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Mouse models are the most commonly used in vivo system for biomedical research, in
which immune-related diseases and therapies can be investigated in syngeneic and
immunologically intact hosts. However, because there are significant differences between
rodent and human, most findings from conventional mouse models cannot be applied to
humans. The humanized mouse with a functional human immune system, also referred to
as human immune system (HIS) mouse, is the only model available to date for in vivo
studies in real-time of human immune function under physiological and pathological
conditions. HIS mice with human tumor xenografts are considered an emerging and
promising in vivo model for modeling human cancer immunotherapy. In this review, we
briefly discuss the protocols to construct HIS mice and elaborate their pros and cons.
Particular attention is given to HIS mouse models with human tumor that is autologous or
genetically identical to the human immune system, which are discussed with examples of
their usefulness in modeling human cancer immunotherapies.

Keywords: humanized mouse, cancer, immunotherapy, CAR T cell, human immune system mouse, allogeneic
hematopoietic cell transplantation
INTRODUCTION

Human immune system (HIS) mice have been highly instrumental for in vivo studies of human
immune function and immune disorders. The HIS mouse was the first model that made it possible
to study human immune responses in real time in vivo under physiologic or pathogenic conditions,
such as HIV pathogenesis (1), human xeno-immune responses (2), complex interplay between
hypercholesterolemia and human adaptive immunity (3), and intrathymic selections of human T
cells (4). HIS mice, conjunct with tissue chimeras (i.e., with organ repopulation by human
parenchymal cells), were found highly valuable in elucidating immunopathology of human-
tropic viral infections, such as hepatitis B and hepatitis C viruses (5, 6) and respiratory viruses
(7). HIS mice were also increasingly used in the studies of human cancer immunology and
immunotherapy. However, most of the models used in these studies were either
org October 2020 | Volume 11 | Article 5916691

https://www.frontiersin.org/articles/10.3389/fimmu.2020.591669/full
https://www.frontiersin.org/articles/10.3389/fimmu.2020.591669/full
https://www.frontiersin.org/articles/10.3389/fimmu.2020.591669/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:yongg@jlu.edu.cn
mailto:liuwtt70@163.com
https://doi.org/10.3389/fimmu.2020.591669
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2020.591669
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2020.591669&domain=pdf&date_stamp=2020-10-08


Sun et al. HIS Mice With Autologous Tumor
immunocompromised or involving allogeneic and/or xenogeneic
immune responses, making the host immune environment
different from that of patients. Thus, there is an urgent and
unmet need for a preclinical mouse model mimicking the
patients, in which both the immunity and the tumor are of
human origin and genetically identical. In this review, we first
briefly overview the development and evolution of HIS mouse
protocols, then discuss progress to date in creating HIS mice with
autologous or genetically identical human tumors.
BRIEF REVIEW OF HIS MOUSE
CONSTRUCTION

There has been a long-standing effort to create and optimize HIS
mouse models. While different HIS mouse construction protocols
have been reported, all involve transplantation of human
hematopoietic and/or lymphoid cells (e.g., peripheral blood
lymphocytes (PBLs), bone marrow cells, cord blood cells, or fetal
liver hematopoietic cells) into immunodeficient mice. Current HIS
mouse models are in general derived from three HIS mouse models
reported in the late 1980s. Mosier and colleagues reported in 1988
that injection of human PBLs into C.B-17 severe combined
immunodeficiency (SCID) mice resulted in durable reconstitution
with human T cells, B cells and monocytes/macrophages, providing
a useful model for the study of human immune function (known as
hu-PBL-SCID mouse) (8). During the same period, McCune and
colleagues reported another HIS mouse model (referred to as SCID-
hu mouse by the authors), in which human immune reconstitution
was achieved in C.B-17 SCID mice by transplantation of fetal
thymus, liver and lymph node (9). Subsequently, using bg/nu/xid
mice Kamel-Reid and Dick found that transplantation of human
hematopoietic stem/progenitor cells (HSCs/HPCs) into
immunodeficient mice could achieve human HSC/HPC
engraftment and differentiation, offering an additional HIS mouse
model (referred to as chimeric human/immune-deficient (HID)
mice by the authors) (10). However, this HID model or similarly
created HIS mouse models (i.e., constructed by human HSCs/HPCs
of different sources) were not very useful for the study of human
immunity due to poor T cell function until better immunodeficient
mouse strains became available (see discussion below), and was
further improved by using newborn immunodeficient mice as the
recipients (11, 12). Despite these improvements, human T cells
developing in the xenogeneic mouse thymus were increasingly
reported to be functionally abnormal, likely caused by poor HLA-
restricted antigen recognition (13–15).

The hu-PBL-SCIDmodel is simple, but it needs to be cautious
when using this model because of the potential of infused human
T cells to induce xenogeneic graft-versus-host disease (GVHD)
that may confound assessment of human immunity and result in
human effector T cell anergy (16). Although there are apparent
differences between xenogeneic and allogeneic GVHD, the hu-
PBL-SCID model was found useful in the study of human
GVHD pathogenesis (17). Xenogeneic GVHD was effectively
prevented in the human fetal thymus/liver (Thy/Liv)-grafted
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SCID-hu model, in which the majority of human T cells
developed de novo in the murine host and therefore, those
reactive to mouse antigens were purged during the negative
selection process (9). However, we found that, due to the lack of
sufficient repopulation with human dendritic cells (DCs) and B
cells, the SCID-hu mice were inefficient in mounting antigen-
specific immune responses in vivo (18). To solve this problem,
we developed a new protocol in which HIS mice were made by
combined transplantation of human fetal thymus (under renal
capsule) and CD34+ HSCs/HPCs (i.v.) (18, 19). The resultant
HIS mice showed reconstitution with human T cells, B cells and
DCs, and acquired the ability to mediate robust antigen-specific
immune responses in vivo and reject pig xenografts (19–22).
These human Thy/HSC-grafted HIS mice were also found able to
mediate anti-viral responses and were termed BLT mice in some
other studies (23, 24). A disadvantage of the Thy/HSC-based HIS
mouse model is the need to use fetal tissues. Therefore,
increasing efforts are currently undertaken to optimize the
potential of animal thymi to support human thymopoiesis.
However, until such animal becomes available, the Thy/HSC
HIS mouse model will likely still be instrumental.

Regardless of which protocol is used to construct HIS mice,
magnificent improvements in engraftment and function of human
hematopoietic and lymphoid cells were made by using more
sophisticated immunodeficient mouse strains, such as nonobese
diabetic/LtSz-scid/scid (NOD/SCID) (25) and NOD-scid IL2Rgnull

(NSG) (26) mice. C.B-17 SCID mice, which were most commonly
used in HIS mouse construction before the availability of NOD/
SCID mice, have high complement activity that mediates antibody-
independent rejection of xenogeneic cells (27). CD47 is ligand of
SIRPa, an inhibitory receptor on macrophages and DCs, and its
engagement with SIRPa inhibits phagocytosis and endocytosis (28,
29). In a xenogeneic transplant setting, the inability of donor CD47
to interact with the recipient SIRPa is an important mechanism
triggering donor cell rejection by macrophages (30, 31). NOD/SCID
mice lack hemolytic complement, and express signal regulatory
protein (SIRP)a capable of cross-reacting with human CD47 (32).
In addition, substantial effort was made to improve the engraftment,
differentiation, survival, and function of human hematopoietic and
lymphoid cells in immunodeficient mice by introducing human
cytokines. The MISTRGmouse is a good example, in which human
M-CSF, GM-CSF/IL-3, and TPO genes are knocked into their
respective mouse loci (33). HIS mice made with MISTRG mice
showed markedly improved development and function of human
innate immune cells than those made with NSG mice (33).
However, it is worth mention that HIS mice carrying transgenes
of human immunostimulatory cytokines under a constitutive
promoter, e.g., the SGM3-NSG mice expressing human SCF,
GM-CSF, and IL-3, are prone to develop fatal disease
characterized by activation and widespread tissue infiltration of
human T cells and macrophages, and show significant elevation in
human proinflammatory cytokines including IL-6, IL-18, IFN-g,
and TNF-a (34, 35). The vigorous proinflammatory responses
would likely confound the evaluation of interested immune
functions in these HIS mice, such as cytokine storm or cytokine
release syndrome induced by immunotherapies (36).
October 2020 | Volume 11 | Article 591669
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CONSTRUCTION OF HIS MICE WITH
AUTOLOGOUS TUMOR

There has been an emerging effort in developing human tumor-
bearing HIS mouse models. Both human tumor cell derived
xenograft (CDX; immunodeficient mice grafted with human
cancer cell line cells) and patient-derived xenograft (PDX;
immunodeficient mice grafted with patient cancer cells) models
were widely and successfully used in understanding oncogenesis
and testing anti-cancer drugs (37), these models, however, were not
useful in the study of cancer immunology or immunotherapy due
to the lack of human immune system. A conceivable approach to
solve this problem is to construct human tumor-bearing HIS
mouse models, in which both the tumor cells and the immune
system are of human origin, which permit assessment of tumor-
associated immune responses and immunotherapies. However, a
notable limitation of such human tumor-bearing HIS mouse
models is that the tumor cells are allogeneic to human immune
system, so anti-tumor immune responses are expected to be largely
driven by allogenicity rather than tumorigenicity. Although co-
transplantation of tumor cells with immune cells (e.g., PBMCs)
from the same patient may resolve this issue, this model will also
suffer the same problem as the hu-PBL-SCID model discussed
above (i.e., xenogeneic GVHD and human effector T cell anergy).

HIS Mice With Autologous Human
Leukemia
An ideal approach to resolving allogenicity would be to construct
HIS mice with autologous tumor. Recently, we developed a HIS
mouse model with spontaneous autologous leukemia and validated
its usefulness in exploring anti-human leukemia immunotherapies.
In this model, we transplanted sublethally-irradiated NSGmice with
human fetal thymus and fetal liver CD34+ cells that were virally
transduced with a mixed-lineage leukemia (MLL) fusion geneMLL-
AF9 (Figure 1A) (38). It has been shown that MLL-AF9 expression
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drives the development of acute leukemia that resembles several
clinical hallmarks of MLL leukemias (39). The NSG mice grafted
with Thy/MLL-AF9-HSC appeared normal and showed a gradual
increase in the levels of human PBMCs, including T cells, B cells and
myeloid cells for about 3 to 4 months, then became progressively ill
with a sharp increase in MLL-AF9-expressing HSC-derived CD19+

cells in blood. Autopsy revealed splenomegaly, enlarged lymph
nodes, and hepatomegaly in all moribund mice. Histology
demonstrated massive leukemic cell infiltration in bone marrow,
spleen, lung, liver, and kidney. The MLL-AF9-expressing HSC-
derived leukemic cells exhibited a high nucleus/cytoplasm ratio with
a B-ALL phenotype, i.e., CD19+CD10+CD20-sIgMlow/-sIgDlow/-

CD44hiMHC-I+MHC-IIhi and negative for other lineage markers,
i.e., CD33-CD15low/-CD14-CD11b-CD3-CD4-CD8-CD56-. The
study demonstrated that the Thy/MLL-AF9-HSC HIS mice not
only develop human lymphohematopoietic cells, but also
autologous B-ALL, offering a model to study human leukemia
immunopathology and anti-leukemia immunotherapy in an
autologous setting.

B-ALL cells developed in MLL-AF9-HSC-grafted HIS mice are
transplantable in immunodeficient mice and in HIS mice with an
established autologous human immune system (i.e., HIS mice made
with human Thy/HSC from the same fetus from which CD34+ cells
were used to develop the B-ALL) (38). However, rejection was seen
when the B-ALL cells were transplanted in HIS mice with an
allogeneic immune system. Adoptive transfer of cryopreserved B-
ALL cells in pre-established HIS mice with an autologous immune
system would present a much simpler model than spontaneous
leukemia model described above (Figure 1B).

HIS Mice With Autologous Human
Solid Tumor
This model may also possibly be applied to set up HIS mice bearing
autologous solid tumor. Although there has been no report of
successful construction of autologous human solid tumor-bearing
A B

FIGURE 1 | Construction of leukemic HIS mice with human immune system and leukemia derived from genetically identical HSCs/HPCs. (A) Schematic showing
preparation of HIS mice with spontaneous development of B-ALL autologous to the human immune system. (B). Schematic of leukemic HIS mouse construction by
injection of autologous B-ALL [made as described in (A)] into preestablished HIS mice. FL, fetal liver; FLC, fetal liver cell; FT, fetal thymus; TBI, total body irradiation.
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HIS mice, the feasibility of developing such HIS mouse models is
supported by progress in understanding oncogenic changes causing
tumorigenic transformation of normal cells. Previous studies were
successful in inducing melanocytic transformation by engineering
normal melanocytes to express a combination of specific mutations
found in human melanoma, and the engineered human
melanocytes could develop into melanocytic tumor in
immunodeficient mice (40). Other studies identified combinations
of oncogenic mutants that may drive tumorigenic transformation of
human lung epithelial cells (41, 42). These studies suggested the
possibility of establishing tumorigenic cells from normal fetal tissue
cells. Successful generation of tumorigenic cells from fetal tissue cells
would make it possible to construct HIS mice bearing autologous
solid tumors by injecting the tumor cells into autologous HIS mice
(i.e., HIS mice made with human Thy/HSC from the fetus from
which parenchymal tissue cells are engineered for tumorigenesis).
The feasibility of this approach is supported by a previous study, in
which HIS mice were successfully used to assess the
immunogenicity of autologous human induced pluripotent stem
(iPS) cells (i.e., iPS cells reprogramed from fetal liver fibroblasts of
the same fetus used for constructing HIS mice) (43).

Personalized HIS Mice With Patient-
Specific Immunity and Tumor
HIS mouse models were also used to study human immune
function in a personalized manner, in which immunodeficient
mice were grafted with patient-derived CD34+ bone marrow cells
along with partially HLA allele-matched fetal thymic tissue (44).
In this model, although human T cells were more “naïve” than
those of the adult CD34+ cell donors, the immune recognition
mimicked that of the adult donor, offering a model for
individualized analysis of human immune function (44, 45).
Furthermore, while the fetal thymus used was partially HLA-
matched to the patient, human T cells developing in personalized
HIS mice showed specific “self” tolerance (i.e., tolerance to the
Frontiers in Immunology | www.frontiersin.org 4
CD34+ cell donor patient). Combining this personalized HIS
mouse with PDX model would provide a means of constructing
patient-specific tumor-bearing HIS mice, in which both the
tumor (leukemia or solid tumor) and immune system are
derived from the same patient (Figure 2). Such a patient-
specific tumor-bearing HIS mouse model should be highly
valuable in personalized therapies.
MODELING ANTI-LEUKEMIA
IMMUNOTHERAPY IN HIS MICE
WITH AUTOLOGOUS B-ALL

Anti-Leukemic Responses Induced by
Recipient Leukocyte Infusion
Following allogeneic hematopoietic cell transplantation (allo-
HCT), donor T cells mediate beneficial graft-vs.-tumor (GVT)
effects. However, allogeneic donor T cells also attack recipient
normal tissues, resulting in GVHD. It has been reported that, in
patients receiving nonmyeloablative allo-HCT, some of the
patients who rejected donor grafts unexpectedly showed
sustained remissions, suggesting an anti-donor alloresponse-
associated antitumor activity (46). In support of this possibility,
studies in mice found that administration of recipient leukocyte
infusion (RLI) to mixed allogeneic chimeras results in rejection of
donor hematopoietic chimerism and significant anti-host
leukemia responses (47). RLI is apparently less effective than
alloreactive donor T cells in killing recipient leukemia (48), but
it does not induce GVHD, offering a potentially safe treatment for
use in combination with other immunostimulatory therapies.

We have tested the potential of lymphopenia to enhance
antitumor effects of RLI in leukemic HIS mice (Figure 1) (38).
Lymphopenia is common in patients with leukemia who receive
allo-HCT (49, 50), which is a factor that triggers GVHD (51, 52)
FIGURE 2 | Construction of personalized HIS mice with patient-specific immunity and cancer. Personalized HIS mice are constructed by transplantation of CD34+

bone marrow cells (i.v.) from a patient bearing leukemia (Left) or solid tumor (Right) along with HLA allele-matched fetal thymic tissue (under renal capsule). The HIS
mice will be followed for human immune reconstitution by flow cytometric analysis of blood cells and inoculated with the leukemic or solid tumor cells from the same
patient when human immune reconstitution is confirmed. FT, fetal thymus; TBI, total body irradiation.
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but also promotes antitumor responses (53, 54). In this study,
mixed chimeric (MC) HIS mice were established by
transplantation of human Thy along with a mixture of
‘recipient’ (genetically identical to the Thy graft) and allogeneic
‘donor’ CD34+ HSCs, and lymphopenia was made by treatment
with anti-huCD3-immunotoxin. Spleen cells from HIS mice
made by transplantation of ‘recipient’ Thy/CD34+ cells were
used as the RLI cells, which were autologous to the ‘recipient’ and
allogeneic to the ‘donor’ origin of the MC HIS mice. Using this
model, it was found that, in a human immune system, RLI was
significantly more effective in inducing antitumor responses in
lymphopenic than non-lymphopenic recipients, and that the
antitumor response was associated with rejection of donor
hematopoietic chimerism (38). The findings suggested that RLI
offers a potentially safer clinical treatment option for leukemic
patients who have profound lymphopenia.

CD19-Targeted CAR T Cell Therapy
Recently, we made use of these leukemic HIS mice to model
adoptive immunotherapy using human T cells that were
genetically engineered to express anti-CD19 chimeric antigen
receptors (CARs). CD19-targeted CAR T cell therapy has
achieved promising results in patients with B-cell malignancies
(55–57). However, despite the impressive response rates, many
patients showed relapse or severe adverse reaction after anti-CD19
CAR T cell therapy (58, 59). Although memory CAR T cells were
detected in patients (60), our understanding of these memory T
cells, including their differentiation, function, self-renewal, and
survival factors/signaling, remains limited. In addition, it remains
largely unknown about the mechanisms responsible for the
toxicities associated with anti-CD19 CAR T cell therapy, such as
cytokine-release syndrome (CRS), which can be severe or even fatal
(61). Thus, there is an urgent need to develop a preclinical model,
which can be used to understand relapse and toxicity associated
with human CAR T cell therapy, and to test the efficacy of new CAR
T cells. Immunodeficient mice grafted with human B-ALL (PDX
models) were found useful in testing CD19-targeted human CAR T
cell therapy (62), but these models are either lacking host immunity
or involving allo- and/or xeno-immune responses. Because the
Frontiers in Immunology | www.frontiersin.org 5
leukemic HIS mouse model described above has a functional
human immune system and genetically-matched (autologous)
primary B-ALL, this model was used to model CD19-targeted
CAR T cell therapy (63). Another unique feature of this model is
that the anti-CD19 CAR-expressing human T cells are also
genetically-identical (autologous) to the human components (both
normal and malignant human cells) and tolerant to mouse antigens
of the HIS mice, and therefore do not mediate alloresponses against
human or xenoresponses against mouse antigens. In leukemic HIS
mice receiving CAR T cell therapy, the kinetics and levels of anti-
CD19 CAR T cells in the peripheral blood were similar to those in
patients (60). In agreement with clinical studies (55, 56), the
frequency of CAR T cells in blood showed an inverse correlation
with B-ALL burden but a positive correlation with survival times in
CAR T cell-treated leukemic HIS mice. Moreover, this model was
also found useful in characterizing cytokine profiles and regulatory
T (Treg) cell generation and function following CAR T cell therapy.
These observations provide a proof-of-principle that this leukemic
HIS mouse model has the potential to be used to evaluate human
CAR T cell therapy and help design new CARs with enhanced
antitumor activity.
CONCLUDING REMARKS

Apparently, the HIS mouse is not identical to a human host.
However, there is strong experimental evidence for the value and
feasibility of using HIS mice to study human immunity,
including antigen-specific T cell and antibody responses (18–
23, 64, 65). Thus, HIS mice with autologous tumors, either
leukemia or solid tumor, would provide a highly valuable
preclinical model for in vivo studies of human cancer
immunology and immunotherapy.
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