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INTRODUCTION

Macrophages are a heterogeneous cell population with a high plasticity. They may arise from
hematopoietic progenitors during embryogenesis and become tissue-resident macrophages (TRM)
with a high capacity to self-renew. Alternatively, they may differentiate from blood monocytes
during inflammation (1). These innate immune cells may mediate either pro- or anti-inflammatory
functions (1) and play a critical role during the resolution phase of inflammation. In this setting,
they shift from a pro-inflammatory toward a pro-resolving profile (1). This transition, named
macrophage reprogramming, is triggered by apoptotic cell elimination [a process called efferocytosis
(2–4)], as well as by extracellular vesicles released by apoptotic cells (5). Together with signals
provided by cognate receptors recognizing apoptotic corpses, apoptotic cell-derived materials (i.e.,
nucleic acid, lipids, amino acids, and intermediate metabolites) participate in this reprogramming
by modifying macrophage metabolism (6–11). At steady state, efferocytosis imprints an anti-
inflammatory profile in mouse TRM (12, 13). The tissue microenvironment affects this anti-
inflammatory program of mouse macrophages residing in cavities by inducing the apoptotic cell
recognition receptor, TIM-4, and down-regulating Toll-like receptor (TLR) 9 (14). Based on 3
recently published manuscripts (10, 15, 16) that bring significant contributions to human
macrophage characterization and shed light on discrepancies between mouse and human
resolving macrophages, we here comment and discuss this interspecies variability. Today, while
mouse pro-resolving macrophages and the efferocytosis process begin to be deciphered, data on
human macrophages remain scarce. Unraveling human pro-resolving macrophages may lead to
their identification in diseases and the development of innovative therapeutic approaches (17). This
review will evoke a main difference already identified between mouse and human macrophages, the
L-arginine metabolism. Then, we will consider an anti-inflammatory pathway in mouse
macrophages (7), the Liver X receptor (LXR) pathway that may be rather pro-inflammatory in
human macrophages. Finally, we will propose possible explanations for these differences and
potential solutions to identify signaling molecules and/or metabolites governing or characterizing
human pro-resolving macrophages.
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ARGININE METABOLISM, A WELL-
DESCRIBED PATHWAY DIFFERING
BETWEEN HUMAN AND MOUSE
MACROPHAGES

Macrophages represent heterogeneous cells, even in a given
tissue, at steady state or during pathogenic situations. This
heterogeneity lies on the macrophage origins, but also on their
localization (1). Macrophages are highly plastic cells; they may
exert a vast “spectrum” of functions characterized by an array of
different macrophage phenotypes/subtypes (18). The two
extreme polarized phenotypes of this continuum are called M1
and M2. M1 represent pro-inflammatory (“classically” activated)
macrophages involved in anti-infectious responses. M2 are anti-
inflammatory (“alternatively” activated) macrophages, which
can be subdivided into several subtypes with different
functions: immunosuppressive tumor-associated macrophages
(TAM), pro-resolving macrophages, but also macrophages
associated with T helper 2 (Th2) responses found in asthma
for instance. Type 2 cytokines (e.g., IL-4) are involved in M2
macrophage polarization. Response to IL-4 may differ between
mouse and human macrophages (19, 20). This M1/M2
dichotomy is known to be associated with a distinct arginine
metabolism, in particular for mouse macrophages (21, 22). M1
macrophages metabolize arginine to generate nitric oxide (NO)
contributing to pathogen killing. In contrast, mouse M2
macrophages convert the same substrate to produce ornithine,
and then polyamines (e.g., putrescine). Polyamines participate in
collagen synthesis necessary for tissue repair. This implies two
different enzymes, inducible NO synthase (iNOS, also known as
NOS2) and arginase-1, respectively (23).

Interspecies differences have been reported for these two
enzymes with a functional expression in mouse macrophages,
but not in human macrophages (10, 23–30). Arginase-1 is
considered as a marker for anti-inflammatory mouse
macrophages (Figure 1), but may be absent in human pro-
resolving macrophages (10, 24, 27). Several hypotheses may
explain this discrepancy (see (22) and Discussion). The main
hypothesis is the cellular source of macrophages that is most
frequently in vitro monocyte-derived macrophages (MDM) in
humans, whereas already differentiated macrophages are isolated
from mice (22). However, mouse macrophages isolated from
different tissues exhibit more difference than similarities in their
transcriptomic program (40). Nevertheless, this difference in
macrophage arginine metabolism is also found in other
mammalian species. Rat macrophages behave as mouse (41),
while Syrian hamster (41, 42), monkey (25), pig macrophages
(29), even badger and ferret macrophages (43) exhibit the same
arginine metabolism as humanMDM. This is observed even with
the same cellular source (i.e., alveolar macrophages) (25, 41).
Non-mammalian M1/M2 macrophages, such as those of the
European common carp (44), metabolize arginine strictly as
mouse macrophages.

Considering human pro-resolving macrophage, arginase-1
and arginine metabolism are not required for “continual”
efferocytosis [i.e., the capacity to maintain efferocytosis after
Frontiers in Immunology | www.frontiersin.org 2
the first ingestion (10)]. Indeed, apoptotic cell-derived
ornithine and the putrescine pathway contribute to this
“continual” efferocytosis, a critical step for macrophage
reprogramming (10) (Figure 1).

Overall, based on these data (i.e., L-arginine metabolism),
interspecies heterogeneity exists between human and mouse pro-
resolving macrophages. Whereas different reasons could explain
these results (see Discussion), this renders difficult to transpose
simply data obtained in mouse macrophages to humans and
justifies the need to study human pro-resolving macrophages.
Finally, some arginase isoforms may be also pro-inflammatory
(45), and this may explain the absence of this enzyme in human
pro-resolving macrophages.
LIVER X RECEPTOR SIGNALING,
ANOTHER PATHWAY DIFFERING
BETWEEN HUMAN AND MOUSE
MACROPHAGES

The other difference existing between human and mouse
macrophages is related to macrophage reprogramming, and
efferocytosis regulation. Digestion of lipids derived from
apoptotic cells by macrophages and lipid metabolism are
critical for proper efferocytosis (including “continual”
efferocytosis) and mouse macrophage reprogramming (7–9).
Digestion of apoptotic cell-derived lipids leads to an increase
of cholesterol derivatives and fatty acids which trigger LXR and
peroxisome proliferator-activated receptor (PPAR), respectively
(46). These nuclear receptors induce the increased expression of
efferocytic receptors (e.g., Mer), and the release of soluble
bridging molecules (e.g., MFG-E8) facilitating the binding of
apoptotic cells (46). Thus, LXR activation exerts functions that
may explain some of the anti-inflammatory functions acquired
by mouse macrophages after efferocytosis (Figure 1).

Macrophages express the LXRa isoform restricted to cells with
high cholesterol turnover and the ubiquitous isoform, LXRb (31).
These receptors act as cholesterol sensors to regulate intracellular
cholesterol and lipogenesis (31). Prior LXR stimulation in murine
macrophages prevents TLR4 activation induced by
lipopolysaccharide (LPS) (47, 48). It inhibits LPS-induced
expression of inflammatory genes, such Nos2 or Il6 genes (47).
LXR activation interferes with TLR signaling (i.e., TLR2, 4 and 9)
via the adenosine triphosphate-binding cassette A1 (ABCA1)
transporter that dampens the recruitment of the adaptor
MYD88 (32). Moreover, LXR activation inhibits inflammatory
responses by antagonizing the pro-inflammatory transcription
factor, NF-kB (31). However, this corresponds mainly to data
obtained in mice (Figure 1). This is sufficient to state that the LXR
pathway is anti-inflammatory. Data on LXR anti-inflammatory
functions exist in human macrophages with the increase of
transglutaminase-2 (Tgm-2) expression after efferocytosis (37).
Tgm-2 is also upregulated by LXR in mouse macrophage (33) and
stimulates efferocytosis by stabilizing the interaction between the
phagocytic receptor b3 integrin, the bridging molecule MFG-E8
and the apoptotic corpse (49) (Figure 1). Thus, LXR activation by
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apoptotic cell-derived materials may participate in anti-
inflammatory “continual” efferocytosis.

On the contrary, long-term LXR activation (i.e., 48 h)
potentiates the LPS pro-inflammatory response in human
MDM, while short-term LXR activation reduces the LPS
Frontiers in Immunology | www.frontiersin.org 3
responses (38). This suggests a different response to LXR
activation after efferocytosis in human macrophages. Two
recent manuscripts convincingly challenge the anti-
inflammatory role of LXR by demonstrating that LXR
stimulation is rather a pro-inflammatory signal in human
FIGURE 1 | Comparison of mouse and human pro-resolving macrophages. This figure summarizes the data discussed in the text, and focuses on two pathways
involved in mouse macrophage anti-inflammatory reprogramming, namely the L-arginine metabolism and the LXR pathway. Interspecies heterogeneity is reported for
these two pathways. Mouse pro-resolving macrophages (left-hand side) are characterized by arginase-1 (Arg-1) and uses the arginine pathway to stimulate tissue
repair and “continual” efferocytosis. Efferocytosis and tissue microenvironment imprint an anti-inflammatory profile with an increased expression of M2 receptor
CD206 (13) and efferocytic receptor TIM-4 (14), as well as a downregulation of pro-inflammatory Tlr9 (14) and Il1b (13) genes. Cholesterol derivatives (chol. der.)
issued from apoptotic cells may promote the LXR pathway that is responsible for upregulation of efferocytic receptor Mer (7) and an anti-inflammatory response,
including inhibition of NF-kB (31) and TLR2, 4 and 9 signaling pathway via the LXR target factor, ABCA1 (32). LXR upregulates Tgm2 in mouse macrophages (33).
Metabolites released from apoptotic cells (i.e., inosine-monophosphate and adenosine-monophosphate) imprint an anti-inflammatory profile (11), possibly via A2A and
A2B adenosine receptors, which are highly expressed and functional in mouse cells. Thus, in mouse macrophages, adenosine A2A receptors are the primary target of
apoptotic cell-derived adenosine and these receptors mediated apoptotic-cell induced immune suppression (34, 35). Aging affects efferocytosis efficacy by
downregulating Mer receptor (36). The picture for human macrophages (right-hand side) is more complicated and data remain incomplete. While apoptotic-cell
derived ornithine and putrescine participates in “continual” efferocytosis and the anti-inflammatory program of human pro-resolving macrophages (10). LXR activation
leads to anti-inflammatory functions [with upregulation of efferocytic receptor Tgm2 (37) and inhibition of TLR4 signaling (38)] and pro-inflammatory functions (15, 16,
38) [with the production of IL-1b via HIF-1a (15), as well as ROS (38)]. Human cells are less receptive to inosine and adenosine with reduced expression and function
of adenosine receptors in comparison to mouse cells (39). Aging disturbs efferocytosis efficacy and the resolution of inflammation by downregulating TIM-4 receptor
(36). Factors that may explain interspecies differences are written in blue font on the bottom of the figure. Blue arrows mean an influence of a given factor. Some of
these factors affect rather mouse macrophages (i.e., tissue microenvironment) and others human macrophages (e.g., in vitro culture conditions). ! (or plus) and ⊣
(or minus) symbols mean stimulation and inhibition, respectively. Red color means pro-inflammatory and green color pro-resolving. Solid line identifies a direct effect,
while dotted line an indirect (or supposed) effect. ABCA1, adenosine triphosphate-binding cassette A1; AMP, adenosine-monophosphate; Arg-1, arginase-1; chol.
der., cholesterol derivatives; HIF-1a, hypoxia-inducing factor-1a; Il1b, interleukin-1 beta gene; IL-1b, interleukin-1b; IMP, inosine-monophosphate; LXR, Liver X
receptor; NF-kB, nuclear factor-kappa B; ODC, ornithine decarboxylase; ROS, reactive oxygen species; Tgm2, transglutaminase-2; TIM4, T-cell immunoglobulin and
mucin domain containing 4; TLR, Toll-like receptor. This figure was depicted, in part, by using Servier Medical Art, https://smart.servier.com/.
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MDM with increased IL-1b production (Figure 1) (15, 16).
Human and mouse macrophages -derived in culture using
M-CSF- are compared in different experiments, and these cells
do not respond similarly to LXR activation (15). Overall, the
engagement of LXR signaling pathway in mouse macrophages
stimulates macrophage reprogramming after efferocytosis
leading to a pro-resolving profile. In contrast, LXR activation
may lead to a more complex and diverse response in human
macrophages, not always associated with a resolution
of inflammation.
DISCUSSION

These two examples illustrate the differences existing between
mouse and human macrophages. Comparison of myeloid cell
infiltrates in human lung cancers and in corresponding mouse
models using single cell transcriptomic analysis highlights this
species difference (50). Mouse and human TAM exhibit a
different signature, whereas a comparable signature is found
for neutrophils, monocyte, and dendritic cell subsets of both
species (50). Discrepancies exist also in the efferocytosis
machinery of macrophages with aging. Aging induces a
reduced Mer expression in mouse macrophages, while a low
TIM-4 expression is observed in human macrophages from
elderly individuals (36). Apoptotic-cell derived metabolites
control mouse macrophage reprograming toward a pro-
resolving profile (11). These metabolites are released similarly
by both human and mouse apoptotic cells (11). Among them,
two metabolites signal via A2A and A2B adenosine receptors.
Species differences have been reported for adenosine receptors,
with human cells being less responsive than mouse cells (39).
This predicts that human macrophages could be less sensitive to
the anti-inflammatory effects of these metabolites. This supports
the specificity of human pro-resolving macrophages. But how?

To answer this question, we first try to explain the species
differences based on macrophage biology. Then, we propose
some solutions to limit these differences. This may be useful to
study human pro-resolving macrophages in more (patho)
physiological conditions, and to compare these cells to their
mouse counterpart and use powerful experimental models.

The main explanation of the species difference is the cellular
source of macrophages with the principal source of human cells
being blood monocytes versus tissue-derived mouse
macrophages (22). The ontogenic origin (i.e., differentiated
monocytes versus hematopoietic progenitors) may affect
macrophage phenotype and function (1). The local
microenvironment plays also a role in imprinting macrophage
phenotype and function (14). However, some studies used the
same cellular source with still interspecies differences (25, 41).

Another explanation is the in vitro culture step/system
necessary to obtain human macrophages (22). Different
cytokine cocktails influence significantly macrophage
phenotypes (18, 51). Again, the use of the same protocols for
both mouse and human cells does not always lead to the same
function (15). A study has reported that human macrophages
Frontiers in Immunology | www.frontiersin.org 4
generated from monocytes using M-CSF (i.e., the classical model
used to obtain human macrophages) do not reflect in vivo pro-
resolving macrophages. On the contrary, monocytes kept for
24 h in culture after isolation better recapitulate these phagocytes
present in spontaneous pro-resolving skin lesions (36). This
represents an interesting track. Culture conditions are used to
mimic the in vivo situations. This may be achieved through 3-
dimensional cultures reflecting the in vivo microenvironment
with extracellular matrix interactions (52). In vitro models of
resolution have been also set-up with sequential exposure to a
complex mixture of factors (i.e., chemokine, bacterial vesicles,
and cytokines) (53). Whether it influences macrophage anti-
inflammatory function remains to be determined. Macrophages
require their local microenvironment and signals to maintain
their in vivo phenotype (22).

Finally, mice are housed under specific pathogen-free (SPF)
conditions since their birth, and exhibit a naive immune system
more similar to neonatal humans (54). In contrast, humans live
in a pathogen rich-environment that shapes their immune
system. Two major parameters may affect differently mouse
and human pro-resolving macrophages, namely, microbiota
and trained immunity. Microbiota and their metabolites
influence pro-resolving macrophages. Laboratory mice born to
wild mice may correct this bias (55). Controlled infections of
laboratory SPF mice with “bystander” pathogens (i.e.,
herpesviruses) may also limit this bias by humanizing
immunological responses in mice (54). Trained immunity
describes an immunological memory of innate immune cells
(including macrophages), associated with a long-term functional
reprogramming due to epigenetic modifications, including
histone modification or DNA methylation (56). This
reprogramming, induced by inflammatory signals, leads to an
altered response towards a second challenge (56). This may
either enhance (e.g., BCG vaccination) or inhibit (e.g., LPS and
the immune paralysis observed in sepsis) macrophage functions
(56). Human macrophages may correspond to trained cells,
while mouse cells are naive. LXR activation triggers epigenetic
modifications at human pro-inflammatory genes (e.g., IL6)
stimulating their expression (16). LXR activation may induced
trained immunity. An epigenetic modification may explain the
interspecies differences of the arginine metabolism (30).

In conclusion, interspecies variability affects certain pathways
involved in macrophage reprogramming (Figure 1). It is
necessary to study specifically human pro-resolving
macrophages in in vivo relevant conditions. The last
proposition to improve human pro-resolving macrophage
understanding is to generate an in vitro model allowing to
induce macrophage reprogramming, and to study their
differentiation in vitro. This approach allows to decipher
mouse pro-resolving macrophages and efferocytosis using
hamster phagocytes and apoptotic human cells (57, 58). We
have recently described and validated a complete human system,
suitable for RNA sequencing studies, in which apoptotic
neutrophils are co-cultured with human MDM (59). This
model may allow the identification of pathways involved in
pro-resolving macrophage reprogramming.
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