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Accumulating evidence reveals that adipose tissue is an immunologically active organ that
exerts multiple impacts on the regulation of systemic energy metabolism. Adipose tissue
immunity is modulated by the interactions between adipocytes and various immune cells.
Nevertheless, the underlying mechanisms that control inter-cellular interactions between
adipocytes and immune cells in adipose tissue have not been thoroughly elucidated.
Recently, it has been demonstrated that adipocytes utilize lipid metabolites as a key
mediator to initiate and mediate diverse adipose tissue immune responses. Adipocytes
present lipid antigens and secrete lipid metabolites to determine adipose immune tones.
In addition, the interactions between adipocytes and adipose immune cells are engaged in
the control of adipocyte fate and functions upon metabolic stimuli. In this review, we
discuss an integrated view of how adipocytes communicate with adipose immune cells
using lipid metabolites. Also, we briefly discuss the newly discovered roles of adipose
stem cells in the regulation of adipose tissue immunity.

Keywords: adipocytes, lipid metabolite, invariant natural killer cell, adipose tissue remodeling, adipose
tissue inflammation
Abbreviation: a-GC, Alpha-galactosylceramide; APC, Antigen presenting cell; ASC, Adipose stem cell; ATM, Adipose tissue
macrophage; CD1dAKO, Adipocyte-specific CD1d depletion; ChREBP, Carbohydrate response element binding protein; ER,
Endoplasmic reticulum; FALC, Fat-associated lymphoid cluster; FFA, Free fatty acid; GABA, Gamma-aminobutyric acid;
HFD, High-fat diet; HIV, Human immunodeficiency virus; IFN, Interferon; IKKb, IkB kinase; IL, Interleukin; ILC, Innate
lymphoid cell; iNKT, Invariant natural killer T; KD, Ketogenic diet; KO, Knock out; LD, Lipid droplet; MAOA, Monoamine
oxidase; NLRP3, NLR family pyrin domain containing 3; NO, Nitric oxide; PAHSA, Palmitic acid esters of hydroxy stearic
acid; PGE2, Prostaglandin E2; Plin, Perilipin; scRNA-seq, Single cell RNA-sequencing; SREBP1c, Sterol regulatory element-
binding protein 1c; SVC, Stromal vascular cell; sWAT, Subcutaneous white adipose tissue; TCR, T cell receptor; TNF, Tumor
necrosis factor; Treg, Regulatory T cell; VLDLR, Very-low-density-lipoprotein receptor; vWAT, Visceral white adipose tissue;
WAT, White adipose tissue.

org January 2021 | Volume 11 | Article 5985661

https://www.frontiersin.org/articles/10.3389/fimmu.2020.598566/full
https://www.frontiersin.org/articles/10.3389/fimmu.2020.598566/full
https://www.frontiersin.org/articles/10.3389/fimmu.2020.598566/full
https://www.frontiersin.org/articles/10.3389/fimmu.2020.598566/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:jaebkim@snu.ac.kr
https://doi.org/10.3389/fimmu.2020.598566
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2020.598566
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2020.598566&domain=pdf&date_stamp=2021-01-28


Park et al. Immunomodulatory Roles of Adipocytes
INTRODUCTION

Adipose tissue is a specific type of loose connective tissues
present in various anatomical locations. For energy
homeostasis and survival, adipose tissue contributes to
numerous physiological roles: it provides structural support
and protective padding for major organs, it serves as an
insulating layer that prevents cutaneous heat loss, it stores
extra energy source for longer periods of fasting, and it is a
dynamic endocrine system crucial in the regulation of energy
homeostasis (1). Among the various cell types residing in adipose
tissue, adipocytes are the major cell type that is specialized to
synthesize and store large globules of fat (2). When energy level is
low, adipocytes break down stored lipid metabolites into fatty
acids and glycerol and release them into circulation, which are
used for fuels in most organs. This function of adipocytes enables
adipose tissue to function as the major energy reservoir.
Moreover, adipocytes act as a key component of endocrine
activity through secreting a variety of signaling molecules such
as adipokines, lipokines, and exosomes (3). These adipocyte-
derived factors are involved in the maintenance of systemic
energy homeostasis through crosstalk with other tissues such
as muscle, liver, and brain (2).

Adipose tissue harbors diverse innate and adaptive immune
cells. Dynamic interactions between these innate and adaptive
immune cells are closely associated with alterations of adipose
tissue function and integrity upon metabolic changes (4–6). For
example, adipose tissue immunity shifts toward pro-
inflammatory state in response to chronic energy surplus such
as obesity, leading to dysregulation of adipose tissue homeostasis
(7–10). Among various adipose immune cells, adipose tissue
macrophages (ATMs) occupy about 50% and are largely
classified into pro-inflammatory M1-type and anti-
inflammatory M2-macrophages (11, 12). In obesity, M1-type
macrophages are abundantly accumulated and secrete pro-
inflammatory molecules such as tumor necrosis factor (TNF)-
a, nitric oxide (NO), and interleukin (IL)-6 (13–15). In addition,
neutrophil, Th1, Th17, CD8 T cells, and group 1 innate
lymphoid cell (ILC1) secrete pro-inflammatory cytokines
including interferon (IFN)-g, IL-6, and IL-17 (16, 17). These
pro-inflammatory molecules suppress insulin action in
adipocytes by inhibiting phosphorylation of insulin receptor
and insulin receptor substrate 1, which provokes insulin
resistance. On the other hand, there are numerous anti-
inflammatory immune cells that downregulate pro-
inflammatory responses, improving insulin sensitivity in
adipose tissue. Eosinophil, regulatory T cell (Treg), invariant
natural killer T (iNKT), and group 2 innate lymphoid cell (ILC2)
stimulate to polarize macrophages towards anti-inflammatory
M2-type macrophages through secretion of Th2 type cytokines,
including IL-4, IL-5, IL-10, and IL-13, attenuating adipose
inflammatory responses and improving insulin sensitivity (11).

Recently, emerging evidence indicates that adipocyte-derived
lipid metabolites would function as a crucial regulator of adipose
tissue immunity (18–21). In obese adipocytes, aberrant lipid
metabolism promotes lipid spillover, which activates NF-kB
pathways in ATMs and consequently induces TNF-a secretion
Frontiers in Immunology | www.frontiersin.org 2
(22). Also, dysregulation of lipokines and lipid antigens is
manifested in dysfunctional adipocytes, which has been linked
to changes in characteristics of adaptive immune cells in adipose
tissue. It has been recently shown that adipocyte-derived lipid
antigens could alter inter-cellular interactions between innate
and adaptive immune cells, followed by alterations of function
and fate of adipocytes (23). Despite the close association of lipid
metabolism in adipocytes with adipose tissue immunity has been
reported for over a decade, the molecular mediators and
mechanisms linking adipocyte-derived lipid metabolites to
adipose tissue immunity remain poorly understood. In
previous reviews, the importance of the crosstalk between
innate and adaptive immune cells in adipose tissue on energy
metabolism has been well addressed (1, 11, 12). Thus, in this
review, we cover the processes by which adipocytes communicate
with adipose immune cells using lipid metabolites. Furthermore,
we discuss the new concept that adipocytes cooperate with
adipose immune cells to protect adipose tissue integrity from
metabolic stresses. In addition, we briefly propose the novel roles
of adipocyte stem cells in the regulation of adipose
tissue immunity.
IMMUNOMODULATORY ROLES OF
ADIPOCYTES USING LIPID ANTIGENS

There are distinct types of immune cells that recognize lipid
antigens. These immune cells, such as iNKT cells and gd T cells,
rapidly respond to changes of lipid metabolism through sensing
lipid antigens loaded on antigen presenting cells (APCs). It has
been reported that iNKT cells and gd T cells are abundantly
present in adipose tissue and actively interact with adipocytes,
contributing to the regulation of systemic energy metabolism
(24–27). For example, in obesity, adipose iNKT cells are activated
by adipocyte-derived lipid antigens and modulate the interaction
between innate and adaptive immune cells (24, 28, 29).
Moreover, activation of iNKT cells by hypertrophic adipocyte-
derived lipid antigens stimulates adipocyte turnover in obesity,
contributing to adipose tissue remodeling (23). Similarly, gd T
cells regulate adipose tissue immune responses and adipocyte
functions (26, 27, 30). Given that gd T cells recognize CD1-
loaded lipid antigens, it has been suggested that adipocytes would
control gd T cell activity (31, 32). In this section, we discuss
detailed mechanisms by which adipocytes regulate adipose tissue
immune cells via lipid antigen presentation.

Lipid Antigen Presentation
In adipose tissue, there are several APCs such as dendritic cells,
macrophages, B cells, and adipocytes (24, 25, 33). It has been
demonstrated that adipocytes highly express MHC-I like protein,
CD1d, and present lipid antigens (24, 34). CD1d belongs to the
CD1 family with isoforms such as CD1a, CD1b, CD1c, and CD1e
(35). CD1d is a transmembrane protein with two alpha-helices
forming an antigen-presenting pocket above and a hydrophobic
pocket below (28). This structure encapsulates hydrophobic
portion of lipid antigens into the CD1d binding groove, and
January 2021 | Volume 11 | Article 598566

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Park et al. Immunomodulatory Roles of Adipocytes
the polar portion of the antigen is exposed outside APCs to be
recognized by T cell receptor (TCR) (28).

With an antigen-presenting molecule CD1d, adipocytes
express high levels of lipid antigen loading and presentation-
associated genes (28). There are two major pathways involved in
antigen loading and presentation. The first one is endoplasmic
reticulum (ER) and Golgi pathway, and the second one is
endosomal and lysosomal pathway. In ER and Golgi pathway,
the newly synthesized CD1d binds to b2-microglobulin in ER,
and lipid antigens are loaded onto CD1d in Golgi by chaperone
proteins, including microsomal triglyceride transfer protein (36,
37). Then, CD1d enters the transport step and fuses with the
membrane to be exposed to cell surface of APCs. In endosomal
and lysosomal pathway, CD1d is internalized in the form of
endosome from plasma membrane. Chaperone protein and lipid
transport protein replace low-affinity lipid antigens with high
affinity lipid antigens (36, 37).

Although the clue for lipid antigen source has been suggested
in several studies (38–41), the identity of endogenous lipid
antigens in adipocytes has not been clearly elucidated. In the
blood, circulating lipid metabolites are potentially subjected to
behave as lipid antigens through scavenger receptor and very-
low-density-lipoprotein receptor (VLDLR) (42). In VLDL-
associated apoprotein APOE-deficient mice, the number of
iNKT cells is altered (40). Also, fatty acid amide hydrolase
enhances the presentation of lipid antigens by facilitating
transport of serum lipids into APCs (41).

Anti-Inflammatory Roles of Adipocytes via
Lipid Antigen Presentation
The roles of CD1d in adipocytes have been investigated in
genetically or diet-induced obesity models. Studies using
adipocyte-specific CD1d knockout (CD1dAKO) mice have shown
that adipocytes are crucial for the regulation of adipose iNKT cell
activity (Figure 1A) (34, 43). In CD1dAKO mice, the number of
iNKT cells is decreased. Moreover, the levels of IL-4 secretion and
FasL expression are downregulated in iNKT cells of CD1dAKO

mice compared to wild type (WT) mice, leading to aggravation in
adipose tissue inflammation and insulin resistance (23, 34). The
interaction between adipocytes and iNKT cells has been also
examined in Ja18 knockout (KO) mice and CD1d KO mice in
which iNKT cells are deficient in whole body (24, 25). In the case
of the above animal models lacking iNKT cells, body weight gain
and adipocyte size are increased, and pro-inflammatory ATMs are
more accumulated in obesity. Stimulation of iNKT cell activity by
alpha-galactosylceramide (a-GC), a synthetic lipid antigen for
iNKT cell and supplementation of iNKT cells into obese mice
downregulate body weight gain and adipocyte size and upregulate
secretion of anti-inflammatory adipokines. These metabolic
changes are accompanied with restoration of insulin sensitivity
(23, 25).

One of the major regulatory mechanisms for adipose tissue
inflammation by adipose iNKT cell is through diverse cytokine
secretion. For instance, adipose iNKT cells secrete IL-4 and IL-10
which promote M2 macrophage polarization (44). In obese mice,
inhibition of IL-4/IL-10 signaling diminishes iNKT cell-
Frontiers in Immunology | www.frontiersin.org 3
dependent glucose homeostasis (25). Also, short-term HFD
feeding induces the expression of arginase 1, one of the M2
marker genes, in adipose tissue of WTmice, but not in CD1d KO
and IL-4 KO mice, indicating that adipose iNKT cells rapidly
respond to HFD and produce IL-4 to suppress inflammatory
responses via induction of M2 macrophages (45). Moreover, it
has been shown that IL-2 secreted by adipose iNKT cells is
involved in immunosuppressive function of Treg cells through
promoting IL-10 production of Treg cells in adipose tissue (29).
Upon short term HFD feeding, the number of adipose Treg cells
is elevated in WT mice, but not in CD1dAKO mice, underscoring
the crucial roles of adipocyte CD1d in the regulation of the anti-
inflammatory responses (33). Furthermore, it has been very
recently reported that IFNg produced by adipose iNKT cells
in lean adipose tissue can serve to limit the expansion of
ATMs by killing pro-inflammatory macrophages via NK cell
stimulation (46).

These findings propose that activity control of iNKT cells by
adipocytes and lipid antigens appears to be the key for adipose
tissue immune balance (Figure 1A). In contrast, Satoh et al. has
reported that adipose iNKT cells would exhibit pro-
inflammatory characteristics by secreting IFN-g because
CD1dAKO mice show adipose tissue inflammation and insulin
resistance in obesity (43). Although there is no clear answer to
explain opposite phenotypes in CD1dAKO mice above, it has been
suggested that these differences are probably due to different
types of control mice (CD1dflox/+ vs CD1dflox/flox) and differences
in high-fat diet (HFD) composition (tallow and safflower oil of
high oleic type vs lard) (33). Moreover, it has been shown that
adipose iNKT cells can be classified into several subpopulations
that reveal either pro-inflammatory responses or anti-
inflammatory responses (46), implying that characteristics of
adipose iNKT cells might be affected by multilateral relationships
between lipid antigen species and iNKT cell subtypes. Thus, it
seems that veiled traits of adipose iNKT cells could be further
uncovered when lipid antigens loaded on adipocytes and
subtypes of adipose iNKT cells are identified in future studies.

Adipocyte Turnover Control by Lipid
Antigen(s)
Yearly, 10% of human adipocytes are dead and replaced
with new adipocytes (47). Patients with cachexia, human
immunodeficiency virus (HIV) or lipodystrophy syndrome
show drastic loss of adipocytes (48–51). In obese mice, dead
adipocytes are frequently found in epididymal adipose tissue (23,
52). Although adipocyte death is associated with adipose tissue
inflammation in obesity, the causal factors that would induce
adipocyte death have not been fully elucidated. Recently, it has
been reported that, in hypertrophic adipocytes, the expression of
Fas (CD95) is upregulated and is positively correlated with the
degree of adipocyte death (Figure 1B) (23). Apoptotic pathway is
induced in Fas-positive cells when Fas is bound to FasL (53). In
obese adipose tissue, the portion of FasL-positive iNKT cells is
significantly elevated, but not in CD4 and CD8 T cells, indicating
that iNKT cells would be a major killer cell type to induce
hypertrophic adipocyte death in obesity (23). Through in vitro
January 2021 | Volume 11 | Article 598566
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and in vivo experiments, it has been shown that hypertrophic
adipocytes with pro-inflammatory characteristics stimulate
iNKT cells by lipid antigen presentation via CD1d (23). Then,
the activated iNKT cells selectively kill hypertrophic and pro-
inflammatory adipocytes (23). iNKT cell-mediated hypertrophic
adipocyte death is consistently observed in both diet-induced
obese mice and genetically obese db/db mice (23). After iNKT
cell-mediated adipocyte death, adipocyte stem cells proliferate
and differentiate into new and small adipocytes exhibiting
elevated insulin sensitivity (Figure 1B) (23, 54). Together, it
has been suggested that, in obesity, activity control of iNKT cells
Frontiers in Immunology | www.frontiersin.org 4
by adipocytes is crucial for adipocyte turnover, contributing to
the improvement of insulin sensitivity.

Adipocyte Death and Adipose Tissue
Inflammation
Although adipocyte death and ATMs surrounding dead
adipocytes are frequently observed in obesity, the relationship
between adipocyte death and inflammation remains elusive.
Activation of iNKT cells by a-GC administration into HFD-
fed obese mice induces apoptosis of hypertrophic adipocytes,
accompanied by the increase in the portion of M2 macrophages
FIGURE 1 | Immunomodulatory Roles of Adipocytes using Lipid Antigens. Adipocytes modulate activities of adipose immune cells via lipid antigen presentation.
iNKT cells and gd T cells are activated by lipid antigens and involve in the regulation of adipose tissue immunity and adipocyte functions. (A) In obesity, adipose iNKT
cells activated by adipocyte-derived lipid antigens secret large amounts of anti-inflammatory cytokines such as IL-2, IL-4, IL-10, and IL-13. These cytokines stimulate
Treg cells and polarize monocytes into anti-inflammatory M2 macrophages, thereby ameliorating pro-inflammatory responses in obese adipose tissue. (B) Adipose
iNKT cells mediate hypertrophic and pro-inflammatory adipocyte death in obesity. Long-term HFD (over 8 weeks) upregulates CD95L (FasL) and CD95 (Fas) in
adipose iNKT cells and damaged adipocytes, respectively. Interaction between CD95L and CD95 selectively stimulates damaged adipocyte death. After
macrophage-mediated efferocytosis, adipose stem cells proliferate and de novo adipogenesis is promoted, leading to the generation of insulin-sensitive new
adipocytes. (C) Given that gd T cells recognize CD1-loaded lipid antigens, it has been suggested that adipocytes might regulate gd T cell activity. gd T cells secrete
several cytokines such as IL-17 and TNF-a, controlling beige adipocyte formation and innervation. In addition, gd T cells activate stromal cells to secrete IL-33,
resulting in Treg cell recruitment.
January 2021 | Volume 11 | Article 598566
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compared to that of M1 macrophages (23). Similarly, the number
of CD206 and CD301-positive M2-macrophages increases when
adipocyte-specific apoptosis is induced in FAT-ATTACK mice
(55). It seems that transient induction of apoptosis in adipocytes
would upregulate anti-inflammatory responses. On the other
hand, continuous adipocyte death resulted from chronic
inflammation or deficiency of key enzymes involved in
sphingolipid synthesis and mevalonate pathway often causes
systemic pro-inflammatory responses (56, 57). Furthermore, if
apoptotic cells are not rapidly and properly cleared by
efferocytosis, the membrane of apoptotic cells is ruptured and
transformed into necrosis-like cells, provoking inflammation.
Thus, it is likely that controversial results of adipocyte death on
adipose tissue inflammation would be due to several factors:
whether types of adipocyte death are apoptotic or necrotic,
whether adipocyte death is transient or persistent, and whether
debris of dead adipocytes are well cleared.

The clearance of apoptotic cells by professional and non-
professional phagocytes is essential for maintenance of tissue
homeostasis (58). In response to apoptotic cells, macrophages
suppress production of pro-inflammatory cytokines and enhance
secretion of molecules that dampen inflammation, and mediate
resolution and repair. Thus, defective efferocytosis leads to
inflammation and impaired resolution, underlying various
chronic inflammatory diseases such as atherosclerosis, obesity,
diabetes, cardiovascular diseases, and cancer (58). In obese mice,
macrophages appear to exhibit impaired efferocytosis, which is
associated with higher number of apoptotic cells and greater
expression of pro-inflammatory cytokines within wounds (59,
60). It has been proposed that defects of omega-3 fatty acids,
erythropoietin, and MER proto-oncogene tyrosine kinase would
suppress efferocytosis of dying/dead cells in atherosclerotic
lesions, skin, and heart in obesity (58). However, to date, most
studies have not focused on clearance of dead adipocytes,
although dead adipocytes and ATMs surrounding them are
abundantly observed in obesity. Future studies are required to
unravel complex relationships between adipocyte death,
efferocytosis, and adipose tissue inflammation.

gd T Cells: Potential Target Cells of
Adipocytes
gd T cell is one of the innate lymphocytes that are not restricted
to MHC molecules but recognize CD1 molecules. In adipose
tissue, gd T cells exhibit resident characteristics and occupy 5–
15% of total T cells (26). Upon HFD, the number of gd T cells
increases and they promote accumulation of pro-inflammatory
macrophages, worsening adipose tissue inflammation and
insulin resistance (30). In contrast, it has been shown that IL-
17A-producing gd T cells are involved in the maintenance of
adipose Treg population by promoting secretion of IL-33 from
stromal cells, contributing to suppression of adipose tissue
inflammation (Figure 1C) (26). In addition, under short term
ketogenic diet (KD) which contains high fat and low
carbohydrate, gd T cells suppress adipose tissue inflammation
and protect metabolic dysregulation through increasing
expression of genes related to tissue repair (61). Conversely,
Frontiers in Immunology | www.frontiersin.org 5
long-term KD drastically decrease the number of gd T cells and
aggravates obesity and glucose intolerance (61). Although it
remains to be clarified whether adipose gd T cells would
upregulate or downregulate inflammatory responses in adipose
tissue, it seems that gd T cell could play certain roles in
inflammatory responses in adipose tissue. In addition to the
regulation of adipose tissue inflammation, gd T cells modulate
adipocyte functions such as lipolysis and thermogenesis (26). In
brown and subcutaneous adipose tissue, gd T cells boost
thermogenic programs by stimulating IL-33 secretion in
stromal cells or promoting innervation in adipose tissue
(Figure 1C) (26, 27). Given that gd T cells could recognize
lipid antigens loaded on CD1 family, it is plausible to speculate
that adipocytes would function as potential APCs in
adipose tissue.
RELATIONSHIP BETWEEN LIPID
METABOLISM IN ADIPOCYTES AND
ADIPOSE TISSUE IMMUNITY

In adipose tissue, lipid metabolism is dynamically regulated upon
diverse physiological conditions such as fasting, HFD, and aging.
If lipid metabolism is dysregulated in adipocytes due to
environmental or genetic factors, adipose tissue immunity and
whole body energy metabolism are distorted. It has been
suggested that endogenous lipids such as free fatty acids
(FFAs) and eicosanoids modulate innate and adaptive immune
cells (62). Furthermore, HFD provokes uncontrolled basal
lipolysis and promotes unnecessary release of FFAs, causing
imbalanced immune responses in adipose tissue. Also, when
lipid storage capacity of adipocytes is defective by ablation of
lipid droplet (LD) binding proteins such as Perilipin1 (Plin1), the
levels of triglyceride and FFAs are elevated in adipose tissue and
serum, which is accompanied by adipose tissue inflammation
and insulin resistance (63). In this section, we cover how
adipocytes regulate adipose immune responses by controlling
lipid metabolism.

Regulation of Adipose Immune Responses
by Lipid Metabolites
Lipid metabolites are associated with numerous human diseases,
including atherosclerosis, rheumatoid arthritis, and other
inflammation-linked metabolic diseases (64). While it has been
considered for a long time that lipid metabolites are key energy
sources, the importance of lipid metabolites as signaling
molecules has been accumulated (65–67). Eicosanoids, certain
FFAs, and FFA derivatives are able to act as signaling molecules
in the regulation of immune responses (64). Among them,
several lipid metabolites are produced by adipocytes or adipose
tissues (19–21). Palmitoleate (C16:1n7), a long-chain
monounsaturated FA, is produced through de novo lipogenesis
in adipose tissue and downregulates pro-inflammatory gene
expressions in macrophages (68–71). Also, in adipocytes,
palmitic acid esters of hydroxy stearic acids (PAHSAs)
January 2021 | Volume 11 | Article 598566
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synthesized by carbohydrate response element binding protein
(ChREBP) regulate adipose tissue inflammation. While
adipocyte-specific ChREBP knockout (ChREBPAKO) mice exhibit
decreased PAHSA levels and increased ATMs in adipose tissue,
PAHSAadministrationamelioratespro-inflammatory responses in
adipose tissue of ChREBPAKO mice (72).

In addition to de novo lipogenesis, certain lipid metabolites
which regulate adipose tissue inflammation are produced by
lipolysis. Recently, it has been shown that Plin1 inhibits futile
prostaglandin secretion to restrict pro-inflammatory responses
in adipose tissue (63). Plin1 deficiency in adipocytes impairs lipid
storage into LDs and stimulates lipolysis, causing adipose tissue
loss and unnecessary leakage of pro-inflammatory lipid
metabolites. In adipose tissue of Plin1 KO mice (Figure 2),
pro-inflammatory gene expression and M1-type ATM
accumulation are increased. Suppression of lipolysis by
knockdown or inhibition of lipases attenuates the effects of
Plin1-deficient adipocytes on monocyte migration. Moreover,
lipidomic analysis and administration of cyclooxygenase
Frontiers in Immunology | www.frontiersin.org 6
inhibitor indicate that enhanced adipose tissue inflammation is
mediated by excessive prostaglandin E2 (PGE2) secretion in
Plin1-deficient adipocytes (62). Thus, it has been proposed that
reducing futile lipolysis in adipocytes could downregulate
adipose tissue inflammation through the control of pro-
inflammatory lipid metabolite secretion (63).

Circulating FFAs are elevated in obesity and lipodystrophy,
which is closely related to metabolic disorders including type 2
diabetes and atherosclerosis. FFAs including palmitic acids are able
to activate inflammatory responses and also used to produce
ceramides. Ceramides are one of important metabolites whose
levels are elevated in obesity (73). Increased ceramides contributes
to adipose tissue inflammation and dysregulation of energy
homeostasis. In macrophages, ceramide initiates p38 MAPK and
JNK signaling pathways, polarizing ATMs towards M1
macrophages (74). Moreover, ceramides activate NLR family
pyrin domain containing 3 (NLRP3) inflammasome and promote
secretion of IL-1b and IL-18 in macrophages, aggravating adipose
tissue inflammation and glucose intolerance in obesity (75).
FIGURE 2 | Relationship between Lipodystrophy and Adipose Tissue Inflammation. In adipocytes, lipid metabolism is well balanced by several genes, including
Srebp1c, Atgl, Hsl, Cgi-58, Plin1, and Fsp27. However, lean subjects with lipodystrophy show dysregulated lipid metabolism with increased inflammation and insulin
resistance. Evidence suggests that dysregulation of lipid metabolism could influence adipose tissue inflammation in lipodystrophy. aP2-nuclear form of SREBP1c
transgenic (aP2-nSREBP1c Tg) mice and Caveolin1 KO mice show significantly reduced fat mass and display metabolic dysregulation including insulin resistance
and dyslipidemia. In addition, Plin1 deficiency induces partial fat loss, leakage of FFAs, ATM accumulation, dyslipidemia and systemic insulin resistance. In these
lipodystrophic models, several lipid metabolites such as FFA and PGE2 recruit monocytes into adipose tissue and worsen adipose tissue inflammation.
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Lipodystrophy and Adipose Tissue
Inflammation
Although lipodystrophy and adipose tissue expansion such
as obesity are somewhat opposite in terms of adipose
tissue mass, both pathological states often exhibit similar
metabolic dysregulation (76–78). Obesity-induced low-grade
and chronic inflammation is one of the major factors to
promote insulin resistance (12, 79). Also, severely lean patients
with lipodystrophy or cachexia reveal enhanced inflammation
with insulin resistance even though underlying mechanisms are
not fully uncovered. Nonetheless, it has been suggested that
immune responses in adipose tissue could be involved in the
development of insulin resistance in lipodystrophy (80, 81). Pro-
inflammatory gene expression and ATM accumulation are
promoted in adipose tissue of lipodystrophic animal models
even with less adipose tissue mass. For instance, aP2-nuclear
form of sterol regulatory element-binding protein 1c (SREBP1c)
transgenic (aP2-nSREBP1c Tg) mice and Caveolin1 KO mice
show significantly reduced fat mass and display metabolic
dysregulation including insulin resistance and dyslipidemia
(82–84). In these lipodystrophic models, increases in pro-
inflammatory cytokine and ATM accumulation are observed in
adipose tissue (Figure 2) (84). In addition, Plin1 deficiency
reveals partial fat loss, ATM accumulation, dyslipidemia and
systemic insulin resistance in both mouse and human (63, 85). In
aP2-nSREBP1c Tg mice, anti-inflammatory strategies such as
salicylate treatment or crossing with myeloid cell-specific IkB
kinase (IKKb) KOmice do not ameliorate insulin resistance (83).
On the other hand, in Plin1 KO mice, macrophage depletion by
clodronate treatment or inhibition of synthesis of pro-
inflammatory lipid metabolites in adipocytes mitigates systemic
insulin resistance (63). These results indicate that the precise
relationship between adipose tissue inflammation and systemic
energy homeostasis remains to be thoroughly elucidated under
lipodystrophic conditions.

Aging-Related Decrease in Lipolysis
Aging is a chronic and complex physiological process that
gradually deteriorates energy homeostasis (86). Dysfunction of
adipose tissue is one of the major factors to provoke aging-
related metabolic disorders including type 2 diabetes and
cardiovascular diseases. In the elderly, the processes of lipolysis
and lipid storage in adipose tissue are not properly controlled. As
a result, mobilization of FFAs is dysregulated, causing visceral
adiposity, lower exercise capacity, and cold intolerance. These
alterations of adipose tissue are closely associated with adipose
tissue immunity (87). Adipose macrophages and B cells are
involved in age-related reduction of lipolytic activity. In aged
mouse model, macrophages degrade catecholamine in a NLRP3
inflammasome-dependent manner in adipose tissue, driving
lipolysis resistance in adipocytes (88). When NLRP3
inflammasome is activated in aged macrophages, the
expression of monoamine oxidase (MAOA) which is known to
degrade noradrenaline is increased by growth differentiation
factor-3 (88). Moreover, aging stimulates expansion of adipose
B cells in fat-associated lymphoid clusters (FALC), which is
Frontiers in Immunology | www.frontiersin.org 7
mediated by activation of NLRP3 inflammasome and IL-1
signaling (89). It has been shown that inhibition of MAOA in
macrophages or depletion of B cell reverses the age-related
decline in lipolysis and restore age-associated adipose tissue
impairment (89). However, in human adipose tissue, the major
cell type expressing MAOA is different from mice. In human
adipose tissue, MAOA is mainly expressed in mature adipocytes,
unlike mice, contributing to aging-associated reduction in
lipolysis (90).
THE NOVEL ROLES OF ADIPOSE STEM
CELLS IN THE REGULATION OF ADIPOSE
TISSUE IMMUNITY

ASCs are composed of heterogeneous populations and each
population has unique characteristics. ASCs are largely divided
into adipogenic and non-adipogenic subtypes (91). Adipogenic
ASCs preferentially differentiate into adipocytes in response to
excess energy, which increases energy storage capacity of adipose
tissue. This process, called hyperplasia, mediates healthy adipose
tissue expansion and attenuates adipose tissue inflammation in
obesity. On the other hand, non-adipogenic ASCs secrete various
pro- and anti-inflammatory cytokines, lipokines, and collagens,
which could affect activity and recruitment of adipose immune
cells. In addition, it appears that non-adipogenic ASCs would be
key players for distinct immune responses between subcutaneous
white adipose tissue (sWAT) and visceral white adipose tissue
(vWAT). As the roles of adipogenic ASCs have been well
discussed in previous reviews (92, 93), we cover the novel roles
of non-adipogenic ASCs in the regulation of adipose
tissue immunity.

Novel Roles of ASCs in the Regulation of
Adipose Tissue Immunity
Adipose tissue is divided into adipocyte and stromal vascular cell
(SVC) fraction, and SVC fraction is further classified into ASCs
(CD45-CD31-), immune cell (CD45+), endothelial cell (CD31+),
and red blood cell. In the last several years, single cell RNA-
sequencing (scRNA-seq) has been used to reveal subpopulation
and characteristics of ASCs, providing compelling evidence that
ASCs would exhibit molecular heterogeneity and functional
diversity (94, 95). Interestingly, it has been proposed that ASCs
not only have adipogenic potential, but also exhibit anti-
adipogenic and immunomodulatory roles (96).

ASCs secrete pro-inflammatory cytokines (e.g., IL-6, IL-8, IL-
11, TNF-a), anti-inflammatory cytokines (e.g., TGF-b, IL-10),
growth factors, chemokines (Cxcl5), and lipokines (PGE2) (97).
Upon HFD, the number of fibro-inflammatory stem cells
( l in−Pdgfrb+Ly6c+ cel ls , l in−Pdgfra+Gp38+CD9+) is
upregulated and they highly express pro-inflammatory
cytokines (e.g., IL-6, Ccl2, Cxcl2, Cxcl10) and extracellular
matrix components (e.g . , Col1a1, Col3a1), causing
adipose tissue inflammation (Figure 3) (98–100). In human
and mou s e , CXCL1 + me s o t h e l i a l c e l l s ( CD45 -

CD31−Ter119−CD41−PDPN+/−) recruit neutrophils into the
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FALC via protein arginine deiminase 4 during peritonitis and
promote the aggregation of neutrophils, providing first layer of
immunological defense in vWAT (101). On the other hand,
another population of ASCs that suppress adipose tissue
inflammation has been also reported (102–104). Lin-

Pdgfra+Sca1+ population is a major source of IL-33 in vWAT
(Figure 3) (102). IL-33+ ASCs recruit anti-inflammatory Treg
and ILC2 cells in lean subjects, contributing to suppression of
adipose tissue inflammation (102).

It has been shown that ASCs would be the key cell type that
explains distinct inflammatory patterns between sWAT and
vWAT in obesity (Figure 3) (100, 103, 104). In obese mice,
vWAT shows the higher number of infiltrated macrophages and
crown-like structures, whereas sWAT is less prone to
inflammation. However, it is still unknown which factors make
the differences in inflammatory responses between the two major
fat depots in obesity. Very recently, it has been demonstrated that
SVCs of sWAT secrete certain factors to repress monocyte
recruitment, and that transplantation of ASCs derived from
sWAT into vWAT suppresses ATM infiltration in vWAT (103,
104). Interestingly, gamma-aminobutyric acid (GABA) signaling
is one of the most differentially expressed pathways between
Frontiers in Immunology | www.frontiersin.org 8
sWAT and vWAT in obesity. In HFD-induced obese mice,
GABA treatment inhibits ATM infiltration in sWAT-selective
manner, but not in vWAT (102). Thus, it has been proposed that
GABA signaling in ASCs might be one of the potential pathways
that could selectively suppresses inflammatory responses in
sWAT (103).

Given that ASCs have high proliferation rate, adipogenic
potential, and immunomodulatory roles, they have been
considered therapeutic target for recovery of adipose tissue
homeostasis. Recently developed scRNA-seq analysis dissects
ASCs into three or more subpopulations with their own
distinct functions. Proliferative and stem cell-like ASCs can be
used in tissue repair and regenerative processes. Adipogenic and
anti-adipogenic subpopulations of ASC can increase or decrease
buffering capacity of adipose tissue, respectively. In addition,
ASCs that exhibit immunomodulatory properties can be used to
control inflammatory responses of adipose tissues. Although
complicated networks between ASCs and adipose tissue
constituent cells need to be further investigated, recent
approaches equipped with high techs would provide new
therapeutic targets against adipose tissue dysfunction,
particularly, in obesity.
FIGURE 3 | Fat Depot-specific Roles of Adipocyte Stem Cells (ASCs) in the Regulation of Adipose Tissue Immunity. White adipose tissues consist of major two fat
depots; visceral adipose tissue and subcutaneous adipose tissue. These two fat depots exhibit several differences in inflammatory responses, fibrosis, and
adipogenesis. ASCs are major cell types comprising of adipose tissue, and they are largely divided into adipogenic and non-adipogenic clusters. In visceral adipose
tissue, there are fibro-inflammatory ASCs (lin−Pdgfrb+Ly6c+ cells or lin−Pdgfra+Gp38+CD9+). The number of fibro-inflammatory ASCs increases in obesity and they
secret pro-inflammatory cytokines (e.g., IL-6, Ccl2) and ECM components (e.g., Col1a1, Col3a1), promoting fibrosis. Moreover, it has been reported that IL-33
producing non-adipogenic ASCs (lin−Pdgfra+PPARg−) are involved in recruitment of Treg and ILC2 via IL-33 secretion, which suppresses inflammation in visceral
adipose tissue. Recently, it was reported that, in subcutaneous adipose tissue, ASCs (CD31−CD34+Sca1+) suppress monocyte infiltration, which is potentially
regulated by GABA signaling. However, the secretory factors that inhibit monocyte infiltration in subcutaneous adipose tissue have not been elucidated yet.
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LIMITATIONS AND FUTURE DIRECTIONS

There are several points to be solved in future studies. First, it
remains elusive which kinds of endogenous lipid antigens would
be presented by adipocyte CD1d in obesity. Even though a-GC
has been used as an activator for iNKT cells, a-GC is an
exogenous and quite potent activator, which might be different
from patho-physiologic conditions. Second, it is required to
identify antigen presenting cells and lipid antigens that
regulate the activity of gd T cells in adipose tissue. Third, the
mechanisms of ATM recruitment by lipid metabolites such as
PGE2 should be elucidated in future studies. Lastly, while recent
technical advances (e.g., scRNA-seq) have proposed novel
subpopulations of adipocytes and discovered new relationships
between adipocyte subpopulations and immune cells, it remains
to be validated with proper in vivomodels (105–108). Also, there
are still huge technical obstacles in the analysis of lipid profiles
from each adipocyte subpopulations as well as immune cells.
CONCLUSION

Lipids are key energy sources and primary building blocks for
plasma membranes and intracellular organelles. Moreover, lipid
metabolites participate in numerous signal transduction and
regulate multiple cellular functions. Recently, it has been
suggested that lipid metabolites are crucial bioactive molecules
in immune system (18–20). Here, we have discussed the
immunomodulatory roles of lipid metabolites of adipocytes
upon metabolic stimuli. In response to altered metabolic
environments, adipocytes sensitively and dynamically control
lipid metabolism and present or secrete lipid metabolites to
Frontiers in Immunology | www.frontiersin.org 9
modulate characteristics of adipose immune cells. Thus, it is
plausible to speculate that adipocytes not only use lipid
metabolites to maintain their structures and functions, but also
actively utilize lipid metabolites as key messengers to
communicate with adipose immune cells. The interplay
between adipocytes and adipose immune cells leads to fine-
tuning adipose tissue immunity and adipose tissue remodeling,
which eventually contributes to maintenance of systemic energy
metabolism. Nonetheless, there are remaining issues to be solved
in future studies. For instance, the lipid antigen presented by
adipocytes and lipid metabolites secreted by adipocytes are not
fully identified. There have been technical difficulties such as
extraction of lipids, identification of specific lipid species, and
quantitation of the vast array of lipids. Thus, solving these issues
will enhance our insights about the mechanisms by which
adipocytes govern adipose tissue immunity, and further suggest
new therapeutic approaches on metabolic complications caused
by adipose tissue inflammation.
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