedDNAdamage or inflammatory
cytokines, which can also cooperate with other inflammatory
stimuli to manifest cancerogenic activities, such as enhancing
mutagenesis, promoting tissue injury, and ultimately
carcinogenesis (128, 129) (3). Regulation of signaling pathways.
Both NF-kB and signal transducer and activator of transcription 3
(STAT3) have been identified as cardinal inflammatory signaling
molecules during carcinogenesis. Survival signals activated by NF-
kB and STAT3 were enhanced in mutated epithelial cells, which
protected cells against the attack of cytotoxic T lymphocytes,
boosted malignant clones, and enabled tumor outgrowth (130–
132). Otherwise, programmed cell death protein-1 (PD-1) pathway
was activated to deliver inhibitory signals, which may be evoked by
inflammatory signals interferon‐gamma (IFN‐g), K-ras mutations,
or K-ras/Tp53 co-mutations. This could drive T cell exhaustion,
generate a tolerant microenvironment, and help cancerous cells
escape immune surveillance and survive, particularly for patients
with lung adenocarcinoma (133–135) (4). Modulation of
inflammatory mediators. Cytokines, chemokines, and growth
factors are the predominant cell-signaling molecules produced by
multiple cells in the inflammatory microenvironment and are
fundamental to tumor development in different stages (136). Dash
reported that TNF-awas among the chief cytokines in inflammatory
responses, which rendered epithelial to mesenchymal transition
(EMT), accelerated cancerous cells invading process, and elicited
other inflammatory proteases to orchestrate inflammatory
conditions (137). Tumorigenic cytokines such as IL-6 and IL-11
could directly act on tumor cells, enhancing cell proliferation,
stimulating angiogenesis, and expanding cancer stem cell (CSC)
population, in mouse xenograft models of gastrointestinal and
breast cancers (138, 139). Calon et al. identified that IL-11 was also
involved in summoning myeloid cells such as fibroblasts and tumor
growth factor-b (TGF-b),whichcould facilitate cancer cellmigration,
promote tumor invasion, and assistmetastatic transition in colorectal
carcinoma of mice (140). Regarding the similarity of inflammatory
December 2020 | Volume 11 | Article 590685
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processes in distinct cancers, preventing or controlling inflammation
may be an imperative treatment for cancer.

Numerous studies have demonstrated that some bacteria can
secrete tumor-boosting metabolites like secondary bile acids,
whereas some other species can generate tumor-suppressing
metabolites such as SCFAs (141, 142). Echoing previously
demonstrated anti-inflammation significance of SCFAs,
substantial epidemiological data established that increased
incidence of inflammatory diseases and cancer was linked to
subjects with diets poor in SCFAs or decreased concentration of
fecal SCFAs, typically for gastric and breast cancers (143–145).
SCFAs in the gut and other organs can extensively reduce
carcinogenesis as well as prevent and treat gastrointestinal and
lung cancers, by inhibiting cell growth and migration,
suppressing histone deacetylase, and inducing apoptosis (146–
148). Specifically, Ohara et al. reported that increased CRC risk
correlated tightly with altered gut microbiota, reduced output of
SCFAs, and worse inflammation state (149). Therefore,
increasing SCFAs production via regulation of gut microbiota
should have a bright future in anti-cancer therapy.

Other than SCFAs, evidences also indicate that low-dose aspirin
could reduce the risk of tumorigenesis, particularly in CRC. As an
inhibitor of cyclooxygenase (COX)-1, aspirin exerts its significant
chemo-preventive effects in CRC through inhibition of NF-kB
dependent pathways, Wnt/b-catenin signaling, and additional
COX proteins acetylation (150, 151). The notable anti-tumor
effects of aspirin have been observed by reduction in platelet
activation, inhibition of tumor angiogenesis, and decrease of pro-
inflammatory agents (152). In addition, low-dose aspirin could
reduce metastasis in colon cancer, mainly due to its effective
inhibition of prostaglandin E2 (PGE2) formation and platelet-
tumor cell aggregation (153). Different from aspirin and other
modulators of NF-kB, SCFAs could not only inhibit NF-kB
signaling pathway but also promote gut microbial ecology and
enhance intestinal integrity, further fighting against inflammation
and reducing tumorigenesis through multiple pathways. Moreover,
as SCFAs can be supplemented by dietary interventions, they were
considered to be safer and more obtainable. However, aspirin can
cause several severe adverse effects, such as gastrointestinal
hemorrhage, intracranial bleeding, and hypersensitivity reactions
(154, 155). Even aspirin in a low dose can lead to bleeding in
diabetics (156). These advantages push SCFAs to be potential
agents to lower cancer risk.
Frontiers in Immunology | www.frontiersin.org 6
CONCLUSION

Low levels of SCFAs, fermented by gut microbiota, have been
linked with DM-related intestinal barrier dysfunction, gut
dysbiosis, and aggravated inflammation. Mostly diabetic
patients exhibited higher incidence of various tumors. In
addition, an inverse relationship between decreased production
of SCFAs and increased risk of cancer has also been discovered,
showing that SCFAs have the potential of associating DM with
tumorigenesis. Accordingly, diets high in fiber and transferring
fecal microbiota, aiming at increasing SCFAs production or
strains of SCFA-producing species, can attenuate the
progression of inflammatory disorders by altering gut
microbiota composition and suppressing inflammation (157),
which may provide a new paradigm in cancer prevention and
treatment in diabetes. However, the effectiveness and security of
utilizing SCFAs to dampen inflammation and decrease the
incidence and mortality of tumors in diabetic individuals
require more research to confirm. Immediate evidences are still
needed to validate and recognize the favorable influences of
SCFAs as a capable regulator of cancer-related inflammation in
DM. Efforts of collaboration encompassing metabolism,
microbiology, immunology, oncology, and dietotherapy will
define routes of administration and dosage to obtain the
optimum benefits of SCFAs as an anti-inflammatory and
anticarcinogenic soldier in DM.
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