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A dysregulated response to systemic inflammation is a common pathophysiological
feature of most conditions encountered in the intensive care unit (ICU). Recent
evidence indicates that a dysregulated inflammatory response is involved in the
pathogenesis of various ICU-related disorders associated with high mortality, including
sepsis, acute respiratory distress syndrome, cerebral and myocardial ischemia, and acute
kidney injury. Moreover, persistent or non-resolving inflammation may lead to the
syndrome of persistent critical illness, characterized by acquired immunosuppression,
catabolism and poor long-term functional outcomes. Despite decades of research,
management of many disorders in the ICU is mostly supportive, and current
therapeutic strategies often do not take into account the heterogeneity of the patient
population, underlying chronic conditions, nor the individual state of the immune
response. Fatty acid-derived lipid mediators are recognized as key players in the
generation and resolution of inflammation, and their signature provides specific
information on patients’ inflammatory status and immune response. Lipidomics is
increasingly recognized as a powerful tool to assess lipid metabolism and the
interaction between metabolic changes and the immune system via profiling lipid
mediators in clinical studies. Within the concept of precision medicine, understanding
and characterizing the individual immune response may allow for better stratification of
critically ill patients as well as identification of diagnostic and prognostic biomarkers. In this
review, we provide an overview of the role of fatty acid-derived lipid mediators as
endogenous regulators of the inflammatory, anti-inflammatory and pro-resolving
response and future directions for use of clinical lipidomics to identify lipid mediators as
diagnostic and prognostic markers in critical illness.
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INTRODUCTION

Systemic inflammation is a common pathophysiological feature
of many conditions encountered in the intensive care unit (ICU).
A key determinant of the outcome in critically ill patients is the
balance of pro- vs. anti-inflammatory pathways and the body’s
capability to resolve the acute inflammation and restore
homeostasis. An appropriate and timely inflammatory
response protects the body from the injurious agent and
eliminates the threat without causing collateral damage.
However, a dysregulated inflammatory response can contribute
to multiple organ dysfunction and early in-hospital death (1, 2).

Fatty acid-derived lipid mediators play a pivotal role in the
endogenous regulation of infection and inflammation (3, 4). In
recent years, the resolution of inflammation and restoration of
homeostasis has been recognized as an active process. Specialized
pro-resolving mediators (SPMs) derived from polyunsaturated
fatty acids (PUFA) have been detected as key signaling molecules
in the resolution of inflammation and play an important role in
dampening the inflammatory response without causing
immunosuppression (5, 6).

The human immune response is complex, highly variable and
unpredictable, and ICU patients represent an exceptionally
heterogeneous population. There is a growing recognition that
treating ICU patients requires a more personalized approach.
Precision medicine offers a strategy for prevention and
treatment of disease based on characteristics of each individual
to maximize effectiveness, and, therefore, can overcome some
challenges associated to ICU patients (7–11). In addition to
genetics and clinical data often used in precision medicine (12),
assessing metabolism using metabolomics and lipidomics can
provide valuable information for further phenotyping and
characterization of patients. Lipidomics provides a powerful tool
to assess lipid metabolism and identify specific lipid profiles in
such patients (3, 13–15), thus providing unique insights into the
individual immune response. Identification of such metabolic
signatures could improve prognostic and diagnostic evaluation
and pave the path to personalized treatment strategies.

In this review, we address the role of fatty acids-derived bioactive
lipid mediators and their prognostic, diagnostic and therapeutic
potential in frequently encountered intensive-care related conditions.
FATTY ACID-DERIVED LIPID MEDIATORS:
ENDOGENOUS REGULATORS OF
INFLAMMATION AND RESOLUTION

In the normal immune response, the acute inflammation is followed
by successful resolution and repair of tissue damage. However, upon
dysregulation of the immune response, persistence of inflammation
leads to immune suppression and organ failure (16, 17).
Inflammatory insults such as tissue damage or microbial invasion
activate cells of the innate immune system like macrophages and
dendritic cells to initiate a nonspecific immune response (18) which
leads to rapid influx of immune cells, mainly neutrophils and
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monocytes, followed by monocyte differentiation into
inflammatory macrophages. This process is orchestrated by pro-
inflammatory lipid mediators such as eicosanoids (e.g.,
prostaglandins and leukotrienes), cytokines (e.g., TNF, IL-1, IL-6),
and chemokines (19) (Figure 1A). Prostaglandins are produced by
most cells in our body and act as autocrine and paracrine lipid
mediators upon stimulation (e.g., mechanical trauma, growth factor,
cytokines), while leukotrienes are produced predominantly by
inflammatory cells like macrophages, polymorphonuclear
leukocytes, and mast cells (20). Pro-inflammatory prostaglandins
like prostaglandin E2 (PGE2) and leukotriene B4 (LTB4) initiate
and contribute to the characteristic inflammatory response which
includes vascular dilation, vascular permeability and edema (21, 22).

Resolution of inflammation is highly dependent on the
signaling network generated during this process as well as
alterations in number of lymphocytes and phenotype of
macrophages (23). The acute inflammatory response is
normally terminated once the triggering insult is eliminated.
However, when excess neutrophils congregate, they can cause
additional tissue damage, and sometimes lead to unresolved
chronic inflammation (3, 24–26) (Figure 1A).

In recent years, the resolution of inflammation and
restoration of homeostasis have been recognized as active
processes, regulated by a superfamily of endogenous lipid
mediators, namely specialized proresolving mediators (SPMs).
SPMs include w-6 arachidonic acid-derived lipoxins, w-3
eicosapentaenoic acid (EPA) and docosahexaenoic acid
(DHA)-derived resolvins, protectins and maresins (4, 27, 28)
(Figure 1B). These novel immunoresolvents are key signaling
molecules in the resolution of inflammation, enhancement of
bacterial clearance, and play an important role in dampening the
inflammatory response (29, 30).

PGE2 not only stimulates LTB4-mediated polymorphonuclear
neutrophil (PMN) recruitment to sites of inflammation but also
initiates resolution of inflammation by stimulating 15-
lipoxygenase (LOX)-dependent lipoxin production in
neutrophils (22, 31). Lipoxin then stimulates further production
of other SPM (32), such as resolvins and protectins (33).
Lipoxygenation and epoxidation of DHA lead to biosynthesis of
maresins (macrophage mediators in resolving inflammation)
which, in turn, regulate the production of the leukocyte
chemoattractant LTB4 (34). At the cellular level, lipoxins and
resolvin E1 (RvE1) are potent stopping signals for further
neutrophilic infiltration (35, 36). To remove the already
infiltrated neutrophils from the tissue, Lipoxin A4 (LXA4) also
stimulates macrophage efferocytosis (phagocytosis of apoptotic
neutrophils and cell debris) (3). Epoxy lipid mediators generated
via CYP450 have also been reported to limit the accumulation of
inflammatory monocytes during resolution and exhibit a critical
role in monocyte lineage recruitment and resolution (37).

Beyond innate phagocyte responses to resolve acute inflammation,
SPMs appear to play critical roles in regulating adaptive immunity.
SPMs selectively regulate cytokines via specific SPM receptors
expressed on innate lymphoid, NK-, T-, and B cells (24).

SPM restrain inflammation and resolve infection, and each
SPM family member possesses potent pro-resolving and anti-
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inflammatory actions [reviewed in (3)] with specific functions in
the resolution phase (24). Several reports in experimental models
demonstrated important roles for SPMs in promoting a return to
homeostasis after infection or injury, leading to improved
outcomes and survival (38). Table S1 summarizes lipid mediators
in animal models of intensive care-related conditions. Defects in
SPM pathways impair the coordinated resolution of inflammation
and could be implicated in the dysregulated inflammatory response
encountered in many ICU-related conditions. Nevertheless, further
and stronger evidence is needed to clarify the effects and potential
role of SPMs in critical care.
LIPID MEDIATORS IN INTENSIVE CARE-
RELATED CONDITIONS

Sepsis
The hallmark of sepsis is a dysregulated host response to
infection. Sepsis is defined as infection-related organ dysfunction,
Frontiers in Immunology | www.frontiersin.org 3
and septic shock is further complicated by refractory hypotension
with elevated blood lactate levels (39–41). The pathophysiology of
sepsis is extraordinarily complex (42). Various molecules
originating from the infecting microorganism, so-called
pathogen-associated molecular patterns (PAMPs), or from
necrotic cells, the damage-associated molecular patterns
(DAMPs) activate the innate immune system through pattern
recognition receptors on leukocytes, leading to a signaling cascade
eventually resulting in the generation of pro-inflammatory
cytokines. This “cytokine storm” is likely responsible for the
systemic inflammatory response and the resulting organ
dysfunction (induced by both cellular infiltration and ischemia)
characteristic of sepsis. As numerous attempts aiming to dampen
this cytokine storm have failed in clinical trials (43), considerable
challenges remain in the management of sepsis.

Administration of SPM has shown some promising results in
animal models of sepsis; however, this approach has not yet been
translated into clinical practice. In animal studies, administration
of D-series resolvins counter-regulates proinflammatory genes,
A

B

FIGURE 1 | Schematic process of inflammatory response in ICU patients and how it can be used for precision medicine. (A) Inflammatory insults like bacterial
infection and trauma leads to rapid influx of immune cells, mainly neutrophils and monocytes, followed by monocyte infiltration and differentiation to inflammatory
macrophages. This process is orchestrated by pro-inflammatory lipid mediators such as eicosanoids and cytokines. Resolution of inflammation is highly dependent
on the signaling network generated during this process as well as alteration in number and phenotype of macrophages and lymphocytes. PGE2 can also activate the
regulation of 15-LOX in human neutrophils, which leads to production of lipoxins and stops further recruitment of PMN. There is an active switch from production of
some eicosanoids to resolvins and protectins which initiates the resolution of inflammation. (B) Lipidomics provides a powerful tool to identify and quantify hundreds
of fatty acid-derived lipid mediators simultaneously potentially participating and contributing to inflammation and its resolution which leads to identification of specific
signatures in ICU patients. Integrating transcriptomics, proteomics and lipidomics could further advance our understanding of this complex network during infection
in ICU patients, leading to better patient stratification and personalized treatment.
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decreases excessive cytokine production, neutrophil recruitment
and infiltration, and enhances phagocytosis of bacteria, reducing
tissue damage and improving survival (44–51). Exogenous
administration of maresins (52, 53) and lipoxins has similar
effects (54–58).

Published human studies to date are mainly observational
(Table 1). In addition, some clinical studies investigated aspirin-
triggered resolvins and lipoxins. In healthy adults, low-dose
aspirin stimulates biosynthesis of anti-inflammatory mediators
(69) and, in ICU patients with a severe inflammatory response, it
reduces the concentration of proinflammatory mediators (17-
HETE, 18-HETE, and 20-HETE) and increases the concentration
of the anti-inflammatory mediators 17,18-DiHETE and 14,15-
DiHETE (60). However, Dalli et al. reported significantly higher
levels of pro-resolving mediators like RvE1, RvD5 and 17R-PD1 in
sepsis non-survivors compared to survivors (61). It is therefore
arguable that higher levels of SPM might be harmful rather than
useful. One possible explanation for this apparent contradiction is
that, in sepsis non-survivors, the endogenous increase in SPMmay
not be sufficient to reverse the inflammatory process or perhaps the
time window in which these mediators are produced is critical.
Moreover, the increased levels of pro-inflammatory cytokines
observed in non-survivors (61) suggest more severe systemic
TABLE 1 | Clinical lipidomics (or studies) of fatty acid–derived lipid mediators in intensi

Setting Mediator

Sepsis /SIRS

66 patients with sepsis
20 healthy controls

Lipoxin – Baseline LX
associated

RCT of Aspirin (ASA) vs placebo
48 patients with SIRS (n=32 with lipid
analyses)

Resolvins, Protectins,
Maresins, Lipoxins

– ASA increa
inflammato

– ASA reduc
HETE, and

22 patients with sepsis Leukotriene
Resolvins, Protectins
PDX

– Higher 10S

– Higher infl
mediators

Acute lung injury/ARDS

Substudy of the LIPS-A trial (62), RCT of
ASA vs placebo for prevention of ARDS:
345 patients at risk for ARDS

Thromboxane B2 (TXB2)
Aspirin-triggered lipoxin
A4 (ATL)

– ASA signific

– Elevated AT

21 patients with ARDS TXB2, prostaglandin F1-
alpha (PGF1-alpha) and
leukotriene B4 (LTB4)

– Plasma leve

– LTB4 corre

16 patients with ARDS TXB2, 6-keto
prostaglandin F(1alpha),
and LTB4

– LTB4 corre

Traumatic brain injury (TBI)

15 patients with TBI
73 healthy controls

Free fatty acid (FFA)
concentrations in
cerebrospinal fluid (CSF)

– CSF conce

– Individual c
significantly
patients wi

Trauma

100 trauma patients
20 healthy controls

Leukotriene B4 – Elevated LT

96 trauma patients
28 healthy controls

Lipid mediator gene
pathways

– Higher reso
leukotriene

ARDS, Acute Respiratory Distress Syndrome; ASA, acetylsalicylic acid; ATL, Aspirin-triggere
Dihydroxy-eicosatetraenoic acid; FFA, free fatty acids; HETE, Hydroxyeicosatetraenoic acid; LT,
trial; Rv, Resolvin; SIRS, Systemic Inflammatory Response Syndrome; TBI, Traumatic brain inj
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inflammation, where, although increased, SPM levels are not
sufficient to resolve the ongoing inflammation. This hypothesis
has also been supported by Abdoulnour and colleagues, who found
that increased plasma 15-epi-LXA4 levels at baseline were
associated with development of ARDS, indicating engagement of
counter-regulatory pathways that were ultimately insufficient to
prevent the development of ARDS in these patients (63). Finally,
many SPM possess dual biological actions and their effect may
change over time, as exemplified by the study of Sordi et al. (58): In
mice, LXA4 was increased at the beginning of sepsis, contributing
to the harmful excessive inflammatory response. However, LXA4
administered in late sepsis was beneficial to the animal, controlling
the excessive inflammation. These data suggest that both
antagonizing LXA4 actions in the beginning or its administration
in later periods could be beneficial in sepsis treatment.

Acute Respiratory Distress Syndrome
(ARDS)
Acute respiratory distress syndrome (ARDS) is characterized by
a non-cardiogenic pulmonary edema (70), caused either by
pulmonary or extrapulmonary events including severe
pneumonia, sepsis, aspiration of gastric content, and trauma.
The resulting acute lung injury is driven by excessive
ve care–related conditions.

Biological action/role Reference

A4 levels were lower in sepsis patients (vs healthy controls) but not
with 28-day mortality.

(59)

sed serum concentration of 15-HETE (LXA4 precursor) and anti-
ry mediators 17,18-DiHETE and 14,15-DiHETE.

ed the concentration of the proinflammatory mediators 17-HETE, 18-
20-HETE.

(60)

,17S-diHDHA (PDX) at day 3 predicted ARDS development.

ammation-initiating mediators (PGF2a, LTB4) and pro-resolving
(RvE1, RvD5, and 17R-PD1) in non-survivors.

(61)

antly decreased TXB2 and increased the plasma ATL/TXB2 ratio.

L associated with ARDS.

(63)

ls of eicosanoids higher in ARDS patients.

lated with the severity of respiratory failure.

(64)

lated with lung-injury severity and outcome. (65)

ntration of all FFAs significantly higher in TBI patients.

oncentrations of arachidonic, myristic, and palmitic acids at 1 week
lower in patients with favorable early outcome compared to

th worse outcome ratings at the time of hospital discharge.

(66)

B4-levels at admission predicted risk of pulmonary complications. (67)

lvin pathway gene expression and lower gene expression ratio of
:resolvin pathways in patients with uncomplicated recovery.

(68)

d lipoxin; CSF, cerebrospinal fluid; diHDHA, Dihydroxy-docosahexaenoic acid; DiHETE,
Leukotriene; MaR, Maresin; PD, Protectin; PG, Prostaglandin; RCT, randomized controlled
ury; TX, Thromboxane.
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inflammation as a consequence of an imbalance of pro-
inflammatory and anti-inflammatory cytokines, with release of
multiple mediators of inflammation into the alveolar space and
into the bloodstream (71). Increased endothelial and epithelial
permeability then leads to alveolar fluid accumulation and
impaired gas exchange. Resolution of ARDS requires
endothelial and epithelial repair and reabsorption of alveolar
edema fluid, and SPM are an essential component of the
resolution program (72). Despite improvements in clinical
management, mortality remains high and there is no specific
treatment, nor are there universally agreed-upon biomarkers for
survival and outcome in ARDS.

Different types of acute lung diseases have distinct lipid
profiles (73) and lipid mediators may represent useful
prognostic markers in critically ill patients. LTB4 correlates
with lung-injury severity and outcome in patients with ARDS
(64, 65) and higher pro-inflammatory mediators like PGF2a and
selected pro-resolving mediators like 10S,17S-diHDHA were
predictive of ARDS development in patients with sepsis (61).
In patients at risk for ARDS randomized to aspirin versus
placebo, increased levels of aspirin-triggered lipoxin A4 (15-
epi-LXA4) were associated with the development of ARDS (63).

In animal models, administration of SPM has particularly
beneficial effects in injured lungs (74). Maresins have organ
protective effects, decrease edema, improve lung mechanics and
tissue hypoxia (75). RvD1 decreases pulmonary edema,
leukocyte infiltration and the release of pro-inflammatory
cytokines and alleviates lung injury (76–79) and RvE1 can
restore mitochondrial function in human alveolar epithelial
cells and accelerates the resolution of experimental lung
inflammation (80–82). Moreover, protectin D1 has beneficial
effects in influenza-infected mice (83) and 15-epiLXA4 inhibits
neutrophil infiltration and enhances pathogen clearance (84, 85).

Trauma, Traumatic Brain and Spinal
Cord Injury
Major trauma is a leading cause of morbidity and mortality
around the globe (86, 87). Severe traumatic injury has a
considerable impact on the immune and metabolic system (88,
89) and leads to a posttraumatic cascade of inflammatory
changes (90–93). Therefore, lipid mediators have been
proposed as prognostic markers in trauma patients (67, 68, 94).
In patients with traumatic brain injury (TBI), cerebrospinal fluid
concentration of free fatty acids is significantly elevated and
correlates with clinical outcomes (66).

Accumulating evidence from animal studies suggests that
various lipid mediators may have a role as therapeutic agents
in cerebral and spinal cord injury. Elovanoids are derivatives
from very long chain PUFAs and have neuroprotective
properties in animal models of TBI and ischemic stroke (95,
96). In other animal models of TBI, RvD1 promotes functional
recovery and halts glial activation and neuronal death, and RvE1
modulates the inflammatory response (97, 98). Moreover,
parenteral or enteral administration of DHA reduces lesion
size and axonal injury in rodents with TBI (99–101). The effect
of DHA administration in rats with spinal cord injury has
Frontiers in Immunology | www.frontiersin.org 5
recently been summarized in a systematic review and meta-
analysis (102). The reported studies suggest that, in rats, DHA
can promote motor functional recovery after spinal cord injury.
This effect appears limited to administration of DHA, and is not
observed with EPA (103). Finally, Maresin 1 also improves
neurological outcomes after experimental spinal cord injury
(104). Although these findings are encouraging, further
validation with adequate animal models are needed, taking
into consideration the dose, target specificity and central
nervous system penetration of tested compounds.

Cerebral Ischemia and Reperfusion:
Ischemic Stroke and Cardiac Arrest
Ischemia/reperfusion injury is a major determinant of poor
outcome in patients with ischemic stroke and cardiac arrest
survivors (105). In cardiac arrest, global cerebral ischemia alters
cell metabolism and the balance of cerebral vasodilator/
vasoconstrictor eicosanoids, rendering the cells susceptible to
further damage after reperfusion: Vasoconstrictor eicosanoids
are increased, and inhibition of 20-HETE synthesis (a potent
vasoconstrictor) improves cortical perfusion and short-term
neurologic outcome in a rat model of cardiac arrest (106).

In ischemic stroke, various in vitro and in vivo studies
demonstrated that SPMs reduce leukocyte infiltration and
neuronal injury, enhance efferocytosis and decrease both the
production of inflammatory cytokines and oxidative stress (107).
Cerebral artery occlusion and reperfusion causes significant
reduction in endogenous RvD2 levels, and treatment with RvD2
reduces cerebral infarction, inflammatory cytokines, edema and
neurological dysfunction (108). In another animal model, RvD1
promotes functional recovery, reduces neuroinflammation and
prevents neuronal cell death (109). Neuroprotectin D1 (NPD1)
down-regulates apoptosis and promotes cell survival (110, 111),
and the administration of its precursor DHA has similar beneficial
effects in experimental stroke (112–114). Additional administration
of aspirin leads to cerebral synthesis of aspirin-triggered NPD1
(AT-NPD1), which reduces infarct size and significantly improves
neurological scores in rats (110).

Myocardial Infarction
As with stroke, ischemia/reperfusion plays a pivotal role in the
pathophysiology of myocardial infarction and contributes to up
to 50% of the final infarct size (115). A crucial aspect is the
balance between vasoconstrictive and vasodilatory metabolites of
arachidonic acid (116). Vasodilating epoxyeicosatrienoic acids
(EETs) have cardioprotective effects (117, 118), and increasing
EETs via administration of selective soluble epoxide hydrolase
inhibitors shows beneficial effects in animal models of ischemia/
reperfusion injury (119–122). Moreover, lipoxin administration
post myocardial infarction improves left ventricular ejection
fraction in mice (123). RvD1 promotes the resolution of acute
inflammation initiated by myocardial infarction and has
renoprotective effects, delaying the onset of heart failure and
cardiorenal syndrome (124, 125). Finally, RvE1 prevents
apoptosis in cardiac myocytes exposed to ischemia/reperfusion
and decreases infarct size in rats (126). These experimental data
November 2020 | Volume 11 | Article 599853
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suggest a potential for therapeutic use of SPMs in patients with
myocardial infarction, however, no clinical studies have been
published to date.

Acute Kidney Injury (AKI)
Acute kidney injury (AKI), a frequent complication of critical
illness, occurs in more than 50% of ICU patients (127). As
management of AKI is largely supportive, early identification of
patients at risk is of paramount importance. Several novel
biomarkers for early detection of kidney damage have been
identified (127), but limitations in specificity and sensitivity
have prevented their clinical application. As early lipid changes
are involved in the pathogenesis of AKI (128, 129), lipidomic
analysis offers—once more—a promising approach for
identifying diagnostic and prognostic biomarkers (130).
Moreover, SPM have been studied as potential therapeutic
agents in AKI due to their organ-protective properties in
ischemia/reperfusion (131). In mice, administration of RvD or
PD1 before an ischemic insult results in reduced functional and
morphological kidney injury (132, 133) and aspirin-triggered
resolvin D1 down-regulates the inflammatory response and
protects against endotoxin-induced AKI (134).

In summary, analysis and characterization of specific lipid
mediator profiles has the potential to improve diagnostic and
prognostic accuracy in various conditions commonly
encountered in the ICU. Numerous experimental studies
provide a theoretical basis for therapeutic administration of
lipid mediators in specific circumstances. However, translation
from bench to bedside is still in its infancy.
CONCLUSION AND FUTURE DIRECTIONS

Systemic inflammation is a common pathophysiological trait of
many conditions leading to critical illness. While a certain degree
of inflammation is protective, a dysregulated inflammatory
response is detrimental, contributing to multiple organ failure
and death. Many clinical trials of treatments aiming at
modulating the inflammatory response in ICU patients have
failed to improve outcomes, partly due to the tremendous
complexity and heterogeneity of critical illness. Hence, there is
growing interest in personalized treatment in ICU patients (7–
11). In past decades, the complexity of the human inflammatory
response may have been under-recognized, and previous
experimental and clinical models may not accurately represent
Frontiers in Immunology | www.frontiersin.org 6
human pathobiology (135–137). Lipidomics has attracted a lot of
attention in recent years due to its ability to assess lipid metabolism
and comprehensively characterize different molecular lipid species
in different pathophysiological conditions. Recent advances in
lipidomic research have highlighted the role of fatty acid-derived
lipid mediators as key players in generation and resolution of
inflammation. There are several challenges associated to profiling
of such mediators, namely similar chemical structure with diverse
biological functions as well as their low abundance in biological
systems (13–15). This is further complicated by the dynamic
biosynthesis of these molecular species that is time and cell-type
dependent (4). Despite these challenges, several advancements
related to the identification of novel mediators and the function
of these mediators can be attributed to lipidomics approach,
especially in animal models (138, 139). Computational and
experimental models of bioactive lipid metabolism in human
polymorphonuclear leukocytes has also been used to further
assess the flux of these mediators in specific immune cells (140,
141). Although there have been several studies in animals,
characterization of these lipid mediators in critical ill patients has
not been established due to the additional complexity and
heterogeneity of the patient population. Despite its complexity,
lipidomics in critical illness has the potential not only to improve
our understanding of the pathophysiological processes involved in
generation and resolution of inflammation, but also to identify
metabolic signatures or novel specific biomarkers for earlier diagnosis,
better risk stratification and prediction of patient outcomes. Finally, it
facilitates metabolic assessment providing valuable information for
phenotyping and characterization of critically ill patients and may
promote the steps towards precision medicine.
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