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The alternative pathway regulator Factor H-like protein 1 (FHL-1) is composed of the first 7
N-terminal complement control protein domains of Factor H (FH) and protects host
surfaces from uncontrolled complement attack. Although FHL-1 shares the N-terminal
regulatory domains with FH, it was thought to be a weaker regulator. Recently, the
regulatory activity of FHL-1 was shown to be comparable to FH. Nonetheless, the
question remained whether FHL-1 is an indispensable, unique regulator. The discovery
that FHL-1 is the predominant regulator on Bruch’s membrane, a critical site for the onset
and progression of age-related-macular degeneration (AMD), showed that FHL-1 is
essential for complement regulation. A common single nucleotide polymorphism in FH/
FHL-1 that predisposes for AMD underlines the important role of FHL-1 in this context.
Reports that some cancer tissues specifically upregulate FHL-1 expression, thereby
evading immune surveillance, suggests a pronounced regulatory activity of the splice
variant. Several microorganisms specifically recruit FHL-1 to evade complement attack.
From a phylogenetic point of view, FHL-1 appears much later than other complement
regulators, which could imply a specific role that is possibly not systemic but rather tissue
specific. This review focuses on the current knowledge of FHL-1 and its physiological and
pathophysiological roles.
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INTRODUCTION

The complement system is an essential part of the innate immune system protecting against
infections and helping in maintaining tissue homeostasis. While the classical and lectin pathways
are activated specifically, the activation of the alternative pathway (AP) occurs indiscriminately by
spontaneous hydrolysis of C3, yielding C3(H2O) (1). C3b produced by any initiating pathway in
turn becomes amplified further by the AP amplification loop. This indiscriminate generation and
surface deposition of C3b necessitates precise regulation to specifically downregulate AP
amplification on self-surfaces. Therefore, only foreign, dangerous or impaired host surfaces allow
unlimited or under-regulated AP activity. To protect themselves from AP-mediated attack, human
cells and surfaces are equipped with preformed regulators of defense, that is, complement regulatory
org October 2020 | Volume 11 | Article 5964151
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proteins (2). These are membrane-bound regulators and soluble
plasma proteins that normally control consumptive complement
activation in the fluid phase. In addition, the soluble regulators
are equipped with domains that specifically recognize
polyanionic surface markers that are specific for host
structures. Thereby, these soluble regulators intensify the
complement regulation by the membrane-bound regulators. In
particular, the basement membranes in the eye and the kidney,
which are exposed to the blood stream at the fenestration of the
endothelium, appear particularly vulnerable to AP attack (3).
Because basement membranes lack plasma-membrane bound
regulators, their only means to protect themselves from AP
attack is to recruit soluble regulators via exposing polyanionic
host surface markers that attract the soluble regulators.

Factor H (FH) and Factor H-like 1 (FHL-1) are the only
known negative fluid-phase regulators of the AP. FHL-1 was
discovered by Schwaeble et al. (4) as a short transcript that was
constantly expressed in the human liver and secreted into the
blood stream. Because of the similarity to the FH N-terminus, it
was assumed from the beginning that FHL-1 should share
regulatory functionalities with FH. Later, it was clarified that
this truncated form of FH with a molecular weight of 49 kDa
originates from the FH gene by alternative splicing (5–7). The FH
gene is located on chromosome 1q32 and is part of the
Regulation of Complement Activation gene cluster (8, 9).
FHL-1 is composed of the first seven N-terminal complement
control protein (CCP) domains of FH but lacks the remaining 13
CCP domains (Figure 1). At its C-terminus, FHL-1 contains four
unique amino acids (SFTL), which are derived from the
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alternative splicing and are encoded on exon 10 (6, 7).
Remarkably, in mice, no evidence for an alternative FH splice
variant was found (10).

With the discovery of the splice variant FHL-1 in humans,
several questions arose as to the physiological relevance of this
truncated FH version, the possible existence of new functional
features in FHL-1, or the functional consequences on AP
regulation introduced by the deletion of the 13 C-terminal FH
domains (4, 11). However, to date, the physiological role of FHL-1
remains the subject of controversial discussion. This review
considers the possible physiological origin of this molecule and
summarizes the current knowledge of its regulatory activities as
well as its physiological and pathophysiological roles.
MOLECULAR INSIGHTS INTO THE
REGULATORY ACTIVITY OF FHL-1 IN
COMPARISON TO FH

FH is known to display several functional properties, which are:
binding C3b, competition with Factor B for C3b binding, co-
factor activity (CA) for Factor I-mediated cleavage of C3b, decay
accelerating activity (DAA) for the C3 convertase C3bBb, and
host recognition through binding to specific polyanionic markers
on the surface of host cells. C3b binding is a precondition for all
complement regulatory activities of FH. Binding to C3 activation
fragments was initially described with the discovery of FHL-1
and later assessed again by testing binding properties of
A

B

FIGURE 1 | Structure-function overview of Factor H-like-1. (A) Comparison of FHL-1 and FH. FH and its splice product FHL-1 share the amino acid sequence and
functionalities of the first seven N-terminal complement control protein (CCP) domains. FHL-1 lacks important host recognition properties which are located in the
C-terminal CCP domains 19–20 of FH. (B) Impact of individual CCP domains 5, 6 and 7 to CCP 1–4 for binding on C3b, decay accelerating activity (DAA), and
cofactor-activity (CA).
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recombinant FHL-1 and several fragments thereof to C3(H2O)
(4, 12). CCP1–4 were sufficient for C3(H2O) binding, while
further addition of the CCP domains 5, 6, and 7 increased the
binding strength. This is in agreement with recent studies using
surface plasmon resonance (SPR) for quantification of the
binding affinity to C3b. The addition of the remaining CCP
domains 5, 6, and 7 to CCP1–4 increased the affinity for C3b
approximately 15 times, with an equilibrium dissociation
constant of FHL-1 for C3b in the low micromolar range (~1
µM for FHL-1) (13, 14). By comparison, full-length FH displayed
higher affinity for C3b (~0.6 µM), which is unsurprising, given
that FH contains a second C3b binding patch within its two C-
terminal domains 19–20 (15, 16). Some studies report a weak,
third binding site for C3b located towards the middle of FH,
while others could not detect it (15, 17). The difference between
the binding affinity of FH and FHL-1 for C3b (and thus two
versus one strong C3b-binding patch) appears less than expected.
This may be explained by a complex structural model of FH, in
which the C3b binding site in the C-terminal CCP domains is
blocked or shielded by the N-terminal domains and only
becomes accessible upon binding to polyanionic host surfaces
marker. Several lines of evidence support the notion of such a
structural FH model (13, 18–22). Through an absence of CCP
domains 19–20, FHL-1 loses not only the second strong C3b
binding site, but also the most critical host recognition site
located in CCP20, which enables specific binding to
glycosaminoglycans (GAG) and certain sialic acid-linked
moieties (23–25). Therefore, the specificity for AP regulation
on host surfaces for the splice variant FHL-1 could only derive
from the GAG binding site located in CCP domain 7 (15, 26–29).
On host-like sheep erythrocytes only FH CCPs 19–20 (carrying
sialic acid and GAG binding properties), but not FH CCPs 6–8
(entailing only GAG binding functionality) exhibited functional
competition with FH (24). A direct analysis of FH and FHL-1
regulatory capacity and surface specificity (host versus foreign) in
FH/FHL-1-depleted serum revealed that both regulators protect
foreign cell surfaces from complement attack at high
concentrations, but FH was significantly more efficient in
differentiating between foreign and host surfaces known to
contain sialic acid moieties (14). This is in agreement with
previous reports showing increased FH binding to sialylated
surfaces (30, 31). These results show that the sialic acid (and
GAG) binding site in CCP20 is much more important for self
versus non-self discrimination than the GAG binding site
in CCP7.

Misasi et al. (32) isolated FHL-1 from human plasma and
demonstrated that it indeed harbors CA for the cleavage of C3b
to iC3b (32). The precise determination of the involved CCP
domains was demonstrated with experiments using FHL-1 and
truncated fragments, with the result that the minimal functional
unit to contain CA was CCP1–4 (33, 34). Similar to C3b binding,
the successive addition of CCP domains to CCP1–4 enhanced
the activity, while the addition of CCP6 to CCP1–5 had the
largest impact on overall regulatory function (14, 35, 36).
However, already in the fluid phase, when sialic acid binding
does not even have a role in direct comparison to FH, FHL-1
Frontiers in Immunology | www.frontiersin.org 3
appears to be a significantly weaker cofactor for Factor I-
mediated C3b degradation (13, 14). Remarkably, this is also
observed for the engineered versions of FH like miniFH.
Although miniFH contains the N-terminal four and C-
terminal two CCP domains of FH and thus exhibits a similar
affinity for C3b as FH, miniFH is also a substantially weaker
cofactor than FH (13, 14). This indicates that C3b affinity does
not translate proportionally to CA. The structural complex of
C3b with miniFH and Factor I revealed that only the two FH
CCPs 2 and 3 directly contact Factor I (37). Processing of C3b by
Factor I only occurs in ternary complexes of C3b with Factor I
and a cofactor. Speculatively, FH with its two C3b binding
patches is able to form a more stable ternary complex with
C3b and Factor I than can FHL-1 or miniFH. This may be
particularly true for the second cleavage of iC3b1 into iC3b2,
because it is envisaged that the CUB (C1r/C1s–Uegf–Bmp1)
domain of C3b begins to become partially unfolded upon
consecutive Factor I cleavages (38).

Regarding the DAA of FHL-1, the literature is contradictory.
FHL-1 was shown to act approximately 100 times weaker as a
decay accelerator in comparison with FH when sheep
erythrocytes deposited with C3 convertases were exposed to
FH, FHL-1 or N-terminal fragments of FHL-1 (12).
Nevertheless, it was shown unequivocally that FH CCPs 1–4
are the minimal requirement for fulfilling DAA. A recent SPR-
based study, in which C3 convertases were formed on-chip,
investigated the ability of FH, FHL-1 and FH-fragments to cause
the decay of convertases. The outcome does not mirror the
previous finding, because FHL-1 exhibited comparable DAA as
full-length FH (14). The different outcomes could be attributed
to differences in the assay. In the first report, the assay was
performed on convertase pre-coated cells rather than in more
defined (but less physiological) conditions on the SPR chip
surface. However, because the solubility of FHL-1 in aqueous
buffer at physiological pH and salt concentrations is rather
limited, assays that require higher concentrations of FHL-1
stock solutions to be diluted into the assay conditions may
need to be optimised for FHL-1 solubility (13, 14). In addition
to specialized assays that investigate CA or DAA, recently the
activities of FH and FHL-1 were directly compared in several
serum assays. In these assays, the AP regulatory activities were
nearly identical between the two protein variants when either FH
or FHL-1 had been added to serum dilutions and consequently
exposed to lipopolysaccharide-coated microtiter plates or
complement vulnerable paroxysmal nocturnal haemoglobinuria
cells (13). However, when FH and FHL-1 were compared on
different self and non-self surfaces in FH/FHL-1-depleted serum,
small difference in regulatory activity could be observed. FH was
a slightly better regulator on self and self-like surfaces and a
slightly worse regulator on foreign surfaces when compared to
FHL-1. Additionally, although overall regulatory activity did not
differ dramatically, it is obvious that FH does actively
discriminate between self and non-self, whereas FHL-1 appears
void of this capacity, at least for the surfaces tested (14).

To conclude, FHL-1 and FH share most of their complement
regulatory features because they contain the first seven N-
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terminal CCP domains. FHL-1 lacks the important host
recognition site at the FH C-terminus that recognises sialic
acid structures [and does not contain another sialic acid
binding moiety within its seven domains (24)], explaining the
lack of differentiation between host and foreign surfaces tested.
Overall, as evaluated in several serum assays, FHL-1 exhibits
comparable activity to FH in protecting host cells (14).
PHYSIOLOGICAL ROLE OF FHL-1

Continuous low-level activation of the AP by probing all surfaces
requires constant readiness for action of the solvent based
negative regulators, FHL-1 and FH, to avoid wasteful
consumption of the complement components in the fluid
phase and self-directed damage on host surfaces. The
regulators must satisfy two major requirements: displaying
regulatory activity and being sufficiently abundant. Although
FH is more selective and has slightly higher activity on host
surfaces than FHL-1, both display overall comparable regulatory
activities (discussed above). Therefore, the answer to the
question as to which of the variants is the main AP regulator
lies in the relative abundance of the two proteins. The
determination of the plasma FHL-1 concentration proved to be
difficult because to date there is no (commercially) available
monoclonal antibody which specifically detects FHL-1 but not
FH. FH was consistently reported to occur in the circulation at a
concentration of ~2–3 µM (39–41), whereas the blood FHL-1
concentration varied in several reports over a large concentration
range. Friese et al. used an indirect enzyme-linked
immunosorbent assay-based subtraction method in which the
FHL-1 concentration was determined by detecting either both,
FH and FHL-1, or only FH with appropriate polyclonal antisera.
This resulted in a FHL-1 serum concentration of ~1 µM (42). In a
recent report, the FHL-1 plasma concentration was determined
using western blot analysis (14). Briefly, for semi-quantitative
comparison, standards were prepared adding purified FH/FHL-1
proteins into FH/FHL-1-depleted serum to achieve different
TABLE 1 | Comparison of FH and FHL-1.

Property

FH

Blood concentration [µM] ~2-3

ß-phase plasma halftime of human proteins in mice [h] 18.3 ± 3.
KD for C3b binding [µM] ~0.6
Cofactor activity
(fluid phase)

++

Decay accelerating activity
(on SPR chip)

+

Sialic acid binding
(NMR saturation transfer technique)

+

IC50 for PNH RBC protection [µM]
(when added to FH/FHL-1-depleted serum)

1.4 ± 0.2

IC50 for desialylated PNH RBC protection [µM]
(when added to FH/FHL-1-depleted serum)

3.4 ± 0.8

Deregulation by FHR-1 ++
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defined concentrations. The strength of these “reference” FH/
FHL-1 bands was then semi-quantitatively compared with FH/
FHL-1 bands derived from different donor sera. This
determination method delivered serum concentrations for
FHL-1 of approximately 0.04 µM (14) (Table 1). Schwaeble
et al. reported similar FH and FHL-1 mRNA levels in the liver,
but plasma protein concentrations are also driven by clearance
from the circulation (4). Indeed, pharmacokinetic analysis of
human FH and FHL-1 applied intravenously into mice
demonstrated the splice variant to be cleared much more
rapidly from the murine circulation (14). The rapid plasma
clearance of FHL-1 and its resulting low plasma concentration
indicate that FH is the major systemic regulator of the AP,
although the regulatory activities are not dramatically different,
making it increasingly unlikely that FHL-1 plays a major role in
systemic AP control (14). These observations may also argue that
the physiological role of FHL-1 lies in the protection of specific
tissues. Although located on the same gene and sharing the same
promotor as well as transcription start site, both molecules
displayed distinct expression patterns in some tissues and cell
lines (42–45). In accordance with this, a different molecular FH/
FHL-1 ratio was also observed in Bruch’s membrane, a layer of
extracellular matrix positioned in the eye between the retinal
pigment epithelium (RPE) and choroid blood vessels (46). FHL-1
was identified as the predominant AP regulator expressed by
RPE cells. In contrast to FH, the splice variant is also able to
diffuse from the choroid through the Bruch’s membrane. In
addition to the higher expression levels by the RPE, FHL-1 also
appears to be supplied to the eye from the systemic blood
compartment via diffusion through the Bruch’s membrane,
strongly indicating FHL-1 to be the major regulator at the
RPE/Bruch’s membrane interface (46, 47). It is envisaged
that FHL-1 can localize to certain host surface structures via
its GAG binding site in CCP7, thus, preventing uncontrolled
complement activation on such surfaces (8, 48). These findings
on FHL-1 are particularly relevant because Bruch’s membrane is
the site where drusen formation and tissue damage occur that are
associated with the progressive eye disease age-related-macular
Protein Reference

FHL-1

0.04
(or up to ~1, see text)

(14, 40–43)

7 2.9 ± 0.5 (14)
~1 (13, 14))
+ (13, 14)

++ (13, 14)

none (23, 24)

2.2 ± 0.5 (14)

2.2 ± 0.6 (14)

0 to + (14)
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degeneration (AMD)—the major cause of blindness in the older
subjects in the western world (49). A polymorphism in CCP
domain 7 (Y402H) is directly associated with an increased risk
for developing AMD (50–53). Although the overall tertiary
structure remains similar, the single nucleotide polymorphism
(SNP) diminishes binding capability to heparan sulfate, which is
the major GAG on Bruch’s membrane and, therefore, the major
interaction site for FHL-1 (8, 27, 28, 46, 48, 54). Of note, the same
Y402H SNP within full length FH displayed none or only a
marginal impact on GAG binding, whereas when within FHL-1,
dramatic differences occurred, which can be explained by two
versus just one GAG binding site being present, respectively (27).
The proven loss and desulfation of heparan sulfate GAGs on
Bruch’s membrane with age and the resulting loss of binding
sites for FHL-1 further supports the pathophysiological role of
FHL-1, providing an explanation for the fact that particularly
older people are affected (46, 55, 56).
PATHOPHYSIOLOGICAL ROLE OF FHL-1

In the further course of investigating the pathophysiological role
of the Y402H SNP in CCP 7, several further binding partners
have been implicated, but it appears that no uniformly accepted
conclusion has to date been reached. Functional consequences of
the Y402H SNP have been described for, including, among
others, C-reactive protein, pentraxin-3, oxidation end products,
and zinc ions (57–60). Knowing the importance of FHL-1 on
Bruch ’s membrane, the question arose whether other
membranes with a similar composition to that of Bruch’s
membrane, like the kidney glomerular basement membrane,
are also predominantly controlled by FHL-1. However, it was
shown that the GAG binding site in CCP19–20 of FH is mainly
involved in the interaction within the kidney, indicating that
different GAG signatures can exist at different basement
membranes, thus questioning a role for FHL-1 at the kidney
basement membrane (61).

In contrast to proteoglycan layers, which constitute the
basement membranes and heavily rely on the soluble
complement regulators in plasma, human cell plasma
membranes express a mix of membrane-bound complement
regulators, including, for example, CR1 (CD35), MCP (CD46),
DAF (CD55) and/or CD59, and hence the soluble complement
regulators function ‘only’ as an important addition to the
membrane tethered regulators on cellular surfaces (2, 62, 63).
However, some tumor cell lines were reported to use primarily
FH/FHL-1 for complement evasion. H2-glioblastoma cells were
shown to upregulate FH and FHL-1 expression, with overall
higher expression levels of the splice variant (64). Increased
amounts of FHL-1 were also synthesized by the ovarian cell lines
SK-OV-3 and Caov-3 and were detected in their direct
microenvironment (65). Increased FHL-1 levels could increase
local control of complement activation.

Soluble complement regulators are also attractive targets of
pathogens that recruit regulators to their surface to evade the
complement immune surveillance mechanism. Different
Frontiers in Immunology | www.frontiersin.org 5
bacteria, fungi, and parasites have been identified to specifically
capture FH [reviewed in (66)]. Remarkably, some pathogens
preferentially or even exclusively recruit FHL-1 although the
amino acid sequence is identical to that of FH, except for the
unique four amino acid patch at the FHL-1 C-terminus. One
example is the M-protein of some group A Streptococcus strains,
which was shown to enable binding to the CCP-7 domains of
FH/FHL-1 with higher affinity for FHL-1 (11, 67, 68). Other
pathogens that recruit or even preferentially recruit FHL-1 for
immune evasion are Plasmodium falciparum and the spirochete
Borrelia spielmanii, respectively (69, 70). Moreover, McDowell
et al. identified a small surface protein-exposed on Treponema
denticola, a bacterium involved in periodontal disease, which
appears to preferentially bind FHL-1 (71, 72). However, they
demonstrated an FI-independent cleavage of C3b and suggested
that the purpose of FHL-1 being recruited by Treponema
denticola is adherence to human cells rather than immune
evasion. Such specific adhesive properties for FHL-1 were
reported previously by Hellwage et al. (73). Both, FH and
FHL-1 bear the amino acid sequence RGD in CCP domain 4, a
sequence that is also found in adhesive proteins, including
vitronectin and fibronectin (74). In contrast to FH, only FHL-1
could act (when coated on a ‘chamber slide’) as a matrix for
adherence and spreading of the tested cell lines by binding to
integrin receptors, potentially allowing effectors cells to bind via
their integrin receptors to the RGD motif of FHL-1 bound to
C3b-opsonized surfaces bridging the humoral and cellular
immune responses (73).
DISCUSSION

Over time, the perception of FHL-1 has changed because several
studies showed that the splice variant is a unique molecule with
many shared but also some unique properties compared to FH.
But even now, the benefit of producing a truncated form of FH is
not completely clear. For some specialized tissues, FHL-1 could
be a tailor-made fluid phase regulator with specialized properties,
for example, being able to diffuse through certain basement
membranes. The importance of FHL-1 as a tissue-specific
regulator may be supported by its relatively late appearance in
evolution, indicating a possible coevolution of this splice variant
with a specialized tissue that relies on the protection of FHL-1.
An in-silico gene analysis revealed that similar gene structures to
FH that allow for alternative splicing of a truncated FH version
are not found prior to the order of old-world monkeys (14).
Another topic of ongoing research, which directly relates to
specialized FHL-1 functions, touches on the deregulation
functionality of Factor H-related proteins (FHR). Because it
lacks the C-terminal CCP domains of FH, FHL-1 was thought
to be less prone to deregulation by FH-related proteins than FH.
Additionally, although some competition between FHR
molecules and FHL-1 for selected functions have been
observed (75), in AP serum assays on host cells, the
deregulation by FHR-1 was considerably less for the splice
variant FHL-1 than for FH (14). However, future studies are
October 2020 | Volume 11 | Article 596415
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needed to further clarify the impact of deregulation of FH and its
splice version by different FHRs. Future insights into how and
why certain tissues modulate the splicing rates, and hence the
relative expression levels of FH and FHL-1 will be fundamental
in understanding the precise physiological role of FHL-1. As to
why certain cancer types favor the relative expression of FHL-1
over FH, it can be speculated that by expressing FHL-1 an almost
identical level of AP regulation can be achieved by using up
much fewer resources, such that the energy for the production of
13 CCPs can be spared, which, however, comes at the expense of
selectivity between self and non-self surfaces. To better define the
role of FHL-1, it will also be important to identify further
compartments that display altered FH/FHL-1 ratios compared
to that in systemic circulation. To date, the synovial fluid
expression levels of FH and FHL-1 in the settings of
rheumatoid arthritis and the Bruch’s membrane have been
determined (46, 76). Other interesting body fluids in
specialized compartments (which may not require as stringent
a selectivity for AP regulation as the systemic circulation and
hence might benefit from higher FHL-1/FH ratios) might, for
example, be the cerebrospinal and the pleural fluids. However,
research of FHL-1 remains challenging. Its low solubility in
phosphate-buffered saline complicates the daily handling of
Frontiers in Immunology | www.frontiersin.org 6
many standard laboratory assays (13, 14). The absence of
FHL-1 in mice and thus the lack of the opportunity to
investigate the functional consequences of engineered FHL-1
knock-out mice further complicate the characterization and
importance of the FH splice variant FHL-1. However, the
recent findings that FHL-1 is almost as active in down-
regulating the AP as FH, albeit being less selective for host
tissues, in conjunction with FHL-1 being selectively expressed at
higher levels in certain tissues, underline the unique role for the
splice variant FHL-1, which in the future is expected to be more
intensely studied and thus be better understood.
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