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Mucosal nasal vaccine development, although ideal to protect from pathogens invading
mucosally, is limited by the lack of specific adjuvant. We recently used P1, a conserved
region of HIV-1 gp41-envelope glycoprotein, as efficient antigen in a prophylactic HIV-1
mucosal vaccine applied nasally. Herein, P1 immunomodulation properties were
assessed on human nasal mucosal models by measuring induction of cytokine and
chemokine production, intracellular signaling pathways, mucosal dendritic cell (DC)
activation, and T cell proliferation. P1 adjuvant properties were evaluated by
quantification of antigen-specific B cell responses against a model antigen in an in vitro
immunization model. We now demonstrated that P1 has additional immunological
properties. P1 initiates immune responses by inducing nasal epithelial cells to secrete
the Th2-cytokine thymic stromal lymphopoietin (TSLP), a described mucosal adjuvant.
Secreted TSLP activates, in turn, intracellular calcium flux and PAR-2-associated NFAT
signaling pathway regulated by microRNA-4485. Thereafter, P1 induces mucosal
dendritic cell maturation, secretion of TSLP in a TSLP-receptor (R)-dependent autocrine
loop, but also IL-6, IL-10, IL-8, CCL20, CCL22, and MMP-9, and proliferation of CD4+ T
cells. Finally, P1 acts as an adjuvant to stimulate antigen-specific B cell responses in vitro.
Overall, P1 is a multi-functional domain with various immuno-modulatory properties. In
addition to being a protective vaccine antigen for HIV prevention, P1 acts as adjuvant for
other mucosal vaccines able to stimulate humoral and cellular antigen-specific responses.

Keywords: adjuvant, intra-nasal vaccination route, IgA, mucosa, Th2-cytokine thymic stromal lymphopoietin, HIV-1
gp41, P1, microRNA-4485
INTRODUCTION

Although most human pathogens initiate infection at mucosal sites, only a few licensed mucosal
vaccines have been established so far (1). Intranasal immunization, by inducing an antigen-specific
immunity in both the mucosal and systemic compartments and by being applied in a atraumatic
manner following pulverization, is currently considered as an ideal strategy for prevention against
pathogens invading mucosa (2–4). Of note, the early side effects attributed to nasal immunization,
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including facial nerve paralysis, are no longer a concern since
they are attributed to the specific ADP-ribosylating toxin-based
adjuvant used in these studies rather than to the nasal
immunization route (4–6). Mucosal immunization is highly
compartmentalized with unique pathways linking the inductive
and effector sites (2, 3). In particular, nasal vaccination elicits
antigen-specific antibody responses in genital tracts (7) and
would be therefore beneficial to prevent transmission of
sexually transmitted pathogens. Nevertheless, very limited
efforts have been made to understand the mechanisms by
which nasal vaccines and dedicated adjuvants activate the local
nasal innate and adaptive immunity as a first step to establish an
effective vaccination.

P1 is a conserved 35 amino acid peptide covering the
Membrane Proximal External Region (MPER) of HIV-1
envelope subunit gp41 (8, 9). The MPER is a major target of
broadly neutralizing antibodies and thus obviously a very
interesting target for an HIV-1 vaccine. In addition, P1
mediates HIV-1 mucosal transcytosis, a principal mucosal
entry pathway for HIV-1, by interacting with Galactosyl
Ceramide (GalCer), the mucosal receptor of HIV-1 (9–11).
Accordingly, we have recently evaluated the protective efficacy
of a gp41-subunit-virosome vaccine at mucosal sites in non-
human primates (8). This vaccine that used P1 as antigen
linked to virosomes, an adjuvant-free vaccine carrier, was
applied twice by the intramuscular route followed by two
intranasal applications. In the primate model, full protection
after repeated vaginal challenges with simian–human
immunodeficiency virus (SHIV) correlated with P1/gp41-
specific cervicovaginal antibodies, with IgAs blocking
transcytosis and IgGs mediating antibody-dependent cellular
cytotoxicity (ADCC). In contrast, in protected animals, serum
IgGs totally lacked antiviral activities. Furthermore, in a Phase I
clinical trial, we found that P1-virosome vaccination induced
mucosal P1-specific antibodies with antiviral activities (12).
These results highlighted the critical role of mucosal antibodies
as the first line of defense against virus entry.

Thymic stromal lymphopoietin (TSLP) is an IL-7-like
cytokine considered as a master regulator of the T helper 2
(Th2) inflammatory responses by priming dendritic cells (DCs),
especially mucosal ones (13, 14). We and others recently
reported that TSLP is secreted by epithelial cells during HIV-1
mucosal transmission following the interaction of the viral
envelope with epithelial cells (15, 16). In turn, TSLP chemo-
attract mucosal DCs to the mucosal compartment (16),
suggesting that TSLP could modulate the mucosal immune
response following mucosal vaccination. Accordingly, in a
study using the HIV-1 envelope gp140 as antigen, TSLP acts as
a strong mucosal adjuvant in the mouse model (17). TSLP
induced a strong humoral response both in serum and at the
genital level following intranasal immunization, comparable to
the adjuvant effect of cholera toxin (CT) tested in parallel. In
addition, a new study reported that all-trans retinoic acid (RA)
shows adjuvant activity through TSLP production (18).
Furthermore, a recent study showed that TSLP and TSLP-
receptor (TSLP-R) were up-regulated in mucosal DCs of mice
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nasally immunized with pneumococcal surface protein A plus
CT (19) and that in TSLP-R knockout mice, the specific IgA
response is remarkably reduced. This indicates that TSLP and its
receptor are major contributors to the mucosal adjuvant effect of
CT and that TSLP- TSLP-R signaling is critical in IgA elicitation.

In the present study, we investigated whether P1, in addition to
being an antigen, could act as an adjuvant by first exploring its
capacity to stimulate epithelial TSLP production. We then
evaluated additional immunomodulatory effects of P1 on
human nasal mucosal models, including cytokine and
chemokine production, intracellular signaling pathways,
mucosal DC activation, T cell proliferation, and antigen-specific
B cell responses against a model antigen in vitro. Altogether, we
report the immunological mechanisms underlying P1-vaccine
and the potential of P1 as a nasal mucosal adjuvant.
MATERIALS AND METHODS

Peptides
Peptide P1 (aa 650–685) is derived from the HIV-1 gp41
envelope subunit. P1 clade B (SQNQQEKNEQELLE
LDKWASLWNWFNITNWLWYIK) is derived from the clade
B HXB2 isolate; P1 clade A (SQIQQKKNEQDLLALD
KWANLWNWFDISNWLWYIR) f rom the c l ade A
99UGA07072 isolate, and P1 clade C (SQTQQEKNEQEL
LALDSWKNLWNWFSITNWLWYIK) was derived from the
clade C Bw96Bw0502 isolate. P1W is a P1 clade B variant with
a W666G mutation and P1–5W with all five Ws mutated to G.
The scramble peptide sequence comprised the same set of amino
acids found in P1 clade B but organized in a random manner (9).
Peptides were synthesized with a purity >95% by Biopeptide Co.,
Inc (San Diego, CA) or United BioSystems (VA, USA).

Cells
Nasal RPMI 2650 cells (isolated from the human nasal septum,
squamous cell carcinoma, ATCC) were grown in MEMa
(Minimum Essential Medium a, Thermo Fisher) supplemented
with 10% fetal calf serum (FCS, Eurobio, Courtaboeuf, France)
and 1% penicillin/streptomycin.

Primary human nasal epithelial cells (HNECs, purchased from
PromoCell, Heidelberg, Germany) were isolated from nasal septum
or adenoids of healthy donors. Cells from two independent donors
were obtained. HNECs were cultured in airway epithelial cell basal
medium (PromoCell) and supplemented with airway epithelial cell
growth SupplementMix (PromoCell) and only cells from passages
2 to 6 were used.

Monocyte-derived DCs (DCs) were generated from primary
human monocytes obtained from PBMCs (purity >98%) as
described (11, 20). In brief, human peripheral blood
mononuclear cells (PBMCs) were separated from healthy donors
blood (EFS, Paris, France), and monocytes were purified from
PBMCs by negative selection according to the manufacturer’s
instructions (StemCell Technologies, France). DCs were obtained
by incubating monocytes for 7 days in complete medium
containing GM-CSF (100 ng/ml) and IL-4 (10 ng/ml).
February 2021 | Volume 11 | Article 599278
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Autologous CD4+ T cells were purified from PMBCs by
negative selection according to the manufacturer’s instructions
(StemCell Technologies, France) (purity >95%).

Quantitative RT-PCR for TSLP
The expression of short and long form TSLP was quantified as
described (21, 22). Briefly, total RNA was extracted using
Trizol. Five hundred nanograms of RNA was treated with
ezDNase Enzyme (Thermo Fisher) to remove genomic DNA
and reverse transcribed into cDNA using the kit SuperScript IV
VILO Master Mix according to the manufacturer’s instructions
(Thermo Fisher). Quantitative PCR was performed using
reported primers (21) and the PowerUp SYBR Green Master
Mix according to the manufacturer’s instructions (Thermo
Fisher). Reactions were performed in triplicates, with
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as the
internal control. Amplification, data acquisition, and analysis
were carried out using the LightCycler 480 Software (Roche,
Mannheim, Germany). The levels of TSLP mRNA were
normalized to the levels of GAPDH using the DCt method (23)
and were presented as 2−DCt values.

MicroRNA Microarray Analysis
Confluent HNECs in 12-well plates were stimulated with
medium or P1 (clade B, 125 mM) for 6 h at 37°C. Total RNA
was extracted using Trizol. Before analysis, lfTSLP RNA up-
regulation was confirmed by qPCR as described above and RNA
quality was assessed with Agilent 2100 bioanalyzer according to
the manufacturer’s instructions (Agilent Technologies). Three
untreated and treated paired samples from three independent
experiments were analyzed by GeneChip miRNA 4.0 arrays
(Affymetrix, Thermo Fisher) containing probes for 2,578
human mature microRNAs and 2,025 premature microRNAs
(https://assets.thermofisher.com/TFS-Assets/LSG/brochures/
miRNA_4-0_and_4-1_datasheet.pdf). Potential microRNA
targets were analyzed with the Ingenuity Pathway Analysis
(IPA) software (Qiagen).

MiR-4485 Quantification and Knockdown
The quantification and knockdown of microRNA were performed
as previously described with some modifications (16). Briefly, total
RNA was purified using MinElute PCR Purification Kit (Qiagen),
the expression level of miR-4485 was quantified with TaqMan
Small RNA Assays (Thermo Fisher). Reactions were performed in
triplicates, and U6 was used as endogenous control. In order to
knock down miR-4485, 70% confluent HNEC cells were
transfected with anti-miR-4485 inhibitor (67 nM, Qiagen) or
mock inhibitor (miSCRIPT inhibitor negative control, 67 nM,
Qiagen) using Lipofectamine RNAiMAX (Invitrogen) as described
by the manufacturer. 36 h after transfection, miR-4485 expression,
when quantified as described above, was reduced by 50–60% in
anti-miR-4485 transfected cells as compared to anti-miR control
(n = 3 independent experiments).

Signaling Inhibitors
Confluent HNEC cells in 24-well plate were pre-incubated with
inhibitors for 1 h at 37°C prior to P1 treatment. Inhibitors,
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namely dexamethasone (Dex) a NF-kB and MAPK inhibitor
(used at 100 nM), and cyclosporin A (CsA) a calcineurin
inhibitor (used at 1.5 mM), were from Invivogen and used at
the manufacturer’s recommended concentrations. ENMD-1068
(PAR-2 antagonist, Enzo Life Science) was used at 50 mg/ml as
described (24, 25).

Calcium Measurement
70–80% confluent RPMI 2650 or HNEC cells in 24-well plates
were loaded with 2 mM Fura-2/AM (Molecular Probes) in basal
medium without serum/growth factors for 1 h at 37°C. Cells were
washed twice with mammalian saline (26), and measurements
were performed in complete medium supplied with HEPES
(10 mM) and CaCl2 (2 mM) as described (26). Images were
acquired with an inverted fluorescence microscope (Observer Z1,
Zeiss, Germany) and analyzed with MetaMorph software (27).
Calcium was measured every 5 s by video fluorescence imaging.
Results were expressed as 340 nm to 380 nm fluorescence ratio
and normalized to the baseline, i.e. ratio at time zero was set as 1.

Cytokines and Chemokine Quantification
TSLP, IL-25/IL-17E, IL-33, IFN-g, IL-10, IL-12/23p40, IL-4, IL-5,
IL-6, IL-13, TNF-a, MMP-9, IL-8/CXCL8, MIP-3a/CCL2,
MCP-1/CCL20, MDC/CCL22, TARC/CCL17, APRIL, and
BAFF were measured in culture supernatants from the
indicated experiments with custom multiplex Luminex assays
(Bio-techne) according to the manufacturer’s instructions.
Additionally, the indicated TSLP was measured in culture
supernatants by enzyme-linked immunosorbent assay (ELISA)
with a limit of detection of 8 pg/ml (Thermo Fisher) according to
the manufacturer’s instructions.

DC–EC Co-Culture and DC Activation
Three DC culture systems were developed. Monocytes derived
DCs (5 × 105 cells) were incubated for 24 h in medium alone and
considered as non-mucosal DCs (DCs) or co-cultured with nasal
epithelial cell (RPMI-2650 cell line) monolayer in 24-well plate
(DC–EC or eduDC systems for 24 h at 37°C. In turn, DCs were
either further cultured with ECs during P1 stimulation (DC–
ECs) or separated from EC and transferred into a new plate
(eduDCs) for further P1 treatment. Subsequently, P1 (clade B,
125 mM) or medium were added to each of the DCs, DC–ECs or
eduDCs cultures for 16 h. DCs were collected for surface staining
with allophycocyanin (APC)-conjugated anti-CD86, R-
phycoerythrin (PE)-conjugated anti-CD83, APC-conjugated
anti-TSLPR, PE-conjugated anti-IL-7Ra antibodies (all from
Bio-Techne). Specific labeling was quantified by flow
cytometry using a Guava EasyCyte flow cytometer and the
InCyte software (Merck) described (28). Culture supernatants
were collected and frozen at −80°C for subsequent cytokine and
chemokine analyses.

DC-T Cell Co-Cultures
DCs and confluent ECs were co-cultured overnight as described
above, and DC–EC or eduDC was further incubated with P1
(clade B, 125 mM) or medium for 24 h. Then, DCs were separated
and incubated with autologous CD4+ T cells pre-labeled with
February 2021 | Volume 11 | Article 599278
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CFSE (Thermo Fisher) according to the manufacturer’s
instructions, at a ratio of 1:5 (DC/T). After 5 days of culture,
CD4+ T cell proliferation was analyzed by flow cytometry as
described (29, 30) using Phytohaemagglutinin (PHA) (5 mg/ml)
as positive control.

In Vitro Immunization Assay
In vitro immunization assay was performed as reported (31) with
modifications. Briefly, 1 × 106 CD8-depleted PBMCs (Human
CD8 Depletion Cocktail, StemCell Technologies, France) were
co-cultured for 24 h with RPMI 2650 cells (1 × 105) pre-seeded in
48-well plates for 48 h. Then, ovalbumin (OVA, EndoFit
Ovalbumin, 10 mg/ml, Invivogen) alone, OVA together with P1
(5 mM, 25 mM, 125 mM), OVA together with P1 mutant (P1mut,
125 mM), or medium were added to in RPMI 1640 medium
supplemented with Non-Essential Amino Acids (NEAA
solution, Thermo Fisher), IL-4 (10 ng/mL), IL-2 (10 UI/mL)
and 2-mercaptoethanol (20 mM) for 7 days.

For the detection of OVA-specific B cells, at the time points
indicated, PMBCs were surface stained with ovalbumin
conjugated to fluorescein (OVA-FITC, 20 ug/ml, Thermo), PE-
conjugated mouse anti-human CD20 (BD Biosciences, CA,
USA), APC-conjugated goat anti-human IgA or donkey anti-
human IgG (Jackson ImmunoResearch, PA, USA) as indicated
by the manufacturer. Specific labeling was quantified by flow
cytometry with a Guava EasyCyte flow cytometer (Merck-
Millipore), and analyzed with the dedicated InCyte software,
using the following strategy: CD20+ B cells were first gated and
cells double positive for OVA-FITC+ and APC-conjugated anti-
IgA or anti-IgG were determined as OVA-IgA or IgG-specific B-
cells, respectively.

Statistical Analysis
Data are presented as mean ± SEM of at least three independent
experiments. Statistical significance was analyzed by the two-
tailed Student’s t-test with the GraphPad Prism software.
RESULTS

P1 Induces TSLP Secretion in Nasal
Epithelial Cells by Interacting With
Galactosyl Ceramide
We first investigate whether P1 induced TSLP secretion in nasal
epithelium. Therefore, we cultured human nasal epithelial cells
(RPMI 2650) with P1 clade B for 2–24 h at 37°C and analyzed the
culture supernatants for TSLP secretion. Compared with the
medium and scramble peptides used as negative controls, P1 up-
regulates TSLP secretion in a dose-dependent manner from 2 to
4 h (Figure 1A). At 125 mM, when P1 adopts a trimeric
oligomerization state (9), P1 induces a significantly higher
secretion of TSLP than in a monomeric state (at 5 mM and
25 mM). TSLP secretion occurs rapidly within hours post
stimulation reaching a plateau from 4 to 24 h.

Although the P1 sequence is relatively conserved, in contrast
to highly mutated regions of HIV-1 envelope gp120, the P1
Frontiers in Immunology | www.frontiersin.org 4
sequence varies between HIV-1 clade A that is common in West
Africa, clade B that predominates in Europe and the USA, and
clade C that predominates in Africa and China (Figure 1B).
Consequently, we next analyzed whether TSLP secretion was
restricted to clade B derived P1 or would also be stimulated by P1
derived from clade A and C viruses (Figure 1B). Secretion of
TSLP induced by clade A compared to clade B P1 is reduced by
20% (41.8 ± 2.6 pg/ml for clade A, 52.3 ± 3.4 pg/ml for clade B P1
at 125 µM, p < 0.05, n = 5) whereas P1 clade C failed to induce
TSLP secretion. P1 clade C differs from P1 clades B and A by the
ELDKW motif, we have previously shown to be determinant in
P1 clade B binding to galactosyl ceramide (GalCer), the epithelial
HIV-1 receptor (9, 10). We thus hypothesized that P1 clades B
and A interaction with GalCer initiated TSLP secretion.
Accordingly, P1 clade B mutated in W666G (P1W) that fails
to interact with GalCer (9) completely loses the capacity to
induce TSLP secretion. Furthermore, when the interaction
between P1 and GalCer was blocked by pre-incubation with
anti-GalCer antibody, TSLP production is entirely blocked,
confirming that TSLP secretion is initiated by P1 interaction
with GalCer (Figure 1C). Importantly, P1 stimulation also
induces primary human nasal epithelial cells (HNECs) to
secrete TSLP in a GalCer-dependent manner (Figure 1D).

Long-Form TSLP Is Up-Regulated After
P1 Stimulation
Two transcript variants of TSLP, namely the short (sfTSLP) and
the long (lfTSLP) forms, were recently identified (32). The
expression of sfTSLP has been suggested to be constitutive and
homeostatic, whereas the lfTSLP leads to proinflammatory
responses (32). We thus investigated which form(s) of TSLP
was up-regulated by P1 stimulation of nasal epithelial cells.
When analyzed at the transcriptional level in nasal RPMI and
primary HNEC cells, the expression of sfTSLP and lfTSLP differs
by a factor >102. Upon P1 stimulation of both nasal RPMI cells
and primary HNECs, the level of the sfTSLP transcript remains
unchanged (Figure 1E). In contrast upon P1 stimulation, the
level of lfTSLP transcription in both nasal RPMI cells and
HNECs increased by 1.9 (p = 0.02, n = 5) and 5.9-fold (p =
0.004, n = 6), respectively, compared to unstimulated cells.
Altogether, these results indicate that P1 up-regulates lfTSLP
selectively at a transcription level.

P1-Induced lfTSLP Expression Is
Regulated by miR-4485, Calcineurin,
and PAR-2
Next, we investigated the intracellular mechanisms leading to
TSLP expression after P1 interaction with GalCer. We
concentrated on primary HNECs as its increase in lfTSLP
transcription level upon P1 stimulation is higher compared to
that in nasal RPMI cells (Figure 1E).

We have previously shown that the non-coding microRNA
miR-375 controls TSLP expression in primary human foreskin
keratinocytes (16), as it does in human intestinal cell lines (33).
When tested in primary HNECs, we found that the TSLP
secretion induced by P1 described above is not accompanied
February 2021 | Volume 11 | Article 599278
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by a change in miR-375 expression. We thus further investigated
the microRNA profiles upon nasal epithelial HNEC stimulation
by P1 after treatment with or in the absence of P1 for 6 h,
comparatively by microRNA array analysis. As a result, 39
microRNAs are differentially expressed with a fold change
ranging from 1.3 to 9.15 when p <0.05, including 23 up-
regulated and 16 down-regulated genes (Figure 2A, Table 1).

Remarkably, in the microRNA array analysis, the highest
up-regulated gene upon P1 stimulation is the miR-4485-3p with a
n> nine-fold increase (Table 1). We validated this up-regulation
by qPCR resulting in an increase inmiR-4485-3p expression by 2.6 ±
0.8-fold (n = 4) upon P1 stimulation (Figure 2B). MiR-4485-3p is a
relatively newly described microRNA that is poorly characterized
at the experimental level. The only described activity of miR-
4485-3p is to regulate mitochondrial functions, suggesting a role
in tumor suppression (34). Thus, we first evaluated whether this
microRNA controlled TSLP expression. Therefore, primary
HNECs were transfected with a specific siRNA to inhibit miR-
4485-3p expression before P1 stimulation. As a result, knocking
down miR-4485-3p by 50–60% decreases in turn P1-induced
TSLP expression by 48 ± 10% (p < 0.01, n = 4), compared to cells
transfected with a mock inhibitor (Figure 2C).

Bioinformatic analyses were conducted to further elucidate
the mechanisms by which P1 modulates all identified
Frontiers in Immunology | www.frontiersin.org 5
microRNAs and subsequent intracellular signaling pathways.
The genes predicted to be targeted by identified microRNAs
participate in several signaling pathways, the five principals
including G protein-coupled receptor (GPCR)-associated
signaling, Nuclear factor of activated T-cells (NFAT) signaling,
Rho GDP signaling, Ephrin receptor signaling, and thrombin
signaling (Figure 2D).

Corroborating this predictive analysis designating NFAT,
GPCR, and thrombin (PAR associated) pathways (35) as the
main ones induced by P1 stimulation, it has been described that
in keratinocytes, TSLP production is regulated by Ca2+-dependent
NFAT signaling itself triggered by the activation of GPCR
protease-activated receptor 2 (PAR-2) (36). Thus, we next
evaluated experimentally whether inhibitors specific to these
pathways also reduced P1-induced TSLP expression in primary
HNECs. Therefore, HNECs were pre-treated with the calcineurin
inhibitor Cyclosporine A (CsA) or with the PAR-2 antagonist
ENMD-1068 prior to P1 stimulation. Accordingly, TSLP
expression was reduced by 67 ± 4% (p < 0.001, n = 3) upon
CsA pre-treatment and by 46±14% (p < 0.05, n = 3) following
ENMD-1068 pre-treatment (Figure 2E). Furthermore, CsA and
ENMD-1068 inhibitors also blocked the up-regulation of miR-
4485-3p (Figure 2B). In contrast, blocking NF-kB and MAPK
with Dexamethasone (Dex) had no effect on TSLP expression
A B

D EC

FIGURE 1 | P1 induces TSLP expression in nasal epithelial cells. (A) Confluent RPMI 2650 cells were cultured with P1 peptide (5 mM, 25 mM, 125 mM) or scramble
peptide (125 mM), for 2 h or 4 h. TSLP secretion in culture supernatants was quantified by ELISA. Data are presented as box-and-whisker plots. (B) RPMI nasal cells
were cultured with HIV-1 clade (A–C) derived P1 peptides or the mutated P1–5W peptide at increasing concentrations for 4 h. Inset: P1 key amino acids (661–670)
corresponding to the broadly neutralizing 2F5 and 4E10 IgG epitopes with clade-specific mutations are aligned. (C) RPMI nasal cells were pre-incubated with anti-
galactosyl ceramide (GalCer) antibody for 30 min at 37°C before stimulation with each P1 peptide. (D) Primary HNEC cells were cultured with P1 peptide (5 mM, 25
mM, 125 mM), with or without anti-GalCer pre-incubation, or P1W peptide (125 mM). (E) Relative mRNA expression of the short form (sf) and long form (lf) TSLP in
RPMI nasal cells (left) and HNEC cells (right). Cells were stimulated with (P1) or without (WO P1) P1 for 4 h, 37°C. Data in (B–D) are presented as mean ± SEM
(n = 3–8 independent experiments. paired student’s t-test *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.001).
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(Figure 2E). These results provide direct and indirect evidence
that miR-4485-3p, calcineurin, and PAR-2-mediated signaling
tightly correlate with P1-induced TSLP expression.

To further confirm that P1 activates calcineurin, we
investigated whether, in nasal epithelial cells, P1 induces
calcium fluxes that generally cause calcineurin activation (37).
Accordingly, using fluorescent dye Fura-2/AM imaging
technology, we observed in both nasal RPMI cells and primary
HNEC cells that P1 treatment induces an immediate
extracellular calcium influx in a concentration-dependent
manner (125 mM vs 25 mM of P1, n = 3) (Figures 3A, B).
In contrast, treatment with control peptides (P1–5W mutant
and P1 clade C, both at 125 mM) fails to raise the calcium
level significantly.
Frontiers in Immunology | www.frontiersin.org 6
Together, these data indicated that in nasal epithelial cells, P1-
stimulated TSLP expression is regulated by miR-4485 via a Ca2+-
dependent NFAT signaling pathway through the interaction
with PAR-2 receptor.

P1 Further Stimulates Epithelial Secretion
of MMP-9, CCL20, CCL2, and IL-10
We next investigated whether, in addition to TSLP, P1 could
stimulate epithelial secretion of additional immune factors prone
to attract antigen presenting cells (APCs). Therefore, nasal RPMI
cells where incubated with P1 (125 mM) and after 24 h, the cell
culture medium was analyzed for interleukin (IL)-25/IL-17E,
IL-33, IFN-g, IL-10, IL-12/23p40, IL-4, IL-5, IL-6, IL-13, TNF-a,
Matrix metalloproteinase 9 ((MMP-9), IL-8/CXCL8, MIP-3a/
A B

D E

C

FIGURE 2 | MicroRNA-regulated P1-induced TSLP expression and corresponding signaling pathways in nasal epithelial cells. (A) Heatmap showing 39 differentially
expressed miRNAs in P1 stimulated (P1) HNEC cells compared with control unstimulated cells (NS). Only differentially expressed microRNAs with p value <0.05 from
paired student’s t-test, and a cut-off of fold change >1.3 are included. n = 3 independent experiments with HNECs from two different donors. (B) PAR-2 antagonist
ENMD-1068 (ENMD) and calcineurin inhibitor cyclosporine A (CsA) decrease the expression of P1-induced miR-4485 as measured by qPCR. (C) miR-4485 knock-
down in HNECs by siRNA transfection inhibited P1-induced TSLP expression, measured by qPCR, by about 50%. (D) Top six target pathways predicted by
Ingenuity Pathway Analysis sorted by their p values. The ratio presented is defined as the number of the differentially miRNAs found in the P1-treated cells over the
total number of miRNA involved in each of the pathway. (E) P1-induced TSLP expression, measured by qPCR, is significantly reduced in the presence of CsA, an
inhibitor of NFAT and ENMD, an antagonist of PAR-2, but not by Dexamethasone (Dex), an inhibitor of NF-kB and MAPK. m: medium. Data are presented as mean ±
SEM n ≥ 3 independent experiments paired student’s t-test *p < 0.05, ** p < 0.01, ***p < 0.001).
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CCL2, MCP-1/CCL20, MDC/CCL22, TARC/CCL17, APRIL,
and BAFF by Luminex technology. As a result, P1 selectively
induced the secretion of MMP-9, CCL20, CCL2, and IL-10
(Figure 3C). Furthermore, as observed for P1-induced TSLP
secretion, P1W and P1 clade C were unable to stimulate
significant MMP-9, CCL-20 CCL2, or IL-10 production.
Together with TSLP (16), this set of immune factors could
facilitate recruitment of APCs to the mucosal surface for
initiation of an immune response, since CCL20 and CCL2
chemo-attract macrophages and immature DCs and MMP-9
degrade the extracellular matrix and facilitate the migration of
immune cells in or out the epithelium. Treg cells have IgA-
inducing functions and require RA, TGF-b1, IL-10, and TSLP
from the intestinal epithelial cells and DCs. So, we assumed IL-10
released from either EC or DC may contribute to IgA class
switching (Gutzeit, Magri, et al., 2014).

P1 Activates Human Dendritic Cells in a
Nasal Mucosal Model
APCs link the innate and adaptive immune systems and
determine the polarization of the immune responses. APCs are
thus a key target in vaccine and adjuvant development (38). DCs
being the most abundant APCs in airway mucosa (39), we
further investigated mucosal DC responses to P1.

It has been suggested that mucosal DCs display unique
functions due to the local microenvironment, especially at
mucosal level (40). In particular, mucosal DCs modulate their
functions by interacting with epithelial cells (ECs) including via
epithelial secretion of TSLP (33, 41). Thus, we established a
simplified mucosal DC model, by co-culturing DCs and nasal
ECs (RPMI-2650 cell line), thereby mimicking the nasal mucosal
environment as depicted in Figure 4A. DCs were first ‘educated’
Frontiers in Immunology | www.frontiersin.org 7
by a 24 h co-culture with ECs. Subsequently, these ‘educated’
DCs were either maintained in culture with ECs and referred to
as DC–EC, or separated from the epithelium and referred to as
eduDC. Alternatively, DCs only cultured with medium
represented ‘non-mucosal’ DCs.

Each type of DCs was stimulated with P1 overnight, and the
expression of maturation markers was assessed by flow
cytometry. Compared to untreated cells, P1-treated mucosal
DCs, either DC–EC or eduDCs, show a significant up-
regulation of co-stimulatory molecules CD83 (Figure 4B) and
CD86 (Figure 4C). In contrast, P1 has no effect on ‘non-mucosal’
DCs. Surprisingly, P1 also significantly enhanced the expression
of TSLP receptor, with both chain TSLP-R (Figure 4D) and
IL-7Ra (Figure 4E) being up-regulated on the DCs in all
three models.

The cytokine and chemokine secretion profiles were also studied
in these models, comparatively. Compared with non-mucosal DCs,
P1 induces a significant increase in IL-6, IL-8, IL-10, CCL20, CCL22,
andMMP-9 secretion ineduDCandDC–ECmodels aswell as thatof
TSLP secretion, although more modest. In contrast, IFN-g secretion
remains unchanged upon P1-stimulation or slightly decreases in
DC–EC (Figure 5A). In addition, several cytokines, such as IL-25,
IL-33, IL-4, IL-5, remain undetectable whatever the model, whereas
others, such as IL-12, IL-13, CCL2, CCL17, TNF-a, APRIL, and
BAFF, are secreted equally in all three models.

Activated DCs are known to stimulate T-cell proliferation to
initiate an adaptive immune response, both in vivo and in vitro
(15, 29, 30). Therefore, we further assessed if P1 activated mucosal
DCs could promote T cell proliferation. As a result, P1 primed
eduDCs induced the proliferation of autologous CD4+ T cells,
whereas treatment with control peptides (P1W mutant and P1
clade C) or P1 stimulation on CD4+ T cells alone has no effect
TABLE 1 | MicroRNAs induced (left) or repressed (right) in HNECs treated with P1.

gene ID fold (P1/n.s.)** p value *** gene ID fold (P1/n.s.) p value

hsa-mir-4485-3p 9.15 0.049 hsa-mir-3972 −1.95 0.020
hsa-mir-5572 1.95 0.030 hsa-mir-4487 −1.77 0.013
hsa-mir-3180 1.67 0.030 hsa-mir-4786-5p −1.62 0.024
hsa-mir-3937 1.65 0.035 hsa-mir-1246 −1.56 0.012
hsa-mir-1587 1.56 0.002 hsa-mir-5093 −1.53 0.026
hsa-mir-6758-5p 1.56 0.012 hsa-mir-7162-3p −1.52 0.018
hsa-mir-711 1.54 0.001 hsa-let-7b-3p −1.48 0.030
hsa-mir-3180-3p 1.54 0.023 hsa-mir-3926 −1.47 0.003
hsa-mir-3180-5* 1.47 0.011 hsa-mir-758-5p −1.40 0.011
hsa-mir-3180-4* 1.46 0.021 hsa-mir-4677-3p −1.40 0.004
hsa-mir-3180-1* 1.44 0.039 hsa-mir-3616-3p −1.40 0.003
hsa-mir-3180-2* 1.44 0.039 hsa-mir-1247-3p −1.36 0.037
hsa-mir-3180-3* 1.44 0.039 hsa-mir-646 −1.35 0.016
hsa-mir-4666a-5p 1.41 0.040 hsa-mir-4449* −1.33 0.023
hsa-mir-7114* 1.38 0.041 hsa-mir-4487* −1.32 0.046
hsa-mir-3181 1.37 0.042 hsa-mir-1251-3p −1.31 0.010
hsa-mir-6848-5p 1.35 0.026
hsa-mir-1231 1.34 0.013
hsa-mir-4649-3p 1.33 0.035
hsa-mir-4498 1.33 0.036
hsa-mir-624-3p 1.31 0.026
hsa-mir-1245b-3p 1.31 0.045
hsa-mir-498* 1.31 0.007
Februa
ry 2021 | Volume 11 | Article
Hairpin format pre-mature microRNA; **n.s., non stimulated; ***p values were calculated from paired t-test.
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(Figure 5B). Similar results were observed with DC–ECs, in
agreement with the similar cytokine profiles between DC–EC
and eduDC as described above.

Altogether, these results show that P1 activates mucosal DCs
specifically, resulting in Th2 cytokine and chemokine secretion,
and in CD4+ T cell proliferation.

P1 Acts as an Adjuvant to Stimulate
Antigen-Specific Humoral Responses
In Vitro
Finally, given that P1 induces various immunomodulatory effects
in mucosal cells involved in vaccination at the nasal site, as
described above, we investigated whether P1 was able to act as an
Frontiers in Immunology | www.frontiersin.org 8
adjuvant. Using an in vitro immunization model with human
PBMCs, the capacity of P1 to trigger a humoral immune response
against a well-characterized antigen, namely ovalbumin (OVA),
was evaluated.

In vitro immunization assays have been used to produce
specific monoclonal antibodies using a defined antigen
complemented with an adjuvant (42). Here, we establish a
mucosal immunization model adapted from (29, 31, 43) and
using mucosal DCs based on our results presented above. OVA
were selected as the model antigen. Therefore, human CD8-
depleted PBMCs (n = 5 independent donors) were co-cultured
with RPMI 2650 cells for one day to educate DCs, and prior to
addition of either medium, OVA, OVA plus P1 mutant (P1mut,
A

B

C

FIGURE 3 | P1 induces calcium flux and cytokine/chemokine secretion in nasal epithelial cells. (A, B) Calcium fluxes in response to P1 stimulation.
(A) Representative images of Fura-2/AM loaded epithelial cells treated with medium (mock), P1 (5 mM, 25 mM, 125 mM), P1 of clade C (P1-C, 125 mM), and mutated
P1 (P1–5W, 125 mM). (B) Calcium was measured every 5 s by video fluorescence imaging and displayed as the ratio of 340 and 380 nm excitation signals.
Representative trace out of n = 3 independent experiments of calcium fluxes in Fura-2/AM loaded epithelial cells (left RPMI, right HNEC cells) treated with P1 and
other indicated peptides. (C) Cytokine and chemokine release from nasal epithelial cells upon P1 stimulation. P1 elicits MMP-9, CCL20, CCL2, IL-10 secretion in
nasal epithelial cells. Cells were incubated with medium, P1 (clade B, 125 mM) or control peptide: scramble P1, P1–5W or P1 clade C, 125 mM (ctrl P) for 24 h.
MMP-9, CCL20, CCL2, IL-10 secretions were measured by multiplex Luminex assay. Data are presented as mean ± SEM (A, B) Data are presented as box-and-whisker
plots from n = 5 independent experiments; paired student’s t-test *p < 0.05, ***p < 0.001.
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125mM) or OVA plus P1 (5 mM, 25 mM, 125 mM) for seven more
days. OVA-specific B cells were quantified by flow cytometry
using FITC-conjugated OVA and anti-CD20-PE to gate on
OVA-specific B cells. The Ig isotype of surface B cell receptor
(BCR) was next characterized by APC-conjugated anti-human-IgA
or anti-human-IgG. As shown in Figure 6, OVA alone, similarly to
medium, failed to induce OVA-specific specific B cells, whereas in
the presence of P1, OVA-specific B cells were detected. At 5 mM
Frontiers in Immunology | www.frontiersin.org 9
and 25 mM, the concentration at which P1 remains in the
monomeric state, induction of OVA-specific B cells is very
limited, whereas, at 125 mM, P1 significantly enhances OVA
recognition by B cells due to surface expression of OVA-specific
IgA and IgG isotypes. Similar results were obtained when B cells
were stained with anti-CD19-PE. Importantly, in the absence of
nasal epithelial cells during the in vitro immunization, P1 is not
able to induce OVA-specific B cells. Within the culture
supernatants of day 7, OVA-specific antibody secretion could not
be detected by ELISA, most likely because blasts were not formed
at this early time point of the immunization and in agreement
with the detection of OVA-specific IgA and IgG at the B cell
surface, prior to blast differentiation. Hence, P1 appears to act
as an adjuvant by promoting the expression of antigen-specific
BCR on B cells, which may need additional signals to develop into
plasma cells.
DISCUSSION

In contrast to intensively used bacterial adjuvants, the beneficial
immune properties of viral components have been mostly
overlooked. Although viruses are commonly considered to
trigger PRRs (Pattern recognition receptors) by their genetic
materials, viral envelope proteins have also been reported to
initiate local inflammation via the interaction with TLR-2 and
TLR-4 (44–47). These motifs are critical for virus transmission
but might also be used to improve vaccine uptake and efficacy.

Here, we reported for the first time about the adjuvant activity
of a viral membrane protein and explored the corresponding
immunological mechanisms. Therefore, we have characterized
the immuno-modulatory properties of P1, a conserved peptide
from the HIV-1 glycoprotein gp41 we have previously shown to
be a powerful vaccine antigen providing full protection against
mucosal HIV infection following intra-nasal immunization (8)
and determined its stimulatory activities in human nasal
epithelial cells and dendritic cells, the two major targets of
nasal vaccination.

Nasal epithelial cells are the first cells encountered by the
vaccine applied nasally and are recognized to influence the
initiation, regulation, and maintenance of mucosal innate and
adaptive immune responses via epithelial-derived factors, such as
TSLP (33, 41). The P1-induced TSLP secretion by nasal epithelial
cell shown here could thus constitute the initial adjuvant activity
achieved by P1 used in a nasal vaccine formulation. TSLP offers
several advantages for stimulation of the local immunity and
induction of specific antibody production, two main goals of
mucosal vaccination (18). In particular, TSLP affects polarization
towards Th2 immune responses, promotion of IgA class switching,
and mediates the generation and maintenance of memory T cells
(48). Hence, the introduction of TSLP in a vaccine formulation
applied mucosally strongly stimulates the IgA response (19), and
TSLP has demonstrated adjuvant activity in a recent HIV-1 vaccine
study with intra-nasal administration in the mouse model (17).
Recent studies by us and others demonstrated that TSLP is secreted
during the initial steps of HIV-1 entry in the genital mucosa
A

B
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FIGURE 4 | P1 induces mucosal dendritic cell (DC) maturation.
(A) Experimental models of mucosal DC activation by P1. Experimental model
evaluating (a) mucosal DC generated by continuous contact between
epithelial (EC) and DC (DC–EC): DCs, co-cultured with EC monolayer (RPMI-
2650 cell line) for 24 h, were treated with P1 or medium for an additional
16 h; (b) mucosal DC generated by an initial education by EC following a
time-limited contact between EC and DC (eduDC): after co-cultured with ECs
for 24 h as above, DCs were separated from EC and subsequently treated
with P1 or medium for an additional 16 h. (c) non-mucosal DC (DC): DCs
were cultured alone with medium for 24 h prior to stimulation by P1 or
medium for 16 h. (B–E) P1 activates DCs by up-regulating the expression of
surface markers. Expression of CD83 (B), CD86 (C), TSLPR (D), IL-7Ra
(E) on DCs obtained after culture within the three models described in
(A) and quantified by flow cytometry with (blue bars) or without (WO) (gray
bars) P1 stimulation. CD86 expression is shown as mean fluorescence
intensity (MFI). Data are presented as mean ± SEM (n > 3 independent
experiments; paired student’s t-test *p < 0.05, **p < 0.01, ***p < 0.001).
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following gp120-dependent activation of the TLR-4 pathway
through NF-kB signaling (15, 16). Based on the considerable
efficacy of our gp41-subunit vaccine comprising virosome, an
adjuvant-free vaccine carrier, coupled to gp41 subunits used as
antigen, and administered nasally, we decided to investigate
whether our vaccine antigen, the gp41-subunit P1, could also
stimulate TSLP and thus acts as a mucosal adjuvant.

However, nasal epithelial cells differ from genital ones and thus
respond differently to pathogens they are associated with. Hence,
nasal epithelial cells cannot be activated by LPS via TLR-4 (49).
Accordingly, our study revealed that P1 stimulates TSLP
production in nasal epithelial cells by interacting rather with
GalCer, the HIV mucosal receptor expressed on epithelial cells
and dendritic cells (9–11).
Frontiers in Immunology | www.frontiersin.org 10
We further studied the in-depth mechanism stimulated by P1
interaction with GalCer to identify the cellular regulator of TSLP
expression in nasal epithelium. As TSLP secretion by various
stimuli is regulated by miRNA (16, 33), we first studied the
microRNA transcriptome selectively induced in nasal epithelial
cells upon P1 stimulation. We identified miR-4485 as the main
miRNA that is differentially increased in nasal cells upon P1
stimulation. Accordingly, blocking miR-4485 abolished P1-
induced TSLP secretion. Further prediction-based systematic
analysis based on targets of identified miRNAs computed that
the PAR-2 associated NFAT pathway was modulated. PAR-2
plays a key role in TSLP release, particularly the PAR-2/ORAI1/
NFAT calcium pathway that has been reported to regulate TSLP
production in keratinocytes (36). Here, we experimentally
A

B

FIGURE 5 | P1 stimulation of mucosal DCs results in CD4+T cell proliferation. (A) Cytokine and chemokine production of P1-treated DC models. IL-6, IL-10, IFNg,
TSLP, IL-8, CCL-20, CCL-22, and MMP9 were quantified by a multiplex Luminex assay. The blue star (*) indicates significant differences (p values <0.05, student’s
t-test) in each model between P1 (blue bars) and mock (gray bars) treatments, whereas the black star (*) compares P1-treated cells in different models. Data are
presented as box-and-whisker plots from n > 3 independent experiments, p values <0.05, paired student’s t-test). (B) P1-treated mucosal DCs stimulate the
proliferation of CD4+ T cells. CD4+ T cell proliferation was determined by flow cytometry according to CFSE intracellular concentration. Data are represented as
proliferating CD4+ T cells as % of total CD4+ T cells. Phytohaemagglutinin (PHA) was used as positive control. Data are presented as mean ± SEM (n > 3
independent experiments; paired student’s t-test *p < 0.05, **p < 0.01, ***p < 0.001).
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established the capacity of P1 to stimulate the PAR-2/ORAI1/
NFAT calcium pathway in nasal epithelial cells. Hence, P1-
induced TSLP secretion is blocked by PAR-2 and calcineurin
specific inhibitors, and P1 induces an intracellular calcium
influx. Furthermore, in addition to TSLP, P1 stimulates the
specific secretion of CCL20, CCL2, IL-10, and MMP-9 in nasal
epithelial cells. In line with these results, MMP-9 secretion has
been shown to be triggered by PAR-2 activation (50).

Our results indicate that P1 can induce TSLP production
when interacting with the nasal epithelium thus probably also
during nasal vaccination. However, the pathway induced by the
gp41-subunit P1 differs completely from that elicited by gp120
within the HIV-1-envelope spike during HIV-1 sexual
transmission at genital sites (15, 16). Regarding its role in the
nasal vaccination process, TSLP produced at the inductive site
may imprint mucosal immune cells, such as DCs, so that these
cells acquire an innate memory (51), prior to circulating towards
the effector site at the genital mucosa, as proposed (3).
Consequently, during the very first contact with HIV-1 at the
genital mucosa—also the vaccine effector site—these imprinted
immune cells could receive from HIV-1 envelope a signal to
induce TSLP, and in turn rapidly mobilize vaccine induced
memory cells to prevent infection.

On the non-lymphoid area of the mucosal surface, sub-
mucosal DCs act as sentinels for monitoring ‘danger signals’
such as cytokines and chemokines induced by antigen stimulated
epithelial cells. Upon activation, these DCs may penetrate
epithelial tight junctions via trans-epithelial dendrites and
Frontiers in Immunology | www.frontiersin.org 11
uptake antigens, as characterized in the nasal epithelium (30,
52). DCs are generally considered as the major target of TSLP
(53). In a previous study using TSLP as an adjuvant, nasal
application at the nasal epithelial surface was sufficient to
activate sub-mucosal DCs, suggesting that TSLP-induced signal
is able to cross the epithelial barrier (17). Therefore, we further
investigated the modulatory effect of P1 on mucosal DCs, by
using a nasal ECs and DCs co-culture model to mimic the nasal
mucosal environment and cell–cell contacts.

Our data reveal that P1 stimulates the expression of the co-
stimulatory factors CD83 and CD86 on mucosal DCs, as well as
the TSLP receptor. Considering that TSLP regulates Th2
polarization, we investigated the cytokine and chemokine
profile stimulated by P1 in mucosal DCs. Our data showed
that in mucosal DCs, P1 induced IL-6, IL-10, and reduced IFN-g,
corresponding to an anti-inflammatory Th2 response and
enhancing IgA class switching. IL-8, CCL20, and CCL22 are
also produced and, in turn, could induce the recruitment of
immune cells for the initiation of the adaptive immune response
(macrophages, lymphocytes, monocytes) to the mucosal stroma.
The last factor secreted upon P1 stimulation is MMP-9 that
facilitates the migration of immune cells by degrading the
extracellular matrix. In addition, P1-modulated mucosal DCs
lead to autologous CD4+ T cell proliferation. Thus, our results
indicate that P1 activates mucosal DCs to release robust Th2
cytokines and chemokines and therefore might promote the
mucosal humoral response.

TSLP produced by ECs is expected to mediate crosstalk with
DCs leading to Th2 polarization of the immune response.
However, we surprisingly found that ECs are not the only
source of TSLP in our mucosal models. Mucosal DCs obtained
in our two models, namely DC–EC and eduDC, react similarly to
P1 stimulation. In particular, P1 induces a similar level of TSLP
secretion and increased the expression of TSLP receptor, two
elements that might form together a TSLP autocrine loop, in
turn, amplifying the TSLP-induced signal. This autocrine loop is
actually consistent with the clinical studies reporting that TSLP
secretion and TSLP receptor expression are augmented
simultaneously upon EC activation (54, 55). Such autocrine
TSLP loop in DCs would sustain the source of TSLP and help
to maintain the DC–epithelial crosstalk. Accordingly, we found
that the ‘education’ induced by the interaction with ECs and its
specific microenvironment provide unique functional features to
mucosal DCs upon P1 stimulation characterized by a different
immune profile compared to blood DCs. This is consistent with
previous reports indicating that the immunological consequences
subsequent to an adjuvant stimulation are primarily dependent on
the environment in which the adjuvant is applied (41, 56). Further
studies will be necessary to better understand the mechanisms
involved in the epithelial ‘education’ and on P1-induced DC
activation pathways.

As a final step in the characterization of P1 adjuvant
function, we showed that P1 induces antigen-specific IgG and
IgA at the surface of B cell in an in vitro immunization assay.
Previous studies reported that using PBMCs depleted in
immunosuppressive cells, an antigen-specific immune response
can be elicited by antigen sensitization in the presence of cytokines
FIGURE 6 | In vitro immunization with ovalbumin adjuvanted by P1 peptide.
CD8-depleted PBMCs were co-cultured with RPMI nasal cell monolayer for
24 h prior to addition of OVA as an antigen, adjuvanted by P1 at three
concentrations or in the presence of mutated P1 (P1mut), in the absence of
antigen or adjuvant as negative controls. CD20+ B cells expressing OVA-
specific IgA or IgG were quantified by flow cytometry using anti-CD20-PE,
FITC-conjugated OVA, and APC-conjugated anti-human-IgA or anti-human-IgG.
Data are presented as box-and-whisker plots from n = 5 independent donors;
paired student’s t-test *p < 0.05, **p < 0.01.
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FIGURE 7 | ‘Chain of events’ summarizing the P1 immunomodulatory adjuvant activity in initiating innate and adaptive immune responses at the nasal mucosa. Step
1: P1 activates nasal epithelia cells to produce TSLP by interacting with GalCer, activating, in turn, miR-4485, calcium influx, PAR-2 and calcineurin, as well as the
secretion of CCL20, CCL2, MMP-9, and IL-10. These cytokines and chemokines initiate the very first steps of the immune response and mediate the crosstalk
between ECs and immune cells such as DCs. Step 2: P1 interacts with mucosal DCs, thereby enhancing the expression of co-stimulatory markers and TSLP
receptor in an autocrine loop and favoring DC maturation. As a result, P1-activated mucosal DCs initiate an adaptive immune response, by eliciting chemokine
release that in turn can recruit adaptive immune cells and cytokine secretions. Consequently, adaptive immunity is polarized into a Th2 and IgA preferential response.
Step 3: Finally, P1-stimulated DCs promote CD4+ T cell proliferation and enhance antigen-specific B cell responses.
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and adjuvants (29, 31, 42, 43). Therefore, we used this in vitro
method to evaluate the capacity of P1 to act as an adjuvant and
enhance an antigen-specific humoral response using OVA as a
model antigen. Our results clearly indicated that P1, when in an
oligomeric state, enhanced the number of OVA-specific B cells by
either favoring antigen presentation and/or T-B interaction. Both
OVA-specific B-cell surface IgA and IgG were detected, whereas
specific antibody secretion was undetectable at day 5/7, suggesting
that in this in vitromodel, class switching occurred, but B cells did
not develop into plasmablasts. Specific antibody secretion in such
in vitro immunization system would require additional
stimulations with agents such as CD40L and other cytokines or
repeated sensitization with antigen. Nevertheless, the adjuvant
function of P1 should be confirmed in vivo upon intranasal
immunization of P1-adjuvanted antigens.

Altogether, our results show that in addition to its protective
vaccine antigen properties contributing to full protection against
repeated mucosal SHIV infection (8, 12) and to inducing in a
phase I clinical trial in human mucosal P1-specific IgA with in
vitro HIV transcytosis blocking properties (8, 12), P1 acts as an
adjuvant, as we now demonstrated here. We show that P1
adjuvant activity occurs in a two-step mode of action during
nasal vaccination. In the first step, P1 initiates the very first
immune responses at nasal epithelial surface, by producing
TSLP, a molecule considered as a strong adjuvant, together
Frontiers in Immunology | www.frontiersin.org 12
with CCL20, CCL2, MMP-9 and IL-10, cytokine determinant
in the mucosal immune response. This process is initiated by P1
interaction with Galactosyl Ceramide, the epithelial receptor for
HIV-1 (9–11), activates calcium influx and the PAR-2 and
calcineurin pathways, and is regulated by the microRNA miR-
4485. In the second step, P1 modulates mucosal DCs by inducing
the expression of maturation markers, promoting chemokine
release that can recruit adaptive immune cells and cytokine
secretion that can polarize adaptive immunity into a Th2 and
IgA preferential fashion. As a result, P1-modulated DCs promote
CD4+ T cell proliferation and enhance antigen B cell-specific
responses, as summarized in Figure 7.

Overall, the present study reveals that P1 is a multi-functional
protein with a strong vaccine potential, namely as an
immunogen in a fully protective HIV-1 vaccine candidate (8,
12) but also as a promising adjuvant that can combine with other
mucosal vaccines.
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