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Background: Among different types of sphingolipids produced by human cells, the
possible engagement of ceramide species in the pathogenesis of Alzheimer’s disease
(AD) has attracted recent attention. While ceramides are primarily generated by de novo
synthesis in mammalian cells, only a limited number of bacterial species, produce
ceramides, including phosphoglycerol dihydroceramide (PGDHC) that is produced by
the key periodontal pathogen Porphyromonas gingivalis. Emerging evidence indicates
that virulence factors produced by P. gingivalis, such as lipopolysaccharide and gingipain,
may be engaged in the initiation and/or progression of AD. However, the potential role of
PGDHC in the pathogenesis of AD remains unknown. Therefore, the aim of this study was
to evaluate the influence of PGDHC on hallmark findings in AD.

Material and Methods: CHO-7WD10 and SH-SY-5Y cells were exposed to PGDHC
and lipopolysaccharide (LPS) isolated from P. gingivalis. Soluble Ab42 peptide, amyloid
precursor protein (APP), phosphorylated tau and senescence-associated secretory
phenotype (SASP) factors were quantified using ELISA and Western blot assays.

Results: Our results indicate that P. gingivalis (Pg)-derived PGDHC, but not Pg-LPS,
upregulated secretion of soluble Ab42 peptide and expression of APP in CHO-7WD10
cells. Furthermore, hyperphosphorylation of tau protein was observed in SH-SY-5Y cells
in response to PGDHC lipid. In contrast, Pg-LPS had little, or no significant effect on the
tau phosphorylation induced in SH-SY-5Y cells. However, both PGDHC and Pg-LPS
contributed to the senescence of SH-SY5Y cells as indicated by the production of
senescence-associated secretory phenotype (SASP) markers, including beta-
galactosidase, cathepsin B (CtsB), and pro-inflammatory cytokines TNF-a, and IL-6.
Additionally, PGDHC diminished expression of the senescence-protection marker sirtuin-
1 in SH-SY-5Y cells.
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Conclusions: Altogether, our results indicate that P. gingivalis-derived PGDHC ceramide
promotes amyloidogenesis and hyperphosphorylation, as well as the production of SASP
factors. Thus, PGDHC may represent a novel class of bacterial-derived virulence factors
for AD associated with periodontitis.
Keywords: Alzheimer's Disease, Porphyromonas gingivalis, dihydroceramides, amyloid precursor protein, tau
protein, cellular senescence, senescence-associated secretory phenotype
INTRODUCTION

Alzheimer’s disease (AD) is a multifactorial, highly heterogeneous,
and complex neurodegenerative disorder that affects memory and
cognitive functions leading to total dependence on nursing care at
an advanced stage. Approximately 35.6 million patients are affected
by AD worldwide and about 4.6 million new cases are added each
year, causing enormous societal and economic burden (1, 2). It is
commonly accepted that elevated amounts of aggregated Ab
peptides and hyperphosphorylated tau protein lead to deposition
of extracellular amyloid plaques and intracellular neurofibrillary
tangles in the brain of AD patients, making them hallmark features
of AD neuropathology (3). The growing evidence suggests that age
is the most prevalent risk factor for AD (4, 5). Although the age-
associated gut bacterial dysbiosis is significantly correlated with the
pathogenesis of AD (6), there is limited knowledge about the impact
of oral bacteria on aging-associated AD.

The oral Gram-negative anaerobe, Porphyromonas gingivalis, is
considered to be a keystone pathogen in chronic periodontitis (7–
10). It is also well-documented that P. gingivalis is a contributory
factor for various systemic diseases associated with aging, including
type-II diabetes, and cardiovascular diseases (11). Furthermore,
presence ofP. gingivalis inADbrains (12, 13), aswell as detection of
elevated levels of IgG against P. gingivalis in periodontitis patients
withAD, implicates a potential contributory role of this periodontal
bacteria in the pathogenesis of AD (14).

P. gingivalis produces a wide variety of virulence factors of lipid
origin, including lipopolysaccharide (LPS) and novel sphingolipids
termed phosphoglycerol dihydroceramide (PGDHC) and
phosphoethanolamine dihydroceramide (PEDHC) (15).
Although ligation of Pg-LPS and PEDHC with Toll-Like Receptor
(TLR) 2 and TLR4 elicits a strong inflammatory signaling induced
in young mice, various published studies indicated that TLR
function may be impaired in the context of aging (16–18).
Furthermore, it was also recently demonstrated that P.g-LPS had
little, or no, effect on the promotion of periodontitis inflammation
induced in aged mice (19). We, however, reported that PGDHC
ceramide promotes inflammation in a manner independent of
TLRs (20), indicating that PGDHC may also represent a novel
virulence risk factor that contributes to various age-related
disorders, including periodontitis and AD.

Emerging evidence has indicated that among different
sphingolipids, the levels of mammalian ceramide species were
significantly elevated in brains of patients with more than one
neuropathologic abnormality compared to the age-matched
neurologically normal group of people (21). Although bacterial
dihydroceramides, including those derived by P. gingivalis, share
org 2
basic structural characteristics with mammalian ceramides,
sphingolipid production by bacteria was thought to be a rare
occurrence because only a limited number of gut and oral
bacterial species can synthesize ceramides de novo (22–24).
Nonetheless, because no studies have yet examined the role of
ceramides produced by oral bacterial in the pathogenesis of AD,
it remains unclear whether P. gingivalis-derived PGDHC
contributes to the onset or progression of AD. Therefore, this
study aimed to evaluate the potential involvement of PGDHC in
the amyloidogenic processing of amyloid precursor protein
(APP), hyperphosphorylation of tau, and cellular senescence,
as key features of AD pathogenesis.
MATERIAL AND METHODS

Cell Cultures
Chinese hamster ovary-7WD10 (CHO-7WD10) cells stably
expressing human wild-type amyloid precursor protein 751
(APP751WT) were cultured in DMEM media (Corning)
supplemented with 10% fetal bovine serum (FBS), 1% penicillin/
streptomycin, and 2mM L-glutamine. SH-SY5Y human
neuroblastoma cells were cultured in 1:1 mixture of DMEM: F12
media with the same supplements as that of CHO-7WD10 cells.

PGDHC and LPS From Porphyromonas
gingivalis
PGDHCwas isolated fromPorphyromonas gingivalis (ATTC strain
#33277) as previously described (20). For biological experiments,
PGDHC was sonicated (2 min, 3 W) in phosphate-buffered saline
(PBS) to achieve a concentration of 100 mg/ml. Ultrapure Pg-LPS
was purchased from InvivoGen and prepared according to the
manufacturer’s recommendation.

Cytotoxicity Assays
CHO-7WD10 and SH-SY-5Y cells were seeded in a 96‐well plate at
a density of 1 × 104 cells/well and exposed to several concentrations
of Pg-LPS and PGDHC (0, 1, 5, 8, 10 µg/ml). After 24 h of
incubation, WST-1 metabolic activity assay (Sigma Aldrich) was
employed according to the manufacturer’s instructions.

Quantification of Soluble Ab42
CHO-7WD10 cells were seeded in a 6‐well plate at a density of
1 × 106 cells/well and cultured in the presence or absence of Pg-
LPS or PGDHC for 48 h. Culture supernatants were collected
and the amount of soluble Ab42 was quantified using a
commercial sandwich ELISA kit from Thermofisher.
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Quantification of b-Galactosidase Activity
in SH-SY-5Y Cells
b-galactosidase activitywas evaluatedusing a commercial senescence
b-galactosidase stainingkit (Cell SignallingTechnology) according to
themanufacturer’s recommendation. Staining-patterns of cells in the
culture well were acquired by a 20x objective lens using an EVOS cell
imaging system under bright-field illumination.

Western Blot Analysis
CHO-7WD10 and SH-SY-5Y cells were seeded at 1 × 106 cells/well
in a six-well plates and stimulated with various concentrations of
PGDHC and Pg-LPS as listed for the cytotoxicity assay. After 48 h
of stimulation, cells were lysed in the lysis buffer (Thermofisher)
and protein concentration was measured using the BCA kit
(Pierce). Next, proteins were separated using SDS/PAGE (Bolt
12% gel) electrophoresis, transferred onto a nitrocellulose (NC)
membrane and blocked using iBlot2 (Thermofisher). The anti-
mouse CT15 polyclonal antibody (1:500) (Calbiochem) was used
for detection of full-length APP in CHO-7WD10.

Todetect phosphorylated-Tau (p-Tau), sirtuin-1, and cathepsin
B in SH-SY5Y cells, rabbit anti-p-Tau (Ser396), and -mouseAT1000
(Thr212/Ser214), - Sirt-1 and -cathepsin B polyclonal antibodies
(1:1,000; Thermofisher)were used, respectively.The anti-humanb-
actin antibody (cat # 1:2,000; CST)was used todetect the levels ofb-
actin as a loading control. Finally, themembraneswerewashedwith
tris‐buffered saline (TBS) containing 0.05% Tween 20 and then
processed using horseradish peroxidase (HRP)‐conjugated anti‐
rabbit or anti‐mouse secondary antibodies (Amersham Pharmacia
Biotech) followed by enhanced chemiluminescence detection
(ThermoFisher). The signal intensity of Western blots was
quantified using Image J.

Real-Time PCR Analysis of Gene Expression
RNA was isolated using the PureLink™ RNA Mini Kit (Ambion,
Life Technologies, USA) according to manufacturer’s instructions.
Altogether, 1 mg of RNA was reverse transcribed with the Verso
cDNA Synthesis Kit (Thermo Scientific). Gene expression was
quantified using PowerUp™ Sybr™ Green Master Mix (Applied
Biosystems Diagnostics) in the AriaMx Real-time PCR System
(Agilent). Data were analyzed by the DDCt method normalized to
b-actin as the internal reference gene. Primer sequences are
available upon request.

Statistical Analysis
Significant differences in quantitative data were determined by
one-way analysis of variance (ANOVA) followed by Tukey’s
posthoc test using the paleontological statistics software (PAST)
version 4.02 and p values ≤ 0.05 were considered significant. The
data are displayed as means ± standard deviation (SD).
RESULTS

PGDHC Enhances Secretion of Amyloid-
Beta (Ab) in CHO-7WD10 Cells
Since genetic, biochemical, and pathological evidence has strongly
implicated that Ab plays an early and crucial role in AD
Frontiers in Immunology | www.frontiersin.org 3
pathogenesis (25), we first tested whether PGDHC in comparison
to Pg-LPS, exacerbate amyloidogenic processing of APP, using
CHO cells stably expressing human APP751WT protein (CHO-
7WD10) in vitro. When the concentrations of both Pg-LPS and
PGDHC were greater than 5 µg/ml, our results showed that the
viability of CHO-7WD10 cells was significantly reduced. Thus,
CHO-7WD10 cells exposed to 8 and 10 µg/ml of PGDHC and Pg-
LPS were excluded from the further examinations.

According to our results, exposure of CHO-7WD10 cells to
PGDHC, but not to Pg-LPS, significantly elevated the release of
Ab42 peptide in a dose-dependent manner (Figures 1A, B). Next,
to detect the level of APP using a Western blot assay, lysates were
prepared from the same cells that were used for Ab42 quantitation
after treatment with different concentrations of Pg-LPS and
PGDHC. Pg-LPS had no or little effects on the APP levels in
CHO-7WD10 cells (Figures 2A, B). By contrast, PGDHC
significantly elevated the levels of APP in CHO-7WD10 cells
when compared to the control, non-treated cells (Figures 2C, D).
These observations suggested that PGDHC, but not Pg-LPS,
enhances secretion of Ab from CHO-7WD10 cells in vitro.

PGDHC Induces the Site-Specific
Phosphorylation of Tau (p-Tau) in SH-SY-
5Y Cells
Because publ ished evidence demonstrated that the
hyperphosphorylation of Tau protein was significantly upregulated
in the hippocampi ofADpatients (26), we nextwanted to assess the p-
Tau status in SH-SY-5Y cells exposed to various concentrations of Pg-
LPS and PGDHC using two antibodies that recognize
hyperphosphorylated tau at Ser396 and Thr212/Ser214 sites by
Western blot assay. We observed that p-Tau at Ser396 was
significantly increased after treatment with PGDHC when compared
to control cells (Figures 3A, B). Furthermore, PGDHC also
significantly upregulated p-Tau at Thr212/Ser214 in a dose-dependent
manner compared to the control cells (Figures 3C, D). However, Pg-
LPS did not induce p-Tau at either Ser396 or Thr212/Ser214 loci in SH-
SY-5Y cells (Figures 3A–D). These results indicate that PGDHCmay
A B

FIGURE 1 | Porphyromonas gingivalis-derived phosphoglycerol
dihydroceramide (PGDHC) promotes Ab-42 secretion from Chinese hamster
ovary (CHO) cells stably expressing human wild-type amyloid precursor
protein 751 protein (CHO-7WD10). CHO-7WD10 cells were exposed to
different concentrations of Pg-LPS (A) or PGDHC (B) for 48 h. Then, the
conditioned media were collected and analyzed by ELISA. N = 4 samples/
condition. **p < 0.01, ***p < 0.001.
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A B

DC

FIGURE 2 | Phosphoglycerol dihydroceramide (PGDHC) amplifies the level of amyloid precursor protein (APP) in lysates of CHO-7WD10 cells. CHO-7WD10 cells
were stimulated with various concentrations of Pg-LPS (A, B) or PGDHC (C, D) for 48 h and lysates were then prepared and analyzed by Western blot. The signal
quantification was carried out using Image J. ANOVA with Tukey’s post-hoc test was used to evaluate the statistical significance. N = 4 samples/condition.
**p < 0.01, ***p < 0.001.
A B

DC

FIGURE 3 | The effects of phosphoglycerol dihydroceramide (PGDHC) and lipopolysaccharide (LPS) isolated from Porphyromonas gingivalis on
hyperphosphorylation of tau protein in SH-SY-5Y cells in vitro. Representative images and quantification of tau phosphorylation at Ser396 (A, B) and Thr212/Ser214
(C, D) loci in SH-SY-5Y cells after exposure to P. gingivalis-LPS (Pg-LPS) and PGDHC for 48 h. Cell lysates were prepared and analyzed by Western blot. Western
blot signal quantification was done using Image J. ANOVA with Tukey’s post-hoc test was used to evaluate the statistical significance. n=4 samples/condition.
***p < 0.001.
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play an important role in the hyperphosphorylation of Tau protein, in
addition to enhancing the secretion of Ab.

PGDHC Promotes the Development of
Senescence-Associated Secretory
Phenotype in SH-SY-5Y Cells
Since the cellular senescence of neurons is tightly connected with
AD pathogenesis as well as other neurodegenerative diseases (27,
28), we next examined whether PGDHC or Pg-LPS elevated
expression of some senescence-associated secretory phenotype
(SASP) factors, including b-galactosidase, cathepsin B (CtsB)
cysteine, and TNF-a and IL-6 pro-inflammatory cytokines in
SH-SY5Y cells in vitro. We observed that exposure of SH-SY-5Y
cells to Pg-LPS and PGDHC, both significantly elevated activity of
senescence-associated b-galactosidase (Figures 4A, B) and CtsB
(Figures 4B, C) compared with control cells. Further, expression
patterns of pro-inflammatory TNF-a and IL-6 mRNAs were also
Frontiers in Immunology | www.frontiersin.org 5
significantly elevated in response to Pg-LPS and PGDHC (Figures
4D, E). On the other hand, expression of a senescence protection
marker, sirtuin-1 (Sirt-1) was significantly diminished in SH-SY-
5Y cells in response to P. gingivalis-derived PGDHC and Pg-LPS
(Figures 5A, B). Therefore, these results indicate that persistent
exposure of neurons to either PGDHC or Pg-LPS may induce
phenotypes reminiscent of cellular senescence.
DISCUSSION

In this study, we aimed to examine the potential impact of
phosphoglycerol dihydroceramide (PGDHC) isolated from the
periodontal pathogen Porphyromonas gingivalis on the key features
of AD pathogenesis, including amyloidogenesis, phosphorylation of
tauprotein, andcellular senescence,using invitromodelsofAD.Tothe
best of our knowledge, this is the first study reporting that PGDHC
A B

D

E F

C

FIGURE 4 | Quantification of senescence-associated secretory phenotype (SASP) factors on P. gingivalis-LPS (Pg-LPS) and phosphoglycerol dihydroceramide
(PGDHC)-stimulated SH-SY-5Y cells in vitro. Representative images (A) and quantification (B) of b‐galactosidase activity. The number of blue b‐galactosidase
positive senescent cells was quantified microscopically. Scale bar is 50 µm. Representative signals (C) and quantification (D) of cathepsin B. Expression patterns of
TNF-a (E) and IL-6 (F) mRNAs in SH-SY-5Y cells exposed to Pg-LPS and PGDHC. ANOVA with Tukey’s post-hoc test was used to evaluate the statistical
significance. N = 4 samples/condition. *p < 0.05, **p < 0.01, ***p < 0.001.
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significantly upregulates amyloidogenesis in CHO-7WD10 cells. Our
results also indicate that PGDHC elevates tau phosphorylation and
expression of senescence-associated phenotype (SASP) factors in SH-
SY-5Y neuronal cells in vitro.

Accumulating lines of evidence support the conclusion that
ceramide sphingolipids are important structural and bioactive
signaling molecules in mammalian cells, with significant roles in
the regulation of cell apoptosis, senescence, and autophagy, leading
to the development of AD pathogenesis as well as other age-related
neurodegenerative disorders (29, 30). On the other hand, it was
reported that a limited number of human gut and oral bacteria
belonging to Bacteroidetes phylum are also able to produce
dihydroceramides that upregulate intracellular host ceramide
levels (23, 31). Further, bacterial-derived sphingolipids have been
shown to signal via inflammation-related pathways in colon and
gingival tissues (23, 24, 32). Important to this study, the gut
Bacteroidetes species were detected at higher levels in AD patients
compared to healthy controls (33). However, the role of
dihydroceramides produced by oral Bacteroides spp. bacteria in
the pathogenesis of AD has not been evaluated.

To date, unique dihydroceramides with non-mammalian
structure, termed PGDHC and PEDHC, have been detected in
three oral Gram-negative bacterial species associated with chronic
periodontal disease, including Porphyromonas gingivalis, Tannerella
forsythia, and Prevotella intermedia (24). These periodontal
pathogens also produce several virulence factors, including LPS,
gingipain, and lipids, which promote tissue inflammation, loss of
connective tissueattachment, andbone loss (34, 35). It is important to
mention that a recently published observation suggested that P.
gingivalis-derived dihydroceramides are critical to the long-term
persistence and presentation of other virulence factors, such as
gingipains and polysaccharides (36).

Among periodontal bacteria species, P. gingivalis and its
virulence factors were identified as significant risk factors for
developing AD hallmarks (15, 37, 38). Increasing genetic,
biochemical, and pathological evidence strongly implies that
both amyloidogenesis and tauopathy play a crucial pathological
role in brains of AD patients (25). It is commonly accepted that
amyloidogenesis is associated with the production of Ab peptides
Frontiers in Immunology | www.frontiersin.org 6
from its precursor protein APP by the consecutive actions of b-
and g-secretases, while tauopathy shows hyper-phosphorylation
of tau protein in the brain of AD patients (39). A previous study
reported that enhanced levels of intracellular mammalian
ceramides directly affect the accumulation of Ab peptides and
p-Tau in vitro as well as in vivo (30). Here, we demonstrated that
P. gingivalis-derived PGDHC increased the expression of APP
protein and production of soluble Ab42 peptide in CHO7W10
cells (Figure 1) as well as hyperphosphorylation of tau protein in
SH-5Y-SY cells in vitro (Figure 2), indicating a potential
contribution of oral bacterial-derived dihydroceramides in
amyloidogenesis and tauopathy. By contrast, we observed no
or minimal effects of ultrapure Pg-LPS on the release of soluble
Ab, and tau phosphorylation. These data contradict with earlier
reports indicating that Pg-LPS promoted accumulation of Ab
and p-Tau in vitro as well as in the brains of young and mid-age
APP-transgenic mice and their wild type (37, 40–42).

Besides the role of Ab and p-Tau in the AD pathogenesis, a
relationship between cellular senescence and AD may represent
an additional hallmark in the context of aging (27, 43). More
specifically, several groups have highlighted the potential
beneficial effects of eliminating senescent cells on the AD-
associated neurodegeneration (44–46). It was also demonstrated
that elevated activities of lysosomal b-galactosidase and
neurodegenerative cathepsin B (CtsB) as well as secretion of
various pro-inflammatory cytokines, including tumor necrosis
factor-a (TNF-a), interleukin-6 (IL-6), collectively termed as
senescence-associated secretory phenotype (SASP) factors,
directly correlate with cellular senescence and aging (47).
Findings from our study also confirmed that both PGDHC and
Pg-LPS exacerbate the activity of senescence-associated b-
galactosidase as well as the levels of CtsB protein in SH-SY-5Y
cells in vitro (Figure 4). In addition, we also demonstrated that
PGDHC and Pg-LPS upregulated the expression of pro-
inflammatory TNF-a and IL-6, suggesting the possible impact of
P. gingivalis-derivedvirulence factors on the promotionofneuronal
senescence (Figure 4). These data agree with earlier published
observations indicating that LPS isolated from P. gingvalis induces
premature cellular senescence (48) as well as promotes
A B

FIGURE 5 | Porphyromonas gingivalis-derived phosphoglycerol dihydroceramide (PGDHC) abrogates expression of the senesce-protection sirtuin-1 (Sirt-1) in SH-
SY-5Y cells in vitro. SH-SY-5Y cells were exposed either to Pg-LPS or PGDHC for 48 h and then the levels of Sirt-1 were evaluated by Western blot (A, B). ANOVA
with Tukey’s posthoc test was used to evaluate the statistical significance. N = 4 samples/condition. *p < 0.05, ***p < 0.001.
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development of AD-like phenotypes in mice via a CtsB-dependent
manner (42). Also, the pathological role of mammalian ceramides
in the promotion of cellular senescence and aging has been well
documented (49).

While earlier studies reported that elevated production of
SASPs contributes to the AD pathology, it was suggested that
the age-protection NAD+-dependent sirtuin enzymes display
beneficial effects in aging-related disorders, including AD (50).
A positive correlation between Sirt1 activity and reduction of Ab
plaques and tauopathies was established in various animal models
of AD (51–54). Here, we also confirmed that PGDHC as well as
Pg-LPS both diminished the amount of Sirt-1 protein in SH-SY-
5Y cells (Figure 5), indicating that P. gingivalismay downregulate
the expression of aging protection markers in the human brain.
Since elevated expression of Sirt-1 reduces cellular senescence, the
potential effect of sirtuin agonists to abrogate the negative effects of
PGDHC in the pathology of AD warrants further examination.
CONCLUSION

Collectively, the findings from this study indicate that
PGDHC sphingolipid, isolated from the periodontal pathogen P.
gingivalis, upregulated secretion of soluble Ab42 peptide and
expression of APP in CHO-7WD10 cells. Moreover, elevated
hyperphosphorylation of tau protein (p-Tau) was observed in
human neuronal SH-SY-5Y cells in response to PGDHC.
Furthermore, we found that PGDHC contributed to the cellular
senescence of SH-SY-5Y cells via 1) production of SASP markers,
including beta-galactosidase, cathepsin B (CtsB), and pro-
inflammatory cytokines TNF-a and IL-6, and 2) downregulation
of the senescence-protection marker sirtuin-1 (Sirt-1). Altogether,
these data indicate that PGDHC may be a novel class of bacterial-
derived virulence factor for AD, finding which lay the groundwork
for future studies, evaluating the molecular mechanisms of AD
pathology associated with periodontitis.
Frontiers in Immunology | www.frontiersin.org 7
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