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There is increasing evidence that in humans the adaptive immunological system can
influence cognitive functions of the brain. We have undertaken a comprehensive
immunological analysis of lymphocyte and monocyte populations as well as of HLA
molecules expression in a cohort of elderly volunteers (age range, 64—101) differing in their
cognitive status. Hereby, we report on the identification of a novel signature in cognitively
impaired elderly characterized by: (1) elevated percentages of CD8+ T effector-memory
cells expressing high levels of the CD45RA phosphate receptor (Temra™; (2) high
percentages of CD8+ T cells expressing high levels of the CD8B chain (CDSB™); (3)
augmented production of IFNy by in vitro activated CD4+ T cells. Noteworthy, CD3+CD8+
Temra” and CD3+CD8B" cells were associated with impaired cognition. Cytomegalovirus
seroprevalence showed that all volunteers studied but one were CMV positive. Finally, we
show that some of these phenotypic and functional features are associated with an
increased frequency of the HLA-B8 serotype, which belongs to the ancestral haplotype
HLA-A1, Cw7, B8, DR3, DQ2, among cognitively impaired volunteers. To our knowledge,
this is the first proof in humans linking the amount of cell surface CD45RA and CD8[3 chain
expressed by CD8+ Temra cells, and the amount of IFNy produced by in vitro activated
CD4+ T cells, with impaired cognitive function in the elderly.

Keywords: effector-memory CD8+ T cells, elderly, brain cognition, HLA class I, healthy aging, CD4+ IFNy+

INTRODUCTION

A possible role for the immunological system in maintaining central nervous system (CNS)
homeostasis has long been a matter of debate. Generally, it has been considered harmful in the
context of neurodegenerative disorders with an autoimmune etiology (1). However, the accumulated
evidence from clinical and experimental studies has consolidated the view that the innate and adaptive

Abbreviations: TEMRA, effector-memory CD45RA+ T cells; CMV, cytomegalovirus; GDS, global deterioration scale; NCI, no
cognitive impairment; MCI, mild cognitive impairment; CI, cognitive impairment.
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components of the immunological system are crucial players in
neuronal homeostasis and cognitive function by fine-tuning the
balance between neuroprotection and neurodegeneration (2-4).
Thus, early studies in mice showed that CD4+ and CD8+ T cell
deficiency was associated with cognitive dysfunction and deficient
remyelination after spinal-cord injury, and that thymus-derived
CD4+CD25+ Treg cells specific for myelin self-antigens were
necessary to confer protection after injury to the CNS (5-7).
Although similar studies in humans are lacking, there is recent
evidence suggesting that innate and adaptive immunological cells
modulate hippocampal neurogenesis and behavior through not-
well understood mechanisms (8). In this respect, recent reports
have shown that the human brain is inhabited by a large fraction
of effector-memory CD8+ T cells expressing or not the CD45RA
isoform, with some becoming tissue-resident upon expression of
CD69 and CD103 (9). Resident CD8+CD69+ T cells in the human
brain show increased expression of tissue homing and inhibitory
receptors, and are low producers of granzymes (9). Some of these
brain-resident CD8+ T cell features are shared by certain
populations of peripheral blood effector-memory CD8+ T cells
(10, 11), and are in accordance with experimental evidence
suggesting that peripheral blood circulating CD8+ TemRrA cells
migrate to the brain parenchyma (12, 13). In this respect, a
number of clinical and experimental studies have shown that
migration of peripheral blood effector-memory CD4+ and CD8+
T cells into the CNS may occur via the blood-cerebrospinal fluid
barrier (BCSFB) and via the blood-brain barrier (BBB) (12-14)
and that brain-resident T cells may leave and reenter the blood
circulation (15). In this regard, a recent seminal study in
Alzheimer’s disease patients has identified an immune signature
that consists of expansions of CD8+ Temra cells in peripheral
blood as well as in the cerebrospinal fluid produced by the choroid
plexus (16).

In humans, the concept of cognitive function is closely linked
with a successful aging process and both have been associated
with expansions of NK-like CD8+ T cells, a heterogeneous pool
of CD8+ T cells that include CD8+ Temra cells (17-19). A
fraction of the expanded CD8+ TemrA cells found in peripheral
blood of aged healthy people, including centenarians, are claimed
to be driven by human cytomegalovirus, a wide-spread virus
found in young and aged people (20, 21). Yet, the CD8+ TEmRrA
cell expansions seen in peripheral blood may be caused by other
factors, such as aging itself (18, 22), anomalies in signaling
molecules (23, 24), inflammatory environments (25), physical
exercise (26), and homeostatic cytokines (19, 27). Moreover,
exceptional aging is not necessarily associated with high levels of
disability (28), bringing up the question of which factors,
endogenous and/or exogenous, may contribute to better
cognitive function in the elderly (17). In this respect, recent
human studies have provided evidence that expression of certain
NK receptors (CD56 and NKG2D), but not others (NKG2A and
KIR2DL1), by human NK-like CD8+ T cells is associated with
better cognitive and physical function among elderly people (18).
In line with these results, Serra-Miranda et al., described an
immunological signature associated with better cognitive
performance in healthy senior people that is characterized by

low numbers of effector-memory CD4+ T cells and high
numbers of B cells in peripheral blood (29). Although the
molecular mechanisms used by the CD8+ T cells, and their
receptors, to modulate cognitive, behavioral and physical
functions in the elderly are presently uncertain, the
involvement of secreted cytokines and other factors in
response to the sensing of the inhabited environment are likely
candidates in mediating this important biological function (19,
30, 31).

To further explore an association between immunological
cells and cognitive function in humans, we undertook a
comprehensive analysis of peripheral blood lymphocyte and
monocyte populations in a cohort of elderly volunteers. The
results revealed that the expression of CD45RA and CD8f by
CD8+ T cells, the production of IFNYy by activated CD4+ T cells,
and the presence of the HLA-B8 molecule constitute a novel
immunological signature that discriminates between cognitively
impaired and unimpaired elderly.

MATERIAL AND METHODS

Subjects and Classification Criteria

A total of 86 volunteers were recruited from elderly people
from retirement homes and day care centers of the Beira
Interior region of Portugal (EBIcohort, https://icon-cics.
weebly.com/ebicohort-english.html). Blood from each
volunteer was collected in EDTA tubes (10mL, for phenotype
studies) and heparin tubes (4mL, for IFNY studies) and assigned
a double identification code, according with the Ethics
Committee approved proposal. Coded samples were processed
within hours of collection to obtain peripheral blood
mononuclear cells (PBMC) and plasma. One mL aliquots of
whole blood and plasma were cryopreserved in a —80°C freezer
for later studies. PBMC were immediately phenotyped and
functionally characterized.

Volunteers were evaluated by a trained team which assessed
the volunteers using the Global Deterioration Scale (GDS), a
revised Addenbrooke’s Cognitive Examination (ACE-R) test (32)
and also performed physical activity analysis. For physical
activity, a three-meter walking test was performed following
previous described guidelines (33). The gait speed was
determined as the distance traversed (3-meters) by the time
between the first and the last step. The volunteers were classified
in groups using the GDS, in which cognitive status is defined by
GDS, ACE-R and clinical information. The groups are the
following: A) Volunteers with no cognitive impairment (NCI)
were those with GDS stages 1 and 2, having an ACE-R value
indicative of normal cognitive impairment (106.49 + 3.05% of
minimal normal score) and did not have clinical indications of
disease involving cognitive impairment; B) volunteers with mild
cognitive impairment (MCI) were those with GDS stage 3, and
having an ACE-R score slightly lower than minimal considered
as normal (media of 73.6 + 3.61% of minimal normal cognitive
impairment level); C) volunteers with moderate to severe
cognitive impairment (MtSCI, thereafter CI) were those with
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GDS stages 4 or above (34, 35), that include 14 volunteers that
performed ACE-R tests (47.51 + 4.91% of minimal normal
cognitive impairment level), and 8 volunteers with clinical
information indicating existence of dementia or Alzheimer
disease, for which there was not possible to apply ACE-R test.
All obtained data from volunteers (personal, clinical and
evaluation data) were stored according with data protection
regulation and legal directives.

Of the total cohort, a total of 34 volunteers were excluded
from analysis. The exclusion criteria included withdrawal from
the study, infection other than CMV, diagnosis of previous
stroke, Parkinson’s disease, neoplasia, psychiatric disorders
such as epilepsy, trauma or absence of clinical data. The
remaining 50 volunteers included 13 volunteers with no
cognitive impairment (NCI, 8 males and 5 females), 15
volunteers with mild cognitive impairment (MCI, 3 males and
12 females) and 22 volunteers with cognitive impairment (CI, 4
males and 18 females). For HLA typing two additional volunteers
were studied, one male NCI and one male CI. This study was
approved by the local Ethics Committee in accordance with the
Declaration of Helsinki (Ref. Number CE-UBI-Pj-2017-012). All
the participants or their legal representative gave their written
informed consent.

Cells and Flow Cytometry Studies

Peripheral Blood Mononuclear Cells (PBMC) were obtained
from a cohort of elderly volunteers differing in their cognitive
status after centrifugation over Lymphoprep (STEMCELL
Technologies). Contaminating red blood cells (RBC) were
lysed in RBC lysis solution (10 mM TRIS, 155 mM NH,CI, pH
7.4) for 10 min at 37°C. For cell surface staining of lymphocytes,
approximately 0.5x10° PBMC were incubated in 96-well round-
bottom plates at 4°C in the dark for 45 min with combinations of
the different fluorochrome-conjugated antibodies, previously
diluted in staining solution (Phosphate-Buffered Saline (PBS),
0.2% BSA, and 0.1% NaN3). For monocyte labeling, cells were
first incubated with Human TruStain FcX (BioLegend) for
10 min at room temperature prior to cell surface staining.
Appropriate combinations of fluorochrome-conjugated
monoclonal antibodies against CD3, CD4, CD8o, CD8,
CD14, CD16, CD19, CD28, CD45RA, CD56, CD202b, CCR7,
NKG2D, KIR2DL1, and IENY, together with irrelevant isotypes
were used (Supplemental Table 1). After staining, cells were
washed, acquired in a BD Accuri C6 (BD Biosciences) and
analyzed using BD Accuri C6 software (BD Biosciences) or
FlowJo software (FlowJo, LLC, for GMFI calculations). For
lymphocytes, a minimum of 10,000 and a maximum of 20,000
events were acquired within the CD3+CD4+ and CD3+CD8+ T
cell regions after gating on the lymphocyte region as determined
by FSC and SSC. For monocytes, 20,000 events were acquired on
the monocyte region as determined by FSC and SSC.

Cell Activation and IFNy Production

For IFNY detection by activated T cells, 100uL of heparinized
blood per test were diluted with 400uL of RPMI medium (Merck
Millipore) and placed in 24-well plates. The diluted whole blood

was stimulated by adding Cell Activation Cocktail containing
PMA, Ionomycin and Briefeldin A (BioLegend) for 4 h in an
incubator at 37°C and 5% CO,. After stimulation, cells were
harvested and RBC were lysed twice in RBC lysis solution for
10 min at 37°C. Cells were then labeled with fluorochrome-
conjugated monoclonal antibodies against cell surface receptors
CD3, CD4, CD8 and CD28 in staining buffer in 96-well round-
bottom plates for 45 min at 4°C in the dark. After extracellular
labelling, cells were fixed for 30 min and permeabilized using
eBioscience' " Intracellular Fixation & Permeabilization Buffer
Set. After washing, cells were stained with FITC-conjugated anti-
IFNY or mouse IgG1-FITC (BioLegend, Supplemental Table 1)
for 30 min at room temperature. After the washing steps, cells
were resuspended in PBS, and whenever possible between 10-20
thousand events within the CD3+CD4+ and CD3+CD8+ T cell
regions acquired using BD Accuri C6 flow cytometer (BD
Biosciences) and analyzed using BD Accuri C6 software
(BD Biosciences).

Cytomegalovirus Seropositivity

For CMV detection, cryopreserved plasma samples were thawed
and anti-CMV IgG antibodies detected by using 96-well micro-
plate ELISA kits (Demeditec), according to manufacturer
instructions. Tests were performed in duplicate and the
amount of CMV-specific IgG antibody bound calculated using
a BioRad xMark" ™ Microplate Absorbance Spectrophotometer.
The concentration of IgG antibodies was calculated by
comparing to a reference curve obtained with calibrators (ie,
human serum diluted with PBS, with 1, 10, 30, 90 U/mL of anti-
CMV IgG antibodies) following manufacturer instructions.

HLA Determination

DNA was extracted from peripheral blood using the
MagAttract® DNA Blood Midi M48 kit or QIAamp DNA
Stool Mini Kit (QS). HLA typing was accomplished using One
Lambda® LABTypeSSO Kkits at low resolution level (serology
equivalent) for HLA-A, -B, -C, -DRBI1, -DQA1 and -DQBI loci
followed by Luminex® xMAP® technology. Data were deduced
in Fusion v4.2 software and are presented at serological
equivalent or at antigen allele level when there is no
serological equivalent.

Statistical Analysis

Statistical analysis was performed using SPSS software (version
26, IBM) and statistical significance was defined as p<0.05.
Graphs were done using GraphPad Prism 7 software.
Continuous variables were expressed as the mean + standard
error of the mean (SEM). Differences in means among the three
cognitive status’ groups were analyzed using one-way analysis of
variance (ANOVA). Two-way ANOVA was used to examine the
influence of two different categorical independent variables on
one continuous dependent variable. When ANOVA showed
significant differences, pairwise comparisons between means
were tested using Post-Hoc Bonferroni multiple comparisons
test. Comparison between the percentage of CD8+IFNy T and
CD4+IENY+ T cells and the percentage of CD28- cells among

Frontiers in Immunology | www.frontiersin.org

November 2020 | Volume 11 | Article 592656


https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

Esgalhado et al.

T Cells and Cognition

CD8B' and CD8B" T cells was assessed using paired samples T-
test. Fisher’s Exact test was used to evaluate differences in the
frequencies of categorical variables (eg., HLA antigens/serotypes,
gender and CMV seropositivity) of unrelated samples (cognitive
status’ groups). Z-test was used to evaluate differences within
cognitive status’ groups, and adjusted p-values were calculated
using Bonferroni method. Spearman’s p correlation coefficient
was used to analyze the correlation between cognitive status’
groups and continuous variables. Pearson correlation was used to
analyze the correlation between two continuous variables.
MetaboAnalyst (version 4.0) was used for cluster analysis and
data visualization (36). Heatmap was created using Euclidean
distance measure, Ward clustering algorithm, normalized data,
and showing only group averages.

TABLE 1 | Relevant data of the volunteers under study.

RESULTS

Main Peripheral Blood Mononuclear Cell
Populations Among Elderly Differing in
Their Cognitive Status

Relevant clinical data of the different volunteers studied are
shown in Table 1. The groups were age-matched, but the
number of males in the NCI group (8 out of 13, 61%) was
overrepresented in relation to the CI group (4 out of 22, 18%).
However, two-way analysis of variance (ANOVA) to examine
the influence of gender and cognition on the results obtained,
showed that the results obtained are influenced by cognitive
impairment (p<0.05) but not by gender. On the contrary,
physical activity (as measured by three-meters walking) was

Clinical data

Cognitive Status (number)? NCI (n=13)
Age, Mean + SEM (range) 83.7 + 2.4 (69-96)
Gender (M/F) 8/5

Gait Speed (m/s) 0.60 + 0.05
Body Mass Index (BMI) 254 +26
CMV Seropositivy 12/13
Lymphocytes (Mean + SEM)

% CD19+ (B cells)® 46+08
% CD3-CD56+ (NK cells)® 245 + 3.4
% CD3+CD56+ (NKT cells)® 81+15
% CD3+ T cells (T cells)® 66.6 + 2.9
% CD3*CD4* T cells® 34.8 + 4.1
% CD4* Tn® 409 £ 6.5
% CD4* Tem® 31.6+3.2
% CD4" Tem® 201 +£4.8
% CD4* Temra® 7.3+26
% CD3*CD8* T cells® 314 +49
% CDg* Tn? 11.9+25
% CD8* Tom® 68+1.2
% CD8" Tem® 19.5 + 4.1
% CD8* Temra® 61.8 + 5.1
Monocytes (Mean + SEM)

% CD14+CD16~- (classical)® 855+ 1.8
% CD14+CD16+ (intermediate)® 4.4 +£0.7
% CD14-CD16+ (non-classical)® 6.0+0.9
% CD14+CD202b+° 3.5+0.9
% CD16+CD202b+° 3.0+0.7
HLA Serological Antigens (%)’ NCI (n=14)
HLA-A03 14.3
HLA-BO8 0.0
HLA-C12 17.9
HLA-DQB1_6 14.3

P-value®"
MCI (n=15) Cl (n=22) -
82.5 + 2.1 (64-96) 84.7 + 1.9 (67-101) NS9
3/12 4/18 0.023™
0.41 +0.06 0.33 +0.04 0.0039*
231 +27 209 + 3.4 NSY
15/15 22/22 NS
P-value?
51+1.0 3.7+06 NS
25.0 + 3.0 25.4 +32 NS
83+15 53+09 NS
67.0+ 2.4 67.9+33 NS
403+ 3.6 39.6+23 NS
346 +6.3 48.8 + 3.4 NS
377+ 4.2 28.7 £2.5 NS
234 +3.7 16.6 + 2.1 NS
44 £14 59+17 NS
26.0+2.9 277 +25 NS
143+ 26 14319 NS
92120 75+13 NS
202 +3.7 17.4 3.0 NS
56.4 + 4.5 60.8 + 4.3 NS
82.1+3.6 81.4+24 NS
58+ 0.9 68+1.2 NS
78£29 70+1.4 NS
31104 47 +10 NS
22+05 35+09 NS
MCI (n=15) Cl (n=23) P-value"
23.3 4.3 0.044***
6.7 17.4 0.034*
26.7 6.5 0.045"*
26.7 6.5 0.045"*

4Cognitive status determined by Global Scale Deterioration (see Materials and Methods section). NCI, No Cognitive Impairment; MCI, Mild Cognitive Impairment; Cl, Cognitive Impairment.

PPercentages determined after gating in the lymphocyte gate.
®Percentages determined after gating in CD3+CD4+ T cells.
9percentages determined after gating in CD3+CD8+ T cells.
®Percentages determined after gating in the monocyte gate.

'Percentages determined after applying the following formula: # of seropositive antigens x 100 /(# of volunteers per group x 2). In the serological analysis two additional volunteers (one NCI

and one Cl) without flow cytometry data were included.
9P-values determined by One-way ANOVA test; NS, Not significant.

hP-values determined by Fisher’s Exact test with Post-Hoc z-test to compare column proportions with p-values adjusted using Bonferroni’s method.

*Statistically significantly different between NCI and CI.

**Statistically significantly different between NCI vs. MCI (p=0.045) and NCI vs. Cl (p=0.003).

***Statistically significant different between MCI and CI.
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statistically significantly different among groups (One-way
Anova with Bonferroni’s correction, p=0.003, Table 1). Also
shown in Table 1 are the results of CMV seropositivity, which
showed that 49 out of the 50 volunteers were IgG seropositive for
CMYV, as determined by ELISA. A thorough characterization of
the different mononuclear cell populations present in peripheral
blood samples was performed following the gating strategy
illustrated in Figure 1. This strategy allowed us to characterize
the three main populations of monocytes according to the
expression of CD14 and CDI16 into classical, intermediate and
non-classical monocytes. Likewise, this strategy permitted to
characterize T, B and NK populations as well as T cell
subpopulations, according to the presence or absence of naive
and differentiation markers, such as CD28, CCR7, CD45RA,
CD56, NKG2D, and KIR2DLI. In addition, we extended
further our analysis by including antibodies against the
CD8f chain, besides the widely used against the CD8c chain.
While antibodies against CD8o. identify both CD8+ T cells
and CD8+ NK cells, antibodies against CD8f} exclusively detect
CD8+ T cells. The results showed that elderly people differing in
their cognitive status have no significant differences in the
percentage of the different monocyte populations present

in peripheral blood nor in the percentages of CD3+ T cells,
CD4+ T cells, CD8+ T cells, CD19+ B cells, CD3-CD56+
NK cells, and CD3+CD56+ NKT cells (Supplemental Figure 1).
We could also not detect any other statistically significant
difference in the percentage of naive (Tn), central-memory (Tcwm),
effector-memory (Tem) and effector-memory CD45RA+ (TEMRA)
in CD4+ and CD8+ T cells among the three groups. Likewise,
we found no differences in the expression of CD28, CD56,
NKG2D and KIR2DL1 among CD4+ and CD8+ T cells (see
Supplemental Figure 1).

The Level of Expression of CD45RA and
CD8p in CD8+ T Cells Discriminates
Between Cognitively Unimpaired and
Cognitively Impaired Elderly

Even though we could not detect any significant difference in the
percentages of TEMra cells among the three volunteer groups, a
thorough analysis of the level of expression of CD45RA among
CD8+ Temra cells revealed differences in the amount of
CD45RA. Figure 2A shows that expression of CD45RA at the
cell surface of CCR7-CD8+ TEmra cells, as determined by mean
fluorescence intensity (MFI) values, was statistically significantly
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Material and Methods section. Labeled cells were acquired in a BD Accuri C6 flow cytometer and monocytes and lymphocytes discriminated according to FSC and
SSC characteristics (top dot-plot). Markers were analyzed after creating and electronic gate around monocytes (A) and lymphocytes (B). The different T cell markers
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FIGURE 2 | PBMC were isolated, stained and acquired as described in the legend of Figure 1. (A) Mean Fluorescence Intensity (MFI) values (a.u., mean + SEM) of the
expression of CD45RA after gating on CD3+CD8+CD45RA+ T cells in the three groups of elderly volunteers. Statistically significant differences between groups are indicated
(ANOVA with Bonferroni’s correction). (B, left) Dot-plot of CCR7 vs. CD45RA expression in CD3+CD8+ gated T cells showing naive (TN), central-memory (Tewm), effector-
memory (Tem) and effector-memory CD45RA+ (Temra) cells. (B, right) Zoom of dot-plot lower quadrants (Tem + Temra) showing the existence of distinct subpopulations
according to the level of expression of CD45RA: CD45RA™!, CD45RA, and CD45RA™. (C) Plots of CCR7 vs. CD45RA expression in CD3+CD8+ gated T cells (upper row
dot-plots) and CD45 expression (lower row histograms) in three representative volunteers. Histograms show CD45RA expression in CD3+CD8+CCR7- gated Tem+Temra
cells. Three distinct CD8+CD45RA T cell populations differing in their MFI values can be distinguished: CD8+CD45RA™! CD8+CD45RA® and CD8+CD45RA™. (D) Graph
showing the relative percentage of CD45RA (blue circles) and CD45RA™ (red circles) in CD8+CCR7-CD45RA+ gated T cells in the three volunteer groups (mean + SEM).
Statistically significant differences between groups are indicated (ANOVA with Bonferroni’s correction). a.u., arbitrary units.

lower in no-cognitively impaired (NCI) volunteers when
compared to both mild cognitively impaired (MCI) volunteers
(31314 + 3667 vs. 49489 + 4996, mean + SEM, p=0.034) and
cognitively impaired (CI) volunteers (31314 + 3667 vs. 50017 +
4233, mean + SEM, p=0.016). In order to avoid the influence of
outliers in these results, we also compared geometrical mean
fluorescence intensity values (GMFI). The results of this analysis
were identical to the results of MFI. Thus, there were statistically
significant differences between the 3 groups (One-way ANOVA,
p= 0.008), with the CI group presenting higher GMFI values.
Moreover, after application of the Bonferroni test for multiple
comparisons, statistically significant differences were found
between the NCI and MCI groups (p=0.029), and between
NCI and CI groups (p=0.011). This finding prompted us to
perform an in-deep analysis of the CD8+ TemrA population. The
results showed the presence of two distinct CD45RA
subpopulations (Figure 2B). One population expressing high
levels of CD45RA (henceforth designated as CD8+ TEMRAhi) and

another population expressing lower levels of CD45RA
(henceforth designated as CD8+ Temra'®). When analyzed
individually, this pattern of expression revealed marked
differences between the NCI volunteers and the MCI and CI
volunteers, with the two later showing a noticeable and sharp
CD8+ TemrA™ population (Figure 2C). Determination of the
relative percentage of CD8+ Temra™ and CD8+ Temra'® cells
within CD8+ TEMRrA revealed marked differences between the
NCI and CI groups (Figure 2D). Thus, in CI volunteers the
relative percentage of CD8+ Temra" cells was statistically
significantly increased by two-fold when compared to NCI
volunteers (35.2 + 5.3 vs. 17.1 + 2.7, mean + SEM, p=0.041).
Accordingly, the relative percentage of CD8+ Temra' cells was
markedly reduced (64.8 + 5.3 vs. 82.9 * 2.7, mean = SEM,
p=0.041). Similar results were observed when the percentage of
CD8+ Temra™ and CD8+ TemrA™ cells within CD8+ T cells were
compared (data not shown). Importantly, cross-correlation
studies revealed that the relative percentage of CD8+ TrmrA™
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and CD8+ Temra'® cells were positively (p=0.289, p=0.042) and
negatively (p=-0.289; p=0.042), respectively, associated with
cognitive status.

On the other hand, the large majority of studies
characterizing phenotypically and functionally CD8+ T cell
populations in humans have used antibodies that recognize the
CD80. chain. Here, we show that the use of antibodies against the

CD8p chain revealed the existence of two distinct CD8+ T cell
subpopulations based on the level of expression of the CD8J
chain: CD3+CD8B" T cells and CD3+CD8B™ T cells (Figure
3A). Determination of the percentages of these two CD8B+ T cell
populations showed that NCI volunteers have higher percentages
of CD3+CD8B' T cells than CI volunteers (51.7 + 4.8 vs. 33.5 +
4.1, mean + SEM, p=0.016), while presenting lower percentages
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FIGURE 3 | PBMC were isolated, stained and acquired as described in the legend of Figure 1. (A, left) Dot-plot of CD8P vs. CD8a: expression in CD3+CD8+ gated
T cells. (A, right) Zoom of CD3+CD8af+ T cells showing the existence of two distinct populations according to the level of expression of CD8pB: CD3+CD8B™ and
CD3+CD8B". (B) Graph showing the percentage of CD3+CD8B" (blue circles) and CD3+CD8p" (red circles) in CD3+CD8+ gated T cells in the three volunteer
groups (mean + SEM). Statistically significant differences between groups are indicated (ANOVA with Bonferroni’s correction). (C) Scatter-plot showing a significant
positive correlation between the percentages of CD8+ Temra® and CD8B' T cells (Pearson correlation, n=50). a.u., arbitrary units.
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of CD3+CD8B™ T cells (26.3 + 3.3 vs. 46.0 + 3.6, mean + SEM,
p=0.002) (Figure 3B). Given the resemblances between the
expression of CD45RA and CD8P in cognitively unimpaired
and cognitively impaired elderly, we decided to ascertain
whether they were related populations. The existence of a
robust positive correlation between CD8+ Temra' cells and
CD8B T cells (Figure 3C, r=0.549, p<0.001) is a strong
indication that they are similar CD8+ T cell populations.
Finally, in order to better visualize the distribution of the
aforementioned CD8+ T cell populations among the different
cognitive groups, a heatmap representation was generated. This
analysis revealed the existence of two clusters whereby the NCI
group was enriched for CD8+ Temra'® and CD8B' T cells, while
the CI group was enriched for CD8+ Temra™ and CD8BM T cells
(Figure 5).

Comparison of the expression of CD28 by CD8B" and
CD8B" T cells showed that the former are more enriched for
CD28- cells (74.6 + 2.3 vs. 45.5 + 3.7, mean + SEM, p<0.001).
Interestingly, cross-correlation analysis revealed that the
percentage of CCR7-CD45RA, but not of CCR7-CD45RAM
CD8+ T cells, positively correlated with the percentage of CD8
+CD28- T cells (r=0.506, p<0.001). These results indicate that
CD8+CD45RA" and CD3+CD8B" T cells are predominantly
CD28-, which is in accord with previous studies (37).

Activated CD4+ T Cells From Cognitively
Impaired Volunteers Produce Higher
Levels of IFNy Than Cognitively
Unimpaired Volunteers

In order to evaluate production of IFNY by activated T cells, a
measure of the effector/regulatory potential of T cells, among the
elderly groups, we stimulated PBMC with a combination of PMA
and Ionomycin (Iono), followed by flow cytometry studies using
combinations of anti-CD3, anti-CD28, anti-CD4, anti-CD8, and
anti-IFNYy antibodies. Since PMA+Iono is known to induce a
marked down-regulation of the CD4 receptor, we studied the
production of IFNy by CD4+ T cells by analyzing CD3+CD4+ T
cells as well as CD3+CD8- T cells. As shown in Figure 4A, the
percentage of CD4+IFNY+ T cells (dot-plots) as well as the level
of IFNYy produced by CD4+ T cells (histograms) were almost
identical in either anlysis. Likewise, we observed that the
percentage of CD8+IFNy+ T cells in response to PMA+Iono
was about two-fold higher than the percentage of CD4+IFNy+ T
cells (79.5 + 2.6 vs. 354 + 2.9, respectively, mean + SEM,
p<0.001). This two-fold increase in the percentage of IFNY-
producing CD8+ T cells was observed regardless of the
cognitive status of the volunteers (data not shown). However,
when we analyzed the actual level of expression of intracellular
IENY by activated CD4+ and CD8+ T cells, by determining the
mean fluorescence intensity (MFI) values, we observed higher
levels of IFNYin activated CD4+ T cells from CI volunteers when
compared to the NCI volunteers, with the MCI group displaying
intermediate values (Figure 4B). As a result, the levels of
expression of intracellular IFNY in activated CD4+ T cells
observed in the CI group were statistically significantly higher
than the levels of expression observed in the NCI group (99124 +

3821 vs. 78069 + 6236, mean = SEM, p=0.038) (Figure 4C).
Importantly, cross-correlation studies revealed that the values of
MEFI for IFNYin activated CD4+ T cells correlated positively with
cognition scores (p=0.439, p=0.022). In line with the heatmap
representation generated for the CD8+ T cell populations, the CI
group was enriched for CD4+ T cells producing high levels of
IFNY, contrasting with the NCI group, where the expression was
lower (Figure 5).

Higher Prevalence of the HLA-B8 Serotype
in Cognitively Impaired Elderly

All the volunteers that were enrolled in this study were HLA typed
for HLA-A, -B, -C, -DRBI, -DQA1 and -DQBI loci and data
presented at serological equivalent or at antigen allele level when
there was no serological equivalent. The results of this analysis
revealed that one-sixth of chromosomes of the CI volunteers
expressed the HLA-B8 in heterozygosity, which contrasted with
its complete absence in the NCI volunteers (17.4 vs. 0.0%,
respectively, p=0.034). In other words, one-third of the CI
volunteers were HLA-B8. Analysis of other HLA alleles revealed
that a large percentage of the HLA-B8+ volunteers presented HLA
alleles of the so-called ancestral haplotype, ie, HLA-DQ2, HLA-
DR3, HLA-B8, HLA-Cw7, and HLA-ALI. Further analysis revealed
that that the HLA-B8 and HLA-Cw?7 alleles were overrepresented
among the CI group (Figure 6). No other significant differences
were observed in the expression of other HLA serotypes between
NCI and CI volunteers (Figure 6). The only finding was an increase
in the frequency of MCI volunteers expressing the HLA-A3, HLA-
C12 and HLA-DQB1_6 serotypes when compared to CI volunteers
(see Table 1). Interestingly, analysis of the prevalence of HLA-B8
among the volunteers revealed that the percentage of CD3+CD8B"
T cells, but not the percentage of CD8+CD45RA™ T cells, is
statistically significantly increased in volunteers displaying the
HLA-B8 serotype (53.6 £ 5.2 vs. 37.2 + 2.5, mean + SEM, p=0.008).

DISCUSSION

During the last years there has been a change of dogma whereby
T cells are also endowed with properties that promote behavioral
improvement, brain plasticity and cognition (4, 38-41). Indeed,
recent studies in clinical and experimental neurodegenerative
settings have provided important insights into the
neuroprotective role of T cells (42-44). Even though the
molecular cues behind these associations are presently
uncertain, these studies suggest that certain effector-memory T
cell populations may favor a healthy aging, while others may be
detrimental (18).

In order to gain further insights into the relationship between
T cell populations in peripheral blood and healthy aging, we
undertook a comprehensive immunological analysis of
lymphocyte and monocyte populations as well as of HLA
molecules expression in an aged-matched cohort of elderly
volunteers differing in their cognitive status. Our results show
for the first time that a subpopulation of CD3+CD8+ T cells
characterized by the expression at the plasma membrane of high
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FIGURE 4 | PBMC were isolated, activated with PMA+lono for 4 h, washed and stained for CD3, CD4, CD8 and CD28, then fixed & permeabilized and stained
again for IFNy, and acquired in an Accuri C6 flow cytometer, as described in the Material and Methods section. (A) Graph illustrating the gating strategy to analyze
IFNy expression by activated T cells. Results show a representative experiment of the percentage of CD4+ and CD8+ T cells expressing intracellular IFNy Upper
graphs show background staining using an irrelevant IgG isotype. Percentages of CD3+CD4+IFNy+ T cells and CD3+CD8+IFNy+ T cells, as well as IFNy MFI values
are shown. (B) lllustrative results of IFNy MFI values in activated CD4+ (left histograms) and CD8+ (right histograms) T cells from representative volunteers. (C) Graph
showing MFI values of intracellular IFNy (mean + SEM) in gated CD4+ (red circles) and CD8+ (blue circles) T cells. Statistically significant differences between groups

levels CD45RA (CD8+ Temra™) and high levels of the CD8P3 chain
(CD3+CD8B") is overrepresented in elderly people with impaired
cognitive status. On the contrary, elderly people with unimpaired
cognitive status have CD3+CD8+ T cells characterized by the
expression of low levels of cell surface CD45RA (CD8+ TEMRA®)
and CD8P (CD3+CD8B"). Likewise, we show that CD4+ T cells
from elderly people with impaired brain cognitive status activated in
vitro with PMA/Ionomycin produce about two-fold more IFNy
than elderly people with unimpaired brain cognitive status. Finally,
we report that the HLA-B8 serotype is absent in the group of elderly
people with unimpaired brain cognitive but present in 34% of
elderly people with impaired brain cognitive status. More precisely

one-sixth of chromosomes of the CI volunteers (17.4%) expressed
the HLA-B8 in heterozygosity. On the one side, these results can be
interpreted as meaning that CD8+ Temra™ and CD8B™ T cells,
together with high IFNy-producing CD4+ T cells and the presence
of HLA-BS8, are immunological biomarkers associated with
unhealthy aging (ie, impaired brain cognitive function). On the
other side, the same results can be interpreted to mean that CD8+
Temra'® and CD8B T cells are immunological biomarkers
associated with healthy aging (ie, unimpaired brain cognitive
function). In any case, these are novel and insightful data that
point to selected subsets of highly differentiated CD8+ T cells as
potential protectors of normal cognitive functions, as proposed by
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CD4+ T), associated with no cognitively impaired (NCI) and cognitively impaired
(Cl) volunteers, respectively.

others (18, 40), and substantiate the double-edged role of IFNy on
cells of the CNS (45). Moreover, the finding of a prevalence of the
HLA-B8 serotype among cognitively impaired volunteers unveils a
novel association between impaired cognition and an HLA class I
allele that is worthwhile confirming on a larger scale. The existence
of two populations of circulating human CD3+CD8+ T cells
differing in the expression of the tyrosine phosphatase isoform
CD45RA and the CD8 chain is not new and has been previously
reported (46). However, to our knowledge, this is the first proof
in humans that the levels of expression of CD45RA and CD8f
by CD8+ T cells are associated with cognition in a cohort of
elderly volunteers.

These results are highly relevant because they suggest that
CD8+ Temra'® and CD8P' T cells are related subsets that might
play important roles in keeping brain’s cognitive function. Thus,
they are highly differentiated oligoclonal CD8+ T cells that
descend directly from expanded CD8uf T cells in vivo, after
down-regulation of the CD8P chain (37, 47) and re-expression of
CD45RA (48, 49). Moreover, CDS(XBlo T cells and CD8+ Temra™®
cells are majoritarily CD28—, express CD45RA, respond poorly
to TCR-mediated signals, and secrete IFNYy, perforin and
granzyme upon stimulation (37, 47, 50, and this study).
Interestingly, the CD8+ Temra'® cells described in this study
resemble the CD8+ TeMra+ cells described by Romero et al. (51)
but using a different combination of surface markers. In this
respect, a recent study has shown that the percentages of CD8+
TeMmRa cells in peripheral blood and cerebrospinal fluid (CSF) of a
human cohort encompassing mild cognitive impairment (MCI)
and Alzheimer’s disease (AD) patients are negatively associated
with cognition. The authors discuss the likelihood that the
presence of CD8+ TemrA cells in the CSF may promote
neurodegeneration through their cytotoxic effector function
(16). Our findings with a cohort of elderly people extend these
results by showing that not all CD8+ TEmRA are necessarily
negatively associated with cognition, but only those expressing
high levels of CD45RA, ie, CD8+ Temra™ cells. At the same time,
we have unveiled an association between CD8+ Temra™® cells and
preserved brain cognitive functions. Therefore, while CD8+
Temra™ cells and CD8aB' T cells might constitute potential
pro-cognitive immunological biomarkers that favor brain’s
cognitive function, CD8+ Temra™ cells and CD8B™ T cells
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FIGURE 6 | Upper figure represents part of the major histocompatibility complex (MHC) region, also known as the human leukocyte antigen (HLA) region on the
short arm of chromosome 6. The table beneath shows the ancestral B8 haplotype alleles or its partial fragments (in red). The haplotypes were reconstructed by
imputation of the allele markers and are putative, because it was not possible to strictly prove their segregation from family studies. The number of volunteers and the
percentage within the cognitive status groups are shown. The shared B8 ancestral haplotypes are also shown (in green). *DR17 serotype; NCI, No-Cognitive
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might constitute potential detrimental immunological
biomarkers that disfavor brain’s cognitive function and healthy
aging. Although previous studies have shown an association
between high percentages of CD8+ TemraA cells and infection
by CMV (20, 21), the fact that 49 out of 50 elderly volunteers
were CMV seropositive argues against the possibility that the
differences found between NCI and CI volunteers is due to CMV
infection. Nevertheless, the possibility that the CD8+ Trmra™
cells found in the CI volunteers is being driven in some
unidentified way by HCMV or other viral antigens cannot be
discarded completely.

Even though the environmental signals driving the increase in
the levels of CD45RA and the downmodulation of the CD8f
chain by circulating effector-memory CD8+ T cells are uncertain,
TCR-mediated stimulation and cytokines such as IL-1, IL-2 and
IL-6, but not IFNYy, are known to regulate their expression (37,
52-57). Of note, IL-1/IL-6 are increased in neurodegenerative
disorders such as Alzheimer’s and Parkinson’s disease, as well as
in cognitive dysfunction (58, 59). Moreover, in animal models,
IL-1 was shown to influence cognitive function by affecting long-
term potentiation and possibly neurogenesis, while IL-6 impacts
cognitive function via effects on neurogenesis and synaptic
plasticity (60). These findings warrant further investigations to
elucidate what signals enhance CD45RA expression by
circulating CD8+ TemrA' cells and, at the same time, slow
down CD8p chain downmodulation by CD8B™ T cells during
aging, and whether these changes are associated with the
secretion of IL-1/IL-6 by CNS parenchymal cells. Regarding
IENY, prior animal studies have shown that low doses can
stimulate neurogenesis and induce protective signaling
pathways in microglia, oligodendrocytes and primary neurons,
thus raising the possibility of playing a role in development and
repair of the CNS (61, 62). However, when present at high levels
it induces disease worsening effects in both glial cell types and
has detrimental effects on cognitive function, perhaps by
inhibiting neural stem/progenitor cell proliferation (63, 64).
These, apparently, contradictory biological effects of IFNY are in
accord with the opposing roles of this cytokine on cells of the CNS
(45). In this respect, Gate et al. reported that production of IFNy
by activated CD8+ TEMRa cells was increased in the cohort of MCI
and AD patients, suggesting that it may play a harmful role (16).
In this scenario, the higher levels of IFNy produced by CD4+ T
cells upon activation found in the CI volunteers constitute a
further detrimental immunological biomarker in the elderly.
Although in our study, IFNy production by activated CD8+ T
cells was also increased in the CI group in comparison to the NCI
group, this difference did not reach statistical significance.

Finally, the prevalence of the HLA-B8 serotype in volunteers
with impaired cognition adds to the body of knowledge linking
HLA-class I molecules with disease, a finding worthwhile
confirming on a larger scale. If it proves true in a large cohort
study, the role of HLA-B8 might give clues as where to go next in
elucidating cognitive impairment in the elderly. In this regard, it is
worth mentioning that HLA-B8 is part of the so-called
“autoimmune” ancestral haplotype (HLA-DQ2, HLA-DR3, HLA-
B8, HLA-Cw7, and HLA-A1) which is carried by most Caucasians

and known to be positively associated with autoimmune disorders
and by elevated circulating levels of inflammatory cytokines, such as
IL-1 and TNFa. (65). Thus, to our knowledge, this is the first report
showing and association between cognitive impairment and
the presence of HLA-BS, or alleles of the ancestral haplotype.
Given the special features of HLA-class I molecules, we propose
that the association found between the presence of alleles of the
ancestral haplotype, namely HLA-B8 and HLA-Cw?7, and cognitive
impairment in the elderly cohort could result from three
circumstances. First, as a result of the role of HLA-class I
molecules as peptide presenting molecules that drive CD8+ T cell
expansion and differentiation (66). In this regard, the study of Gate
etal,, is the first report showing that CD8+ T cells found in the CSF
of AD patients carry a clonal TCR specific for an EBV-derived
peptide presented by HLA-B8 (16). However, as pointed out by the
authors, the EBV-specific clones detected in the study were not the
most highly expanded ones and the data are not evidence of a causal
link between EBV infection and AD (16). Second, as a result of the
non-immunological functions of HLA-class I molecules (67),
whereby these could modulate receptor-mediated signaling and
endocytosis in CNS cells, and regulate brain function and plasticity
(68, 69). In this context, it is worth mentioning recent studies in
animal models showing that interactions between MHC-class I
molecules and the insulin receptor in the brain could regulate
neuronal insulin sensitivity in the aging and diseased brain
(70). Third, as a result of shedding of cell surface HLA-class I
molecules into the extracellular media, where they can exert
immunoregulatory functions on neighboring cells (71). In this
respect, a potential role for shed MHC-I molecules as modulators
of neurodevelopment and neurorepair responses has been
reported (72).

Although the possibility that common factors might impact
simultaneously immune system and cognitive impairment cannot
be disregarded, the results of this study reinforce the view that cells
of the adaptive immunological system, namely highly differentiated
CD8+ T cells, might play a pro-cognitive role in humans. On the
other hand, the possibility that changes in cognition could also alter
behavior/lifestyle and that this may then alter immune composition
is an interesting possibility that deserves further investigation.
Therefore, whether the CD8+ Temra™ cells, CD8P" T cells, and
IFNYy-producing CD4+ T cells identified in this study as potential
deleterious biomarkers of brain’s cognitive function in the elderly,
are truly detrimental needs further investigations. If these adaptive
T cell subsets are confirmed to have negative effects in brain’s
cognitive function, they may be subjected to therapeutical
manipulation. Similarly, if the CD8+ Temra'® and CD8B™ T cells
are corroborated as pro-cognitive, further investigations must
address the mechanisms involved and how to guarantee their
maintenance in peripheral blood.
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