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B lymphocytes are important in secreting antibodies that protect against invading
pathogens such as viruses, bacteria, parasites, and also in mediating pathogenesis of
allergic diseases and autoimmunity. B lymphocytes develop in the bone marrow and
contain heavy and light chains, which upon ligation form an immunoglobulin M (IgM) B cell
receptor (BCR) expressed on the surface of naïve immature B cells. Naïve B cells
expressing either IgM or IgD isotypes are thought to play interchangeable functions in
antibody responses to T cell-dependent and T cell-independent antigens. IgM short-lived
plasma cells (SLPCs) and antigen-specific IgMmemory B cells (MBCs-M) are critical in the
first few days of infection, as well as long-term memory induced by vaccination,
respectively. At mucosal surfaces, IgM is thought to play a critical part in promoting
mucosal tolerance and shaping microbiota together with IgA. In this review, we explore
how IgM structure and BCR signaling shapes B cell development, self and non-self-
antigen-specific antibody responses, responses to infectious (such as viruses, parasites,
and fungal) and non-communicable diseases (such as autoimmunity and allergic asthma).
We also explore how metabolism could influence other B cell functions such as mucosal
tolerance and class switching. Finally, we discuss some of the outstanding critical
research questions in both experimental and clinical settings targeting IgM.

Keywords: immunoglobulin M (IgM), B cell development, short-lived plasma cell (SLPC), long-lived plasma cell
(LLPC), memory B cell (MBC)
INTRODUCTION

IgM is the first antibody isotype expressed during B cell development and the first humoral antibody
responder, conserved across all species from Zebrafish to humans (1). In cartilaginous and bony
fish, IgM has been found to have crucial functions in host defense and tolerance (2). IgM can be
divided into natural and antigen-induced IgM and can either be membrane bound IgM-type BCR or
secreted IgM (3, 4). Natural IgM plays multiple roles in homeostasis including scavenging, B cell
org October 2020 | Volume 11 | Article 5955351
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tonic signals for B cell survival, lymphoid tissue architecture, and
prevention of autoimmune diseases (5, 6). IgM is involved in
clearance of debris, particles (below 2 mM) and apoptotic cells
through antibody dependent opsonization and phagocytosis by
macrophages (7, 8). At mucosal sites both natural and antigen-
induced IgM play a role in shaping healthy microbiota and their
repertoire, although limited, is also shaped by microbiota (9, 10).
Secreted IgM antigen-complexes can connect signals via unique
and shared receptors, suggest a more pleotropic role in
homeostasis and disease states (11, 12).

Since the discovery of individuals with selective IgM
deficiency, a lot has been learnt about IgM in various human
diseases including autoimmune and infectious diseases (13, 14).
Genetically conditioned mice which lack secreted or membrane
bound IgM have underscored the importance of IgM in many
infectious diseases. In this review, we highlight what is currently
known about the role of IgM in B1 and B2 cell development,
memory, and plasma cell generation, in and outside GCs. Lastly,
we discuss experimental models using IgM-deficient mice and
corroborating phenotypes observed in humans with selective
IgM deficiency.
B CELL DEVELOPMENT

Naturally Occurring Immunoglobulin M B
Cells (B1)
B1 cells develop in the yolk sac on embryonic day 9, before birth
from a functional hematopoietic stem cell subset termed the
common lymphoid progenitor, in the fetal liver and seed the
peritoneal and pleural cavities (15–21). B1 cells are thought to be
the main source of naturally occurring IgM, although there is
controversy on the main contributing organ, with some studies
suggesting bone marrow (BM) and spleen B1 cells as important
sources (22). B1 cells are thought to lack specificity and affinity
maturation similar to innate immune receptors and are referred
to as innate-like B cells or unconventional (4, 16). The concept of
non-specificity is somewhat nullified by the fact that B1 cells are
polyreactive—they recognize polysaccharides found on the cell
wall surfaces of a wide array of pathogens, but with exquisite
specificity (23, 24). This specificity allows them to confer
protection against pathogens bearing similar epitopes (discussed
later). Furthermore, B1 cells are self-reactive and develop normally
in the absence of foreign antigen stimulation, suggesting that their
development is self-regulated via a mechanism of binding to
glycosylated and oxidized mammalian molecules to prevent self-
recognition (15, 20, 25). B cell receptor is intricately regulated by
CD5 (Ly1) which enables self-antigen recognition and some level of
specificity (Figure 1A) (20, 26).

The majority of B1 cells are found in the peritoneal cavity
where they are self-renewing and undergo maintenance with the
help from resident macrophages that secrete CXCL13 (27).
Other sites such as spleen, lymph node, bone marrow,
pericardium, and mucosal associated lymphoid tissue account
for as little as 1% of B1 total pool (11, 22, 28, 29). The phenotype
Frontiers in Immunology | www.frontiersin.org 2
of B1 cells varies depending on the compartment, with splenic B1
cells and peritoneal B1 cells displaying different antibody
repertoire, gene expression, and secretion of IgM (16). In the
peritoneal cavity, B1 cells can be identified by surface expression
of CD19hi, B220low, CD43+ CD5+/CD5low/−, CD23low, CD11b+,
whereas in other tissues, where they migrate after injury, they
lose CD11b expression as they become plasma cells, making it
difficult to differentiate them with B2 cells in these tissues (16,
26). B1 cells are divided into B1a (CD5+) and B1b (CD5−), with
B1a cells accounting for the majority of the B1 cell population
(16, 20, 25, 30, 31). While B1b cells can potentially develop from
bone marrow progenitors, B1a cells cannot (30, 32). Both B1a
and B1b cells display similar surface markers with the exception
of CD5, which regulates B1a cell autoreactivity (16, 26).
Bone Marrow Derived Immunoglobulin M
B Cells (B2)
Conventional B cells (B2) are derived from bone marrow after
birth from a common lymphoid progenitor (CLP) and their
commitment to B cell lineage is dependent on the BM
microenvironment (25) (Figure 1B). B cell lymphopoiesis is a
rather complex process. Here, we give a brief summary mainly to
illustrate how naïve B cells exiting the BM expressing surface
IgM reach peripheral tissues. For more detailed reviews on this
topic, we refer the reader to a number of review articles (33–35).
The subsequent stages are important in a B cell’s development
and they introduce diversity into the antibody’s repertoire (36).
The first stage is a pre-pro B cell, where initial diversification of
the D and J segments occurs, followed by the pro-B cell where
recombination of the V region to the previously rearranged D-J is
completed (33–36). Interleukin 7 (IL-7) from stroma and IL-7Ra
signaling on developing B cells play both positive and negative
regulatory roles in B cell development, allowing proliferation and
pro-survival signals, as well as switching off recombination for
next stage of development (34, 37). Following a successful V-D-J
rearrangement in the pro-B cell, expression of the Igm heavy
chain (mHC) in the pre-B cell stage occurs. The V and J segments
of the two germline-encoded surrogate light chain (VpreB and
lamda5), combine with an existing Igm heavy chain (33). This is
then followed by association with signaling subunits Iga and Igb
and assembly, resulting in surface expression of the pre-BCR
(34–36). The pre-B cells are large and motile and act in positive
selection to select against autoreactivity, making the pre-B cell
stage a tolerance checkpoint (33, 38, 39). Recombination
activating genes 1/2 (RAG1/RAG2) are key in the progenitor B
cell development and allow genetic recombination rearrangement
(40). The final transition of these large proliferating pre-B cells
before they exit the BM occurs as they move away from the IL-7
rich stromal region, downregulate IL-7Ra and induce the
expression of the IRF4 transcription factor (37, 41). IRF4 induces
transcription of CXCR4, which in turn inhibits proliferation and
cell cycle exit, as well as inducing reduction in size of the pre-B cell.
RAG1/RAG2 allow for a final recombination of the V and J regions
of the light chain (Igk and IgL) in the CXCL12-CXCR4 rich
environment and development of the immature B cell (25)
October 2020 | Volume 11 | Article 595535
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(Figure 1B). The immature B cells leave the BM via vascular
sinuses and migrate to the peripheral tissues such as the spleen and
lymph nodes where they complete their final maturation (38).

Peripheral B Cell Maturation and
Production of Immunoglobulin M
by B2 Cells
The regulation of B cell development is mediated by the BCR
when transitioning from an immature to a mature B cell (25). An
Frontiers in Immunology | www.frontiersin.org 3
immature transitional B cell undergoes several splicing events
and primary variable diversity joining of Cm and Cd transcripts
(42, 43). This leads to a naïve B cell co-expressing both IgM and
IgD BCRs isotypes on the surface, with identical specificities (43,
44). These naïve B cells still display a certain level of self-
reactivity and are further pruned through clonal deletion and
anergy, where they can become unresponsive to self-antigen
stimulation, thus preventing autoimmunity (25, 42, 44–46).
Transitional B cells localize in secondary lymphoid tissues such
A B

C

FIGURE 1 | Immunoglobulin M (IgM) developmental pathways through B1 and B2 B cells from fetal liver (FL) and bone marrow (BM). B1 cells develop FL where
they go through pro-B cell, pre-B cell, immature B cell, and naïve B cells expressing IgM and CD5 which differentiates B1a and B1b cells, both capable of secreting
natural IgM (A). B2 cells develop from BM’s common lymphoid progenitor to become immature B cells that migrate to splenic B cells secreting IgM. Expression of
IgD differentiates marginal zones vs. follicular B cells (B). Follicular B cells upon antigen stimulation can either undergo germinal center maturation creating long-lived
plasma cells, memory B cells, class switch, or remain unswitched short-lived plasma cells (C). Created with BioRender.com.
October 2020 | Volume 11 | Article 595535
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as the spleen or lymph nodes, where they spatially sub-localize in
follicular regions for easy access to both sampling of antigens and
a local area rich with B cell survival factors, such as BAFF (25,
46). The naïve B cells are attracted to follicular areas by CXCL13
chemokines and once they encounter antigens, they upregulate
CCR7, which enables them to sense CCL21- and CCL19-rich T
cell zone areas (46). At this stage, B cells seek T cell help for a
cognate antigen, which further stimulates their survival,
proliferation, and antibody secretion function (47). In order
for antigen primed naïve B cells to have access to highly
competitive T cell help, they need to undergo several rounds of
high affinity maturation to create clones that are likely to survive
longer and possibly create long term memory (Figure 1C). These
processes take place in the germinal centers (GCs), which are
secondary B cell follicle areas (47, 48). Naïve B cells that do not to
take part in the GC reaction are pushed to the B cell mantle zone,
where they divide and form short-lived plasmablasts, which
eventually produce low affinity short-lived IgM plasma cells.
The GC [identified by GL7 and Fas (CD95) expression] is a
highly proliferative area, divided into the light zone (LZ) and
dark zone (DZ) (48). The LZ contains follicular dendritic cells
(FDCs), where selection of BCRs takes place (48). The B cells
receive the antigen from FDCs, present it to T follicular helper
(Tfh) cells; if the mutation confers an advantage, the specific cell
will be selected (48, 49). The DZ is the area in which where
somatic hypermutation (SHM) takes place and it appears dark,
due to the densely packed B cells that proliferate (Figure 1C) (47,
48). In the DZ, Aicda, a gene that encodes for activation-induced
deaminase (AID) is highly expressed. AID deaminates cytidine
residues in the VDJ and switch regions of the Ig gene, leading to
SHM and class switch (47, 50). During SHM, AID catalyzes the
deamination of C to U, to activate error prone repair pathways to
induce mutations (51, 52).

Class switching, which occurs in the GC and occasionally in
extrafollicular sites (47, 53), involves the replacement of the H-
chain C-region for another Ig gene, for example mm (IgM) for
gamma (IgG) (36). The constant region (Fc) of the BCR changes,
while the variable side (Fab) remains constant, therefore the
antigen specificity prevails. However, various signaling cascades
and immune responses occur, based on the class of Ig that is
present. Within the GC population, IgG/IgM cells ratio remains
constant, indicating a dynamic steady state between class
switched and non-class switched cells (53). The process of
antibody class switching is evolutionary conserved across
species and is found as early in evolution as cartilaginous
sharks and Xenopus (54). In the South African clawed frog
(Xenopus laevis), IgM shows limited antibody repertoire and
reduced affinity despite reasonable mutation rates compared to
mammals (54). The limiting factors for IgM affinity in clawed
frogs and sharks appear to be a lack of germinal center (GC) B
cell compartment, as well as reduced AID-dependent somatic
hypermutations that are found in mammals (54, 55). This
limited mutation rate is at least partially evolutionary
conserved, as it is observed in certain long-lived memory IgM
B cells or low affinity memory B cells generated outside GCs in
humans (56, 57).
Frontiers in Immunology | www.frontiersin.org 4
STRUCTURE OF IMMUNOGLOBULIN M
AND ANTIGEN RECOGNITION

IgM exists in two forms—membrane bound (mIgM) and
secreted (sIgM), with sIgM being further divided into natural
and antigen induced IgM (Figure 2) (5, 6). IgM can exist in
various structural forms including a monomer, a hexamer, and a
pentamer, the latter weighing over 1,000 kDa (6, 58). Pentameric
assembly of sIgM is the most naturally occurring form, with
monomers held together by a 15-kDa protein J-chain that
bridges disulfide bonds via a C-terminal extension of the
heavy-chain (Figure 2B) (59–62). IgM typically displays low
binding affinity to antigens, however, the multivalent antigen-
binding sites in the pentameric structure of sIgM and its
multivalent antigen-binding sites lead to high avidity for
antigens, ensuring efficient elimination of pathogens (63, 64).
Similar to other antibody structures, IgM BCR is composed of
two homodimeric heavy chains, each bearing a light chain linked
via disulfide bonds (65, 66). The m region of the heavy chain folds
into four domains, with the constant µ domain 4 (Cµ4) allowing
anchoring of the membrane bound IgM to the surface of the B
cell and activation of complement (Figure 2A) (67, 68). The
membrane bound IgM BCR is essential for B cell development
and activation, via the phosphoinositide 3-kinase pathway
(Figure 2A) (69–71). The role of hexameric IgM structure is
currently unclear, but it is thought to exist due to defects in the m
chain or J-chain regions in pentameric IgM (72). Secretion of
IgM is regulated by the secretary component (SC) and J-chain
(Figure 2A), which regulate surface availability of IgM and
premature release through preventing protease cleavage,
particularly in mucosal sites where there is richness in
microbes that often use these mechanisms to evade host
recognition (61). Apart from regulation by SC and J-chain,
sIgM is also post-translationally modified through N-
glycosylation and sialylation (60, 73). Most of the N-
glycosylation sites are in the m chain and with one site in the J-
chain and mutations in these sites lead to accumulation of IgM
on the cell surface and reduced secretion (73, 74).

Upon binding to surface-exposed antigens via antibody
binding region (Fab), pentameric IgM complexes undergo
conformational changes (68) followed by interaction of the
antibody-antigen complex with B cells receptors via binding of
the constant (Fc) domain. IgM can bind to several cell surface
receptors including complement receptor CR2 and CR3,
polymeric Ig receptor (pIgR), Fca/mR and FcmR on B-cells,
epithelium cells, and antigen presenting cells (75–77). FcmR
specifically binds sIgM in mice and exclusively so in human
(77). Mice deficient in FcmR expression exhibit spontaneous GC
formation, long-lived plasma cell development and memory B
cell formation (76, 78). The polymeric Ig receptor is expressed at
the basal membrane of mucosal epithelium and exocrine glands
and binds to sIgM and sIgA to mediate transcytosis of these
antibodies from lamina propria or ileum to apical mucosal sites
where they bind to microbiota (Figure 3) (79, 80). Fca/m
receptor (Fca/mR) is expressed in non-hematopoietic cells and
by marginal zone B-2 cells (81, 82). Binding of IgM-antigen
October 2020 | Volume 11 | Article 595535
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A B

FIGURE 2 | The structure of membrane bound and secreted immunoglobulin M (sIgM). (A) A monomer structure of immunoglobulin M (IgM) contains Fab
fragments, Fc fragment, and transmembrane signaling tail that attaches to Fc receptors on the surface of B cells. A monomer is made up of two heavy chains and
two light chains. (B) A pentamer structure is the most naturally occurring form with five monomers held together by a J-chain. Secretary component regulates
surface availability and secretion of the pentamer. Created with BioRender.com.
FIGURE 3 | Immunoglobulin M (IgM) is central at steady stage and against infections and non-communicable diseases. Secretory IgM is important at mucosal
surfaces in maintenance of healthy microbiota together with secreted IgA. Secretory IgM together with IgM B cell receptor are important in initiation protective
immunity against various respiratory pathogens including species of fungi, viruses, and bacteria. Secreted IgM is essential in parasitic infections including those
causing malaria and sleeping sickness. Secreted IgM play an important part in cancers diagnosis and auto-immunity diseases such as systemic lupus erythematosus
(SLE) and rheumatoid arthritis (RA). Secreted IgM has high affinity for C1q, a complement component that allows degradation of antibody coated pathogens and
apoptotic debris. Created with BioRender.com.
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complexes to the Fca/mR has been shown to mediate endocytosis
and pro-inflammatory cytokine production (81, 82).
IMMUNOGLOBULIN M ANTIBODY
RESPONSES TO T CELL-DEPENDENT
AND -INDEPENDENT ANTIGENS

Class switching, which occurs in the germinal centers (GCs) and
occasionally in extrafollicular sites (36, 47, 53), involves
intrachromosomal rearrangement of the Ig heavy chain C-
region from Cm (IgM)/Cd (IgD) with Cg1 (IgG) without
altering specificity to immunizing antigen (36, 52). This class
switching is thought to occur sequentially in GCs (83–87).
However, direct class switching from Cm to Ce or Ca has been
observed, particularly in extrafollicular GCs where it is partly
thought to be driven by lack of B cell maturity or low activation
threshold (83, 88, 89). Class switch recombination is initiated by
AID, which targets intronic switch (S) regions, causing DNA
breaks and recombination of the heavy chain VDJ segments with
other constant regions (50, 51, 84, 87). It is widely thought that
memory B cells are generated from antigen T-dependent
interactions that take place in the GC and that the majority of
first wave plasma cells are of IgM isotype, short-lived, display
high avidity and are T-independent (53). Over the last decade,
increasing evidence suggests that memory B cells of IgM isotype
exist and that these cells can secrete long-lived plasma cells
(LLPCs) when stimulated by a cognate antigen (57). The nature
of the generation of IgM memory B cells generation is rather
complex, as it seems to depend on the tissue of origin (local
events), GCs or extrafollicular GCs pathway and SHM rate of
integrative genomics viewer (IgV) region of B cell receptor (57,
88, 90–93).

Antigen-Specific Immunoglobulin M Short-
Lived Plasma Cells
Short-lived plasma cells (SLPCs) of IgM producing antibodies
are typically found in the spleen on the periphery of B cell
follicles, displaying little to no SHM (Box 1A) (92). Long-lived
plasma cells on the other hand, show some degree of high
affinity, suggestive of having gone through GCs, and, can be
found in the BM (Box 1B) (91). Short-lived plasma cells’
differentiation is governed by the B-cell lymphoma 6 (BCL6)
and PR domain containing 1 (PRDM1)/BLIMP-1 transcription
factor (94, 95). BCL6 favors GC entry, whereas BLIMP-1
represses BCL6 and favors antibody secreting cells (ASCs).
Frontiers in Immunology | www.frontiersin.org 6
Interactions showing poor strength between BCR and antigen
favor higher avidity, tend to be generated in extrafollicles and do
not enter GCs resulting in SLPCs (94, 96). These SLPC release
the early wave of antibodies post-antigen exposure and provide
the initial protective response prior to emergence of high affinity
antibodies (94, 96). Additional evidence suggests a key role for
the glycolysis pathway in this T-independent SLPC production
(97). This process involves mechanistic target of mTOR
activating transmembrane activator and CAML interactor
(TACI) via MyD88, to induce MZ B cell proliferation and
genetic recombination, allowing non-GC class switching (97).
LLPCs of IgM isotype were only described recently and differ
from IgG LLPCs, as they develop independently of GCs (57).
This population persists in the spleen, unlike IgG BM-residing
LLPCs and undergo SHM (some outside of the GC), in an AID-
dependent and BLC6-independent manner (57, 98, 99). The
mutations that occur are not typically in the complementarity
determining region 3 (CDR) and are therefore not thought to be
selected for by antigen affinity (57). The IgM LLPCs are capable
of conferring protection against viral and bacterial infections in
vitro and in vivo, independently of IgG LLPCs, memory B cells,
and T cell help (32, 57).

Antigen-Specific Immunoglobulin M
Memory B Cells
Antigen specific IgMmemory B cells (MBCs-M) form a subset of
memory B cells that secrete IgM in the spleen, surprisingly also in
germ-free mice, albeit with reduced diversity (Box 1C) (56, 100).
MBCs were initially described as being IgG or IgA isotypes and
expressing high levels of CD73, CD80, and PD-L2. However, it is
now accepted that an MBC-M population exists from an early
GC reaction and lacks classical MBCs surface molecules (100–
102). MBCs-M show poor affinity compared to MBCs-G and
contain less IgV mutations, however, their half-life is
significantly longer (99). The mechanisms by which MBC-Ms
survive longer and are more persistent remain largely unclear.
BCR avidity and usage (CDR3 vs. non-CDR3) and mouse
genotype rather than antigen are thought to be key in the
persistence (95). Although, MBC-M are in many ways similar
to naïve B cells, they show different dynamics in GC entry and
ASCs production (103). Compared to MBCs-M, naïve B cells
express considerably higher levels of Krüppel-like factor (KLF) 4,
KLF9, and promyelocytic leukemia zinc finger (PLZF),
transcription factors associated with quiescence (104). It is
likely that these factors repress genes associated with survival
and cell cycle, allowing significantly faster turnaround in ASC
production and if needed, generation of class switched plasma
BOX 1 | Key differences in effector B cell subsets.

a. Short-lived plasma cells (SLPCs)—SLPCs of IgM producing antibodies are typically found in the spleen on the periphery of B cell follicles, displaying little to no SHM.
SLPCs differentiation is governed by the BCL6 and BLIMP-1 transcription factor. SLPC release the early wave of antibodies post-antigen exposure and provide initial
protective response prior to emergence of high affinity antibodies.
b. Long lived-plasma cells (LLPCs)—LLPCs continuously secrete antibodies at a constant titre. LLPCs also appear to be more stringently selected and appear in late GCs.
LLPCs reside in BM, spleen, and gut-associated lymphoid tissues (GALTs).
c. Memory B cells IgM (MBCs-M)—MBCs secrete antibodies in response to cognate antigen challenge. MBCs maintain a higher diversity and appear much earlier in GCs.
MBCs can be tissue resident or are found recirculating secondary lymphoid organs. MBCs-M display a lower mutation load compared to their CSR counterparts. MBCs-
M display large cross-reactivity, particularly against conserved N-glycans of bacteria and retroviruses.
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cells (94). An additional important aspect that has emerged as
key in class switching and plasma cell generation is metabolism
(105). A recent study showed that naïve follicular B cells entering
GCs prefer fatty acid oxidation over glycolysis as an energy
source (106). It is likely that differential metabolite needs may
have further upstream implications, particularly in MBCs-M
function, be it ASC production or re-entry into GCs for
further SHM.

MBCs-M acquire high affinity BCRs through SHM upon re-
entry of the cells into GCs in an activation-induced deaminase
(AID)-dependent process (90, 100). Earlier studies using a less
complex (4‐hydroxy‐3‐nitrophenyl)acetyl (NP) antigen
suggested that in the secondary responses, high affinity MBC-
Ms matured and were able to become ASCs after booster
immunization (107). More recent findings suggest that highly
mutated and high affinity MBCs-M do not differentiate into
ASCs, a process that is left for low affinity MBC-M in the primary
immune response (92). It is likely that high affinity MBC-Ms
secreting high affinity IgM have an important role in
inflammatory and autoimmune disease such as rheumatoid
arthritis (discussed in section 5.1) (108). It is speculated that
high affinity MBCs-M class switch to other isotypes, as seen in
tissue resident Fc Receptor Like 4 (FcRL4+) fractions in
secondary lymphoid organs (SLO) and IgA plasma cells in the
gut associated lymphoid tissue (GALT) (88, 92, 100). However, a
recent study contradicted this notion and suggested that MBCs
are unlikely to re-enter GCs in secondary responses for further
diversification (102). It may be reasonable to speculate that the
low affinity MBCs-M re-enter GCs for further mutation
acquisition, to become high affinity MBCs-M with those that
fail to do so becoming ASCs, whereas high affinity MBCs-M
either contribute to the memory pool or class switch outside GCs
as suggested recently (109). Whether high antigen valency, a
feature of pentameric IgM, is a major contributing factor in
decision making between high affinity MBCs-M and low affinity
MBC-Ms is a fascinating area of research that needs further
exploration (110).

In addition to MBCs-M, fate mapping studies using AID have
also identified other subsets of MBCs-M in the spleen that
spontaneously develop under germ-free conditions and are not
derived from BM or gut (56). These MBCs-M display a lower
mutation load compared to their class switch recombination
(CSR) counterparts, suggesting residual antigen activation in the
gut, from potential endogenous or food antigen (56).
Additionally, they display large cross-reactivity, particularly
against conserved N-glycans of bacteria and retroviruses (56).
These MBCs-M display unmutated VH genes with antibacterial
activity, suggesting a pre-programmed antibody immune
repertoire (56).

In humans, unswitched IgM memory B cells exist and are
more abundant in local tissues such as GALT, lung, and SLOs
compared to mice (88). MBCs-M have also been found in blood
circulation (identified as IgM+IgD+CD27+) and show clonal
relatedness to gut specific MBCs-M, IgM only PCs, and IgA
only PCs (91, 111). Human gut IgM responses may involve IgM
diversification from pre-existing IgM+IgD−CD27+ memory
Frontiers in Immunology | www.frontiersin.org 7
specificities, rather than de novo recruitment of naive
IgM+IgD+CD27− B cells, ensuring considerably faster CSR and
providing protection to blood borne infections, possibly through
cross-reactivity (91, 111). A recent study, which reported severe
infections of Klebsiella in immunocompromised patients showed
that these patients harbored Klebsiella LPS-O3 antigen specific
MBCs in peripheral blood which showed clonal relatedness with
intestinal plasmablasts (112). These MBCs were mostly MBCs-M,
however, MBCs-G and MBCs-A were also found in circulation and
closely related to IgA found in the lamina propria. Both MBCs-G
and MBCs-A showed higher mutation rates (between 20 and 25
bp/IgHV gene) in their heavy chain variable regions, whereas
MBCs-M showed less mutations (around 10bp/IgHV gene) in
their VH (112). These antibodies were glycan-specific and bound
to O3 antigen of the mannose residues present at the surface of
other microorganisms, such as Saccharomyces cerevisiae, HIV and
several other Gram+ and Gram− human commensals (112). This
is consistent with other studies showing humanMBCs-M secreted
IgM targeting mucus-embedded SIgA coated commensals in the
ileum, thus assisting in providing protection from diverse bacteria
(88). These MBCs-M are not limited to bacterial species and have
been found in the blood of healthy adults mildly infected with
human BK polyomaviruses (113). In such settings, MBCs-M were
shown to have high viral neutralizing abilities against BK virus and
were also pan-reactive against another related JC virus, which causes
progressive multifocal leukoencephalopathy in immunocompromised
individuals (113). Interestingly, these MBCs-M were functionally
distinct from MBCs-G, lost their neutralizing functionality when Cm
was replaced by Cg and were resistant to class switching to IgG
producing cells (113).

MBCs are different to LLPCs in several ways—LLPCs
continuously secrete antibodies at a constant titer, while MBCs
only do so in response to cognate antigen challenge (101).
Additionally, LLPCs reside in BM, spleen, and gut-associated
lymphoid tissues (GALTs), whereas MBCs can be tissue resident
or are found recirculating secondary lymphoid organs (SLOs)
(94). LLPCs also appear to be more stringently selected and
emerge in late GCs, whereas MBCs maintain a higher diversity
and appear much earlier in GCs (103, 114). The higher diversity
of MBCs provides an evolutionary advantage to the host where
there is increased antibody breadth protection, a phenomenon
that is critical in most antibody-based vaccine designs.
IMMUNOGLOBULIN M IN DISEASES

Immunoglobulin M in Non-Communicable
Diseases
An additional aspect where natural and antigen-induced IgM are
thought to play non-redundant roles are autoimmune diseases
and cancer. In autoimmune diseases such as systemic lupus
erythematosus (SLE) and rheumatoid arthritis (RA), IgM and
IgG titers are increased and associated with disease pathogenesis.
In SLE, IgG autoantibodies directed against double stranded
DNA (dsDNA) are thought to be pathogenic, while IgMs anti-
dsDNA are thought to be protective (115). SLE patients are
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typically treated with B-cell depletion therapy, rituximab, with
adverse outcomes of hypogammaglobulinemia linked to
increased infections in these patients (116). In two studies
using SLE prone mouse strains (MRL-lpr/lpr) and NZB x
NZW that spontaneously develop SLE (characterized by severe
immune complex-mediated glomerulonephritis and death by 12
months of age from renal failure), secreted IgM (sIgM) was
shown to be essential in preventing disease (Table 1) (137, 138).
When lpr mice were crossed with sIgM-deficient mice, they
developed a severe form of the disease with increased glomerular
immunocomplex deposition and IgG ds-DNA autoantibodies,
which was rescued by treatment with IgM autoantibodies (138).
In the second study, treatment of NZB x NZW mice IgM anti-
dsDNA improved disease symptoms including reduction in renal
pathology and organ damage (137).

In cancer, natural IgMs are associated with recognition and
removal of precancerous cells, owing to their ability to recognize
self-antigens of carbohydrate patterns and quickly activate the
complement (7). The presence of natural IgM against specific
sugar moieties not found in non-cancerous cells is also used as a
diagnostic and a prognosis marker, particularly for breast
cancers (Figure 3) (139). Some of these recognized sugar
moieties include MUCIN 1 (140), SAM6/GPR78 (141), and
PAM-1 (142), and have been proving to be useful as
prophylactic and therapeutic targets when derived directly
from a patient’s tumor cells (141, 142).

Very little is known about the role of natural and induced IgM
in asthma, despite overrepresentation of asthma in patients with
selective IgM syndrome (143, 144). Previous studies have
suggested that neonatal vaccination with bacterial species, such
Frontiers in Immunology | www.frontiersin.org 8
as group A streptococcus containing GlcNAc or b-1,3-glucans
can protect adult mice against Aspergillus fumigatus induced
allergic asthma (Table 1) (10, 23, 124). Passive immunity with
anti-GlcNAc natural IgM antibodies in adult mice protects
against developing asthma, suggesting that these conserved
germline-encoded IgM antibodies can have broad protective
effects against other common allergens containing GlcNAc
moieties, such as dermatophytes (124). B1 cells secreting
IgM are also known to be stimulated by IL-5 and proliferate in
an IL-33 receptor dependent manner (145). In this setting, IgM
producing B1 cells promote oxazolone induced contact
dermatitis in mice (145). Currently, it is unclear whether
natural or secreted IgM plays different roles compared to
membrane bound IgM, which is more likely to undergo class
switching to IgE. More studies are needed to decipher the
function of IgM in asthma beyond class switching.

Immunoglobulin M in Shaping Mucosa
Tolerance and Against Bacterial Infections
Microbiota colonize the mucosal sites soon after birth in humans
and play key roles in homeostasis (146). The dominant
antibodies found at mucosal sites are secretory IgAs, which
binds and shapes microbiota (147–149). The majority of IgA
plasma cells are generated frommemory IgA B cells that reside in
the lamina propria (LP) in the gut (150). In addition to IgA,
emerging evidence places secreted IgM as a key player in
maintaining local homeostasis at mucosal sites, such as the gut
and lung, and assists in shaping local microbiota (9, 88). Here, we
briefly discuss how local secreted IgM produced by memory IgM
B cells shapes microbiota (as discussed under antigen-specific
TABLE 1 | Role of immunoglobulin M (IgM) in infectious and non-infectious diseases.

Organism (disease) Species Function Reference

Plasmodium (malaria) P. falciparum Anti-a-gal IgM antibodies protective in adolescence (117)
P. chabaudi Anti-a-gal IgM antibodies protective when transferred to mice (117)
P. berghei MBCs-M secrete high affinity IgM in GCs (118)

Trypanosomes
(trypanosomiasis)

T. brucei brucei nIgM not protective, sIgM-deficient mice not susceptible (119)

T. congolense nIgM not protective, sIgM-deficient mice not susceptible (119)
T. evansi nIgM important for primary and secondary responses (120)

Fungi (mycosis) C. neoformans nIgM and antigen IgM protects against systemic dissemination. Important for IFN-g response
and activation of macrophages.

(121, 122)

P. carinii nIgM protects against dissemination and priming of TH2 and TH17 responses (123)
A. fumigatus Anti-GlcNAc IgM antibodies protect against allergic asthma (124, 125),

Viruses (viral infections) Influenza A sIgM-deficient mice show poor viral neutralizing ability and increased viral titers (126–128),
VSV Natural IgM traps VSV antigens in secondary lymphoid tissues (129–131),
RVS IgM BCR on Bregs a target for RVS and detrimental to disease (132)

Bacteria S. pneumonia Adoptive transfer of B1a cells derived sIgM led to improved survival of infected mMT mice. sIgM
was dependent on GM-CSF

(133)

E. coli Adoptive transfer of B1a cells derived sIgM led to improved survival of infected mMT mice. sIgM
was dependent on GM-CSF

(133)

Ehrlichia muris Bone marrow derived IgM-secreting cells, AID independent provide protection (32, 134),
F. tularensis sIgM was directed at the LPS fraction of F. tularensis and depended on IL-1b (135)
Haemophilus influenzae PD-L2 dependent B 1 natural IgM anti-phosphorycholine provide protection against H.

influenzae
(136)

Non-infectious agents SLE Autoantibodies IgM anti-dsDNA are protective, sIgM mice protected (115, 137, 138),
Allergy Anti-GlcNAc IgM antibodies passively administered or vaccine induced protective (23, 124),
Cancer Natural IgM recognized sugar moieties include MUCIN 1, SAM6, PAM-1 in cancerous cells
October 2020 | Volume 11
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IgMmemory cells). However, we mainly focus on discussing IgM
contribution in regulating bacterial infections particularly in
mucosal sites in experimental infection models (88). In the
human gut mucosa, several studies have found human secreted
IgM, together with secreted IgA, to coat human microbiota (88,
151, 152). IgM enhanced IgA binding repertoire and in some
instances was even more potent in neutralizing enteric bacteria
on its own (151). Specifically, IgM was found to promote
bacterial species that are beneficial for healthy gut homeostasis,
such as Firmicutes (e.g., Bacillus cereus, Lachnospiraceae spp. and
Ruthenibacterium spp.) and Bacteroidetes (Bacteroides vulgatus)
which are all beneficial (88, 146, 153). Age negatively correlated
with the presence of these bacteria, resulting in dysbiosis in the
adult population (153). Secreted IgM/MCBs-M may have
developed to aid IgA in preserving microbiota homeostasis by
directly interacting with bacteria to promote abundance of
healthy microbiota and possibly eliminating pathogenic bacteria.

In the lung mucosa, infection of B cell deficient mice (mMT
mice) with Escherichia coli or Streptococcus pneumoniae led to
increased mortality and lung bacterial burdens (Table 1) (133).
Transfer of wild type mice pleural cavity B1a cells, which secrete
copious amounts of sIgM led to improved survival of infected
mMT mice (133). Granulocyte-macrophage colony stimulating
factor (GM-CSF) was found to be essential in sIgM B1a induced
protection, as transfer of B1 cells lacking this cytokine did not
rescue infected mMTmice (133). Induced sIgM produced by B1a
cells has also been shown to be essential in Francisella tularensis
infection (135). In this infection model, production of sIgM was
directed at the LPS fraction of F. tularensis and depended on IL-
1b for its earlier protective effects. Interestingly, sIgM showed
great specificity to F. tularensis and did not cross-react with
E. coli LPS, suggesting that it was induced sIgM, and not natural
occurring sIgM (135).

Emerging evidence suggests a localized B cell repertoire in the
lamina propria which can influence BM and peritoneal cavity B cell
populations (9). Mono-colonization of germ-free mice influenced
VDJ recombination process in the LP (9). In another study,
neonatal immunization with group A streptococcus antigen
increased GlcNAc reactive B cells and clonotype diversity in adult
mice (10). These GlcNAc reactive B cells were educated in the LP in
early life and disseminated systemically to provide protection
against GlcNAc containing species (10). Early education of B cells
might support diversification of the B cell repertoire but needs
further investigations.

Immunoglobulin M Against Fungi
Natural IgM antibodies directed against fungal pathogens are
important in both complement-dependent and -independent
fungal recognition and clearance (154) and have been shown
to have direct killing effects (155). Most natural IgM antibodies
are conserved across species and are not dependent on antigen
exposure, as suggested from their presence in germ-free mice and
umbilical cord blood of non-human primates and humans (123).
In fungi, these natural IgM antibodies are directed to conserved
major cell wall components b-(1,3)-glucan and chitin and are
derived from B1 cells in the mouse spleen (Table 1) (121, 123,
154, 156).
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Mice deficient of sIgM show increased dissemination of
Cryptococcus neoformans to other organs such as spleen,
kidney, and brain when infected intravenously (121). In this
setting, sIgM is thought to contribute to the optimal Th1
induction and the subsequent activation of phagocytic
macrophages that kill the fungus (121). B cells, and more
specifically IgM, were shown to be essential in protective
mechanisms against C. neoformans when naïve B cells were
transferred to RAG-1-deficient mice (121, 156). Transfer of B
cells was shown to reduce fungal dissemination to the brain but
had no effect in lung fungal burden (156). Both natural and
infection induced-IgM were important in the control of C.
neoformans and contributed to the optimal Th1 cytokine
production (121, 156). A human study using antibodies
generated against C. neoformans glucuronoxylomannan in a
transgenic mouse expressing human IgM, revealed that
protective effects of IgM were epitope specific and route of
injection dependent (122). Non-protective effects of sIgM have
been observed when sIgM-deficient mice were injected
intraperitoneally, with increase in their survival compared to
control wild type mice (157). In Pneumocystis, an opportunistic
fungi that infects HIV/AIDS patients, natural IgM antibodies are
detected and have an important role in clearance (158). Mice
lacking sIgM are susceptible to pulmonary Pneumocystis carinii
infection and show increased burdens, which are associated with
altered inflammatory response (Table 1) (123). Secreted IgM
deficiency in mice is associated with reduced IL-6 and IL-1b
innate cytokine production and adaptive TH2 and TH17
responses at both lung and draining lymph nodes (123). The
susceptibility of sIgM-deficient mice to P. carinii infection is
likely to be due to defective DC presentation and priming of CD4
T cells and a lack of class switching to protective mucosal IgG
and IgA isotypes (123). Individuals with X-linked hyper-IgM
syndrome due to CD40L mutation, display equal susceptibility to
pulmonary fungal infections, which may suggest a minimal role
for antibodies in these infections (159, 160). In both
experimental models and in humans where sIgM or B cell
antibody function was blocked by anti-CD20 monoclonal
antibodies, severe defects in optimal innate and adaptive
responses occurred, resulting in susceptibility to fungal
infections. This is suggestive of a critical function of natural IgM.

Immunoglobulin M Against Parasites
The role of antibodies in trypanosoma parasitic control are well
documented, where a constant battle to opsonize and kill
parasites occurs, while parasites have developed complex
variant specific surface glycoproteins (VSGs) to avoid host
recognition (Figure 3) (161, 162). Trypanosoma evansi can
infect all domesticated animals and is transmitted by biting
sand flies and vampire bats (163). Antibodies, particularly IgM
isotype have been shown to be important in the control of
T. evansi (120). Type 1 cytokines and effector molecules such as
IFN-g, TNF-a, and iNOS were found to be redundant in a mouse
model of T. evansi infection. In contrast, mice deficient of IgM or
B cells succumbed significantly quicker to T. evansi infection
and were not able to control parasitemia (Table 1) (120).
Furthermore, IgM, rather than IgG, was found to be critical in
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parasitemia control as passive transfusion with T. evansi immune
IgM serum, but not IgG serum protected naïve mice from re-
infection with the same parasite (120). Complement, which kills
parasites through phagocytosis via complement receptor
mediated recognition, did not play a role in this instance,
suggesting other mechanisms of parasite killing. In a
pleomorphic Trypanosoma brucei AnTat 1.1E infection model,
B cells and IgM were found to play minimal roles in
trypanosomiasis associated anemia, parasite induced anti-VSG
antibodies, host survival, and disease progression (119). Mice
lacking IgM showed similar levels of parasitemia to wild type
counterparts when infected intraperitoneally, exposed to tsetse fly
bites or non-virulent field isolates (119). Similarly, to T. evansi
infections, in IgM-deficient infected mice, an increase in VSG
specific-IgD isotype antibody production was observed, as well as
normal levels of VSG specific-IgG2a or IgG3, which are thought to
have compensated for the loss of IgM (129). Interestingly, B cells
which are thought to induce immune pressure in pleomorphic T.
brucei were found to be redundant in this instance and VSG
intergenic switching occurred independently of antibody or IgM
presence (119). A recent study showed an important function of
natural and induced IgM antibodies against trypanosome lytic
factors (TLF2) in T. brucei infected people (162). Healthy people
were found to harbor germline encoded natural IgM antibodies
against TLF2, which were further upregulated by T. brucei
rhodesiense infection and reduced by treatment with suramin or
melarsoprol (162). TLF2-IgMs antibodies interact with the TLF
protein, haptoglobin related protein (HPR), thus offering a route
for parasite endocytosis and killing via alternative complement
activation (162).

IgM antibodies specific to a-gal have been shown to be
protective against Plasmodium falciparum, a malaria causing
parasite (117). IgM antibodies against a-gal are thought to be
generated in the gut by microbiota that express a-gal, such as
certain strains of E. coli (O86:B7) (23). In human, anti-a-gal IgM
antibodies can directly bind to P. falciparum sporozoite and
initiate complement activation and parasite clearance (117).
Children between 0 and 1 years old in malaria endemic areas
are at the highest risk of developing the disease, which is associated
with reduced anti-a-gal IgM antibodies in serum. In older
children the level of anti-a-gal IgM antibodies increases,
associated with added protection from malaria parasite and this
is partly attributed to the maturity of the B cell compartment.
These anti-a-gal IgM antibodies were induced in germ-free
animals mono-colonized with E. coli (O86:B7) strain and were
found to be protective when these mice were infected with
different malaria parasites (117). Interestingly, these anti-a-gal
IgM antibodies did not depend on AID, suggesting that these were
natural IgM antibodies generated outside germinal centers and did
not undergo somatic hypermutation (117). Other natural IgM
memory B cells able to recognize merozoite surface protein 1
(MSP1) protein of P. falciparum have been shown to be
considerably more rapid than IgG and confer protection against re-
challenge with the parasite (164). Similarly, to anti-a-gal IgM
antibodies, these anti-MSP IgM B cells gave rise to mainly T cell-
independent high affinity plasma cells (B220+CD138+) and T cell-
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dependent (B220-CD138+) IgMplasma cells (164). These IgMmemory
B cells produce IgM plasma cells with similar binding affinity to class
switched IgG plasma cells (164). It is plausible to assume that these
memory IgM B cells developed as a strategy to protect against primary
and secondary Plasmodium infection to prevent dissemination of
parasites pre-GCs B cells, capable of generating high affinity IgG
plasma cells.

Immunoglobulin M Against Viruses
Early control of viral infections is dependent on innate natural
antibodies and most vaccine strategies target potent neutralizing
antibodies. Natural IgM antibodies can bind to surface
glycoproteins of most viral capsids and activate the
complement system via classical pathways, leading to viral
opsonization and killing (126). Influenza virus is a rapidly
replicating respiratory virus that is detected by natural IgM
antibodies, which do not require AID or class switch
recombination or somatic hypermutated B cells (93). In the
absence of adaptive immune cells, including B and T cells, such
as in the case of severe combined immunodeficiency (SCID),
influenza virus is uncontrollable and causes death in animals
(127, 165). Mice lacking sIgM are susceptible to influenza virus
and show poor viral neutralizing ability leading to increased viral
titers (128). Adoptively transfer of naïve or influenza primed
serum to sIgM-deficient or RAG-1-deficient mice restores viral
neutralizing ability and virus clearance (Table 1) (128). Vesicular
stomatitis virus (VSV), an enveloped RNA virus requires both
natural IgM and complement for clearance (130). Human sera
lacking any of the early complement factors C1−C5, but not late
complement factors C6–C9 is unable to kill VSV infected cells.
These complement factors rely on natural IgM presence on sera
for effective killing of VSV infected cells (130). Interestingly,
mice contain natural VSV IgM antibodies that were induced
independently of infection (131). These antibodies were essential
in limiting early VSV dissemination to vital organs, such as the
kidney, brain, and lungs and neutralized the virus in secondary
lymphoid tissues (131). In IgM-deficient mice or B cell-deficient
mice, VSV was recruited to secondary lymphoid tissue, where it
accumulated and activated the natural IgM antibody response
(Table 1). This, in turn, delayed dissemination of VSV to the
kidneys and brain and allowed activation of the adaptive
immune response, thus reducing VSV titers at early time
points in these tissues (131). Furthermore, IgM-deficient mice
show a delayed antibody class switching to neutralizing IgG,
which illuminated this trapping of VSV antigens in secondary
lymphoid tissues by natural IgM (129, 131).
CONCLUDING REMARKS

Classic memory takes up to 4 days to develop and may be slow
relative to the rapid invasion of encapsulated bacteria and
viruses. It is during this period that innate-like B cells, which
produce rapid cross-reactive natural IgM or long-lasting
antigen-specific IgM responses that can interfere with initial
infection. As cross-reactive SLPC, they can assist phagocytes
October 2020 | Volume 11 | Article 595535

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Jones et al. IgM in Infectious Diseases
and complement, to clear the system and mucosal sites.
Antigen-specific LLPC can rapidly class switch to specific
isotype or become highly specific IgM producing cells able to
clear infection or activate other adaptive cells. However, despite
all this knowledge, little attention has been paid to their role in
immune responses or how their production can be manipulated
to the host’s advantage. The higher diversity of MBCs provides
an evolutionary advantage to the host, where there is increased
antibody breadth protection, a phenomenon that is critical in
most antibody-based vaccine designs. We do not fully
understand the role of IgM in allergies beyond class switching
and its role in lung mucosal sites where it has been suggested
that it can be hijacked by viruses to gain entry in mucosal sites.
Whether natural or induced IgM can be fine-tuned to fight
cancers and other infections is an area still less explored.
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