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Sterile inflammation develops as part of an innate immunity response to molecules
released upon tissue injury and collectively indicated as damage-associated molecular
patterns (DAMPs). While coordinating the clearance of potential harmful stimuli, promotion
of tissue repair, and restoration of tissue homeostasis, a hyper-activation of such an
inflammatory response may be detrimental. The complex regulatory pathways modulating
DAMPs generation and trafficking are actively investigated for their potential to provide
relevant insights into physiological and pathological conditions. Abnormal circulating
extracellular vesicles (EVs) stemming from altered endosomal-lysosomal system have
also been reported in several age-related conditions, including cancer and
neurodegeneration, and indicated as a promising route for therapeutic purposes. Along
this pathway, mitochondria may dispose altered components to preserve organelle
homeostasis. However, whether a common thread exists between DAMPs and EVs
generation is yet to be clarified. A deeper understanding of the highly complex, dynamic,
and variable intracellular and extracellular trafficking of DAMPs and EVs, including those of
mitochondrial origin, is needed to unveil relevant pathogenic pathways and novel targets
for drug development. Herein, we describe the mechanisms of generation of EVs and
mitochondrial-derived vesicles along the endocytic pathway and discuss the involvement
of the endosomal-lysosomal in cancer and neurodegeneration (i.e., Alzheimer’s and
Parkinson’s disease).

Keywords: Alzheimer’s disease, damage-associated molecular patterns, endo-lysosomal system, inflammation,
innate immunity, mitochondrial-derived vesicles, Parkinson’s disease, quality control system
INTRODUCTION

Inflammation is part of the innate immunity response to pathogens or molecules released upon
tissue injury, collectively indicated as damage-associated molecular patterns (DAMPs) (1). This
non-specific first line of organismal defense is mounted upon binding of DAMPs to a set of pattern
recognition receptors (PRRs), including Toll-like receptors (TLRs) and inflammasomes that sense
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DAMPs and elaborate an immune response (2, 3). Albeit
DAMPs-triggered inflammation is protective towards harmful
stimuli via the coordination of their clearance, promotion of
tissue repair, and restoration of tissue homeostasis, an excessive
inflammatory response in the setting of persistent stimuli may be
detrimental. Indeed, if dysregulated or not timely resolved,
inflammation contributes to the development of several disease
conditions (e.g., autoimmune diseases, cardiovascular disease,
neurodegeneration, and cancer) (4, 5). Hence, a hyper-resolution
response aimed at limiting hyper-inflammation and triggered by
DAMPs-activated/initialized innate immune cells is in place (6).
This pro-resolving pathway is possibly mediated by suppressing/
inhibiting inducible DAMPs (SAMPs) (6).

A large deal of research has been devoted to understanding
the complex regulatory pathways involved in DAMPs
production and trafficking. The endo-lysosomal system that
includes a set of dynamic and inter-convertible intracellular
compartments such as early-, recycling-, and late endosomes,
and lysosomes is a major component of such response. Along
with this, autophagosomes are autophagy executors that deliver
intracellular contents to lysosomes (7). The fusion of endosomes
and/or autophagosomes with lysosomes installs an acidic
environment and enables cargo degradation for recycling
unnecessary components into re-usable biological building
blocks (e.g., carbohydrates, proteins, lipids, and nucleotides)
within the cell (7). These events are accomplished via vesicle
trafficking, protein sorting, and selective cargo degradation. In
particular, two opposite sorting systems are in place: the
endosomal sorting complex required for transport (ESCRT)
that supports cargoes degradation and the retromer complex
that allows specific retrograde cargo retrieval (7).

Mitochondria are highly interconnected organelles that
form a dynamic network by contacting the endoplasmic
reticulum (ER), lysosomes, and the actin cytoskeleton (8, 9).
While inter-mitochondrial junctions allow mitochondrial
membrane cristae remodeling between adjacent mitochondria
(10), mitochondrial fusion enables the mixing of matrix and
intermembrane space contents (11). Recently, an additional
mechanism of mitochondrial interconnection based on tube-
like protrusions (mitochondrial nanotunnels) has been described
(9). Mitochondrial nanotunnels may be especially relevant in
establishing connections between organelles immobilized within
post-mitotic tissues (e.g., skeletal muscle, myocardium), in which
fusion events are limited (9). Finally, Golgi-derived vesicles
contribute to the maintenance of mitochondrial homeostasis
through participating in mitochondrial dynamics (12).

Altered regulation of the endosomal-lysosomal system has
been implicated in several age-related conditions, including
cancer and neurodegeneration, and might therefore be targeted
for therapeutic purposes (13). Remarkably, small extracellular
vesicles (sEVs) isolated from primary fibroblasts of young
humans have shown to ameliorate senescence biomarkers in
cells obtained from old donors (14). A major task of the
endosomal-lysosomal system is the disposal of dysfunctional,
but not severely damaged mitochondria via a housekeeping
process of mitochondrial quality control (MQC) (15). Herein,
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we provide an overview on vesicle trafficking along the endocytic
pathway, the generation of exosome and mitochondrial-derived
vesicles (MDVs), and discuss the involvement of the endosomal-
lysosomal system in physiological and pathological conditions,
including cancer and neurodegeneration [i.e., Alzheimer’s (AD)
and Parkinson’s disease (PD)].
GENESIS OF ENDO-LYSOSOMAL
VESICLES

Exosomes are EVs of endosomal origin with a diameter of 50-150
nm. The biogenesis of exosomes is associated with the generation
and fate of multivesicular bodies (MVBs) (16). These organelles
owe their name to the accumulation of intraluminal vesicles
(ILVs) after inward budding of plasma membrane
microdomains, fission, and release (16). ILVs have a small
diameter (50-150 nm) and are identified as exosome
precursors. As part of the endocytic trafficking, endosomal
organelles undergo maturation and MVBs, moving from cell’s
periphery to the center along microtubules, mature in late
endosomes. For this reason, MVBs are considered to be
newborn late endosomes derived from the maturation of early
endosomes. However, according to an alternative model, MVBs
are identified as intermediate transporters between early and late
endosomes (17). Realistically, MVBs can follow two alternative
directions: 1) toward fusion with other MVBs or late endosomes
to undergo maturation and acidification, thus becoming
lysosomes for cargo degradation or 2) toward the plasma
membrane to fuse and release into the extracellular space ILVs,
such as exosomes (16) (Figure 1).

Hence, the biogenesis of MVBs and exosomes is closely
related. There are two different mechanisms that guide the
origin of MVBs. In fact, they can originate via the sequential
action of ESCRT or from endosomes containing lipid rafts (16,
18). The ESCRT system consists of five cytosolic complexes [i.e.,
ESCRT 0, I, II, III, and vacuolar protein sorting (VPS) 24] (19)
and its role in exosome biogenesis has been proven by the
identification of several ESCRT proteins in exosomes purified
from different cell culture types or biological fluids. For this
reason, ESCRT proteins are now used as exosomal markers (20).

ESCRT 0 recognizes a specific group of ubiquinated proteins
on early endosomes referred to as phosphatidyl inositol
monophosphate (PI3P) enriched domains. The recognition of
ubiquitin and PI3P areas occurs through the interaction with the
two subunits of the ESCRT 0 complex: HRS (hepatocyte growth
factor regulated tyrosine kinase substrate) and STAM1/2 (signal
transducing adaptor molecule 1/2). This is the first transition
step from early endosomes to MVBs followed by the HRS-
mediated recruitment of ESCTR I to endosomes (17, 21–23).
ESCRT I in mammalian cells is a heterodimeric complex
composed by tumor susceptibility gene 101 (TSG101), VPS28,
VPS37A-D, and the ortholog of the yeast Mvb12 (22). In this
step, the formation of stable vacuolar domains starts through
TSG101 action carrying on the maturation of early endosome
into MVBs (24). ESCRT I takes the place of ESCRT 0 and recruits
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ESCRT II that, in mammalian cells, is composed of ELL-
associated protein of 30 kDa (EAP) 30, EAP20, and EAP45
(22). ESCRT III is a heterotetrameric complex composed by
VPS20-CHromatin-Modifying Protein (CHMP) 6, Sucrose Non-
Fermenting protein (SNF) 7-CHMP4, VPS24-CHMP3, and
VPS2-CHMP2 subunits. ESCRT II recruits ESCRT III through
the interaction between EAP20 and CHMP6, while CHMP-6 has
been shown to regulate cargo sorting (25). ESCRT III has the role
of recruiting deubiquitinating enzymes to remove ubiquitin
residues from the protein with consequent complete
invagination of the membrane and generation of ILVs. This is
the last crucial step for the entry of cargoes into ILVs (22, 26).
ESCRT III recruits accessory subunits, such as BRO1/ALIX
(BCK1-like resistance to osmotic shock protein-1/apoptosis
linked gene 2 interacting protein X) for cargo deubiquitination
(27), and could also play a role in the fusion of MVBs with late
endosomes (26, 28, 29). Finally, the interaction between ESCRT
III and VPS4 allows the VPS4 ATPase activity to determine the
final membrane budding, scission, and detachment of ESCRT
subunit for recycling and cargo delivery (22). Thus, the whole
process of ILV budding, cargo selection, membrane remodeling,
and the incorporation of ILVs into MVBs is regulated by the
ESCRT complex. However, only a few ESCRT components are
necessary in this process, including HRS, TSG101, and STAM1
(ESCRT 0/I) (30). Indeed, the silencing of these proteins induces
a decrease in exosome secretion, while an increase of exosome
Frontiers in Immunology | www.frontiersin.org 3
release is observed by inhibiting CHMP4C, VPS4B, VTA1 and
ALIX (ESCRT III complex) (30). ALIX also interacts with several
ESCRT proteins (e.g., TSG101 and CHMP4) and is involved in
regulating protein composition/cargo loading, budding of ILVs,
and MVB incorporation (31). Recent studies have also indicated
that ALIX is crucial for the connection between syndecans and
the ESCRT machinery through the binding of syntenins.
Syntenins are soluble proteins acting as intracellular adaptors,
via their PDZ domains that recruit syndecans. These latter are
membrane proteins carrying heparan sulfate chains (HS) that are
necessary to bind adhesion molecules and growth factors
allowing them to interact with their receptors and assist in the
endocytic process. This heterotrimeric complex is involved in
endosomal budding and exosomes biogenesis (31, 32).

The exosome biogenesis can also follow an ESCRT-
independent pathway. Indeed, even in the setting of
simultaneous depletion of core ESCRT proteins, MVB and
exosome biogenesis can still ensue via specific membrane lipid
composition. Endosomes, which have domains enriched in
cholesterol and sphingolipids, named lipid rafts, are able to
curve inward and determine the formation of MVBs with the
support of the pH gradient across the membrane (33). In this
case, phospholipases mediate the synthesis of ceramides from
sphingolipids and assure endosome membrane invaginations
without ESCRT assistance. In fact, cone-shaped structures of
ceramides, alone or associated with cholesterol, generate areas
FIGURE 1 | Schematic representation of the mechanisms involved in exosomes biogenesis. The most investigated mechanism through which exosomes are
generated involves endocytosis after receptor/ligand binding at the cell’s membrane. After the ligand dissociates from its receptor, it is located into an early
endosome. The receptor can either be recycled and relocated on the membrane surface or degraded into lysosomes. Through the activity of the endosomal sorting
complex request for transport (ESCRT), the early endosome maturates into multivesicular bodies (MVBs) containing intraluminal vesicles (ILVs). Eventually, MVBs
migrate toward the plasma membrane and fuse to release ILVs as exosomes. As an alternative route, MVBs can fuse with other MVBs or late endosomes and
receive vesicles containing lysosomal enzymes from trans Golgi, evolving into lysosomes for degradative purposes.
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suitable for membrane deformation and ILV budding (34). The
conversion of sphingomyelin in ceramide is catalyzed by neutral
sphingomyelinases (SMases) which are enzymes located in the
Golgi but also in the plasma membrane favoring exosomal
biogenesis. Indeed, the inhibition of SMases reduces exosome
secretion in specific cell types (35).

Originally identified in B lymphocytes and implicated in
several cellular processes like cell fusion, cell migration and cell
adhesion, the three tetraspanins CD9, CD81, and C63 are
acknowledged as exosomal markers for their abundance in
exosomes (36). These proteins generate the TEM domain
(tetraspanin-enriched domain) and are composed by four
transmembrane domains that interact with several other
proteins, cholesterol, and gangliosides. Cargo sorting and
formation of ILVs are mediated by the tetraspanins. Indeed,
CD9 cooperates in the fusion of plasma membrane, while CD63
interacts with the PDZ syntenin domain (37).

The mechanisms through which MVBs move towards
the plasma membrane for the release of exosomes instead of
their fusing with lysosomes are presently unclear. Nevertheless,
during the fusion of MVBs with the plasma membrane, the
interaction between specific proteins and lipids determines
exosome secretion, a process involving SNARE (soluble N-
ethylmaleimide-sensitive fusion protein attachment protein
receptors) proteins and small GTPases (38). Indeed, exosomes
secretion is inhibited by overexpression of R-SNARE VAMP7
(vesicle-associated membrane protein 7), which induces
enlargement of MVBs and their clustering at the cell’s
periphery (39). The transport of MVBs towards the plasma
membrane is regulated by microtubules and microfilaments
such that the modulation of the expression of cortactin induces
changes in the release of exosomes (40). Moreover, members of
the Ras-related in brain (RAB) protein family, known for their
role in endosomal trafficking, are also involved in exosome
biogenesis and release. In this regard, several studies have
shown a pivotal role for RAB27 and RAB35 in the docking of
MVBs at the plasma membrane (41–43), while the silencing of
RAB7A, the master regulator of late endocytic pathway,
decreases syntenin-mediated exosome secretion (31, 44) or
increases the release of CD9- and CD81-positive exosomes in
cisplatin resistant cancer cells (45, 46).

DAMPs of different nature can be shuttled via EVs. Of note,
mitochondria can also exploit this pathway for preserving organelle
homeostasis. The mechanisms assisting in the generation of EVs
from mitochondria are discussed in the next paragraph.

Mitochondrial-Derived Vesicles
MDVs are generated by the selective incorporation of protein
cargoes, including outer and inner membrane constituents, and
matrix content. These vesicles have a uniform size (from 70 to
150 nm) and can follow two distinct fates: 1) they can fuse with
MVBs and/or late endosomes for degradation (47) or
extracellular secretion (13, 48); 2) they can be delivered to a
subpopulation of peroxisomes (49).

Upon mitochondrial stress and isolation of mitochondria in
vitro, it is possible to observe the formation of MDVs enriched in
Frontiers in Immunology | www.frontiersin.org 4
oxidized protein (50), revealing a mitochondrial stress-dependent
selective cargo incorporation. An elegant work by Soubannier et al.
(50) showed that MDVs carrying the outer membrane pore protein
voltage-dependent anion channel (VDAC) are generated after the
production of xanthine oxidase/xanthine-induced reactive oxygen
species (ROS), while generation of ROS upon treatment with the
complex III inhibitor antimycin A determines MDV formation
without enrichment in VDAC, thus suggesting that MDVs can
transport any oxidized cargo.

The protein kinase phosphatase and tensin homolog (PTEN)-
induced putative kinase 1 (PINK1) and the cytosolic ubiquitin E3
ligase Parkin are required for the generation of MDVs targeted to
the endocytic pathway and, finally, to the lysosomes (51). Both
mutated in familial forms of Parkinson’s disease (52, 53), PINK1
and Parkin are known relevant factors in MQC and inducers of
the mitophagic pathway. PINK1 is targeted to mitochondria but
is normally degraded very rapidly (54–56). Indeed, during the
import process at the site of mitochondria, a set of matrix
processing peptidases and presenilins-associated rhomboid-like
protein (PARL) cleave PINK1, thereby allowing its release from
the mitochondrial import channel and subsequent cytosolic
proteolytic degradation (56). However, in the setting of
damaged mitochondria, the import machinery is inactivated
thus determining the trapping of PINK1 within or near the
import channel at the mitochondrial outer membrane (55). Here,
PINK1, by exposing its kinase domain to the cytosol, induces
Parkin phosphorylation. As a consequence, a stable recruitment
of Parkin at the mitochondria and a Parkin-dependent
ubiquitination of several proteins at the mitochondrial surface
occur (57). Finally, a set of autophagic adaptor proteins recognize
mitochondrial Parkin-ubiquitinated proteins and deliver damaged
organelles to the autophagosome for subsequent disposal (57).

Sugiura et al. (58) proposed a model in which they predicted a
similar mechanism in PINK1- and Parkin-mediated MDV
transport. The authors hypothesized that a local mitochondrial
oxidative damage or complex assembly defects may induce
protein aggregation at the mitochondrial import site that may
clog the import process into the organelle. Along with this, the
oxidation of phosphatidic acid and cardiolipin alters the
membrane curvature which may support an early outward
bending of the mitochondrial membrane, thus forming MDVs
(59). Hence, a dual role for MDVs generation can be envisioned.
On the one hand, MDVs can be considered as the first step of
MQC, accomplished through the extrusion of damaged proteins
as an attempt to avoid complete mitochondrial dysfunction. This
would occur in the setting of mildly damaged organelles in which
the autophagic pathway is not triggered (47, 51). On the other
hand, severe mitochondrial dysfunction and uncoupling could
induce a switch from local displacement of mitochondrial
content to a complete arrest of PINK1 in all import channels,
followed by the recruitment of autophagic mediators and
degradation of the whole organelle (Figure 2).

Such a view supports the hypothesis of including the delivery of
MDVs to lysosomes amongMQCmechanisms. Indeed, cells perform
MQCs via four different mechanisms: 1) degradation of unfolded
and oxidized proteins within the mitochondrial matrix or
November 2020 | Volume 11 | Article 601740
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intermembrane space by mitochondrial protease (60);
2) ubiquitination and delivery of mitochondrial outer membrane
proteins to the cytosolic proteasome (61, 62); 3) activation of
mitophagy to remove severely damaged mitochondria, whether
linked to global protein misfolding or depolarization (63), and
4) generation and delivery of MDVs to lysosomes to protect the
cell from premature mitophagy by removal of PINK1 and Parkin
from each failing import channel.
DAMAGE-ASSOCIATED MOLECULAR
PATTERNS AND STERILE INFLAMMATION

Chronic sterile inflammation ensues in several pathological
conditions for which a common thread may reside into
dysregulated EV trafficking. Therefore, a deeper understanding
of the pathways generating EVs and triggering innate immunity
may help clarify the events linking cellular dyshomeostasis with
peripheral changes. The generation of MDVs orchestrated by
mitochondrial-lysosomal crosstalk (64) is a strong candidate
mechanism linking the two processes. Indeed, while operating
as an housekeeping system in healthy mitochondria (16), in the
setting of failing mitochondrial fidelity pathways, the clearance of
dysfunctional organelles viaMDVs may release noxious material
with the potential of triggering inflammation (64). This response,
mediated by the release of interferons (IFNs), pro-inflammatory
cytokines, and chemokines, is part of innate immunity and starts
with the recognition of an infectious agent (either viral or
bacterial) that binds and activates membrane or cytoplasmic
immune sentinel molecules termed PRRs [reviewed in (65)]. Of
these, membrane-bound TLRs and the cytosolic retinoic-acid-
inducible gene I (RIG-I)-like receptors (RLRs, RIG-I, and MDA5)
are the best characterized in the setting of viral infections (66).
Upon detection of double-stranded RNA produced during viral
genome replication (67), TLR3 located in the endolysosomal
compartment signals the binding via Toll-interleukin-1 receptor
domain-containing adaptor inducing IFN-b (TRIF) and activates
Frontiers in Immunology | www.frontiersin.org 5
the IkB kinase (IKK) complex and the IKK-related kinases TRAF
family member-associated NF-kB activator (TANK)-binding
kinase 1 (TBK1) and IKKe. As a result of this activation, the
translocation of nuclear factor-kappa B (NF-kB) and IFN-
regulatory factors (IRFs) to the nucleus and their activation
occur, thus inducing the production of type I and III IFNs
together with a set of inflammatory chemokines including the
regulated on activation normal T cell expressed and secreted
(RANTES), and IFN-g-inducible protein 10 (IP-10) (68–70).
Viral RNAs can also be sensed in the cytoplasm by the RLRs,
which signal via the mitochondrial antiviral signaling protein
(MAVS) adaptor located at the mitochondrial outer membrane.
Following the RLR-MAVS pathway, the activation of IKK and
IKK-related kinases and, subsequently, NF-kB and IRFs occurs
(71–73). Once induced, IFNs upregulate the expression of
hundreds of IFN-stimulated genes (ISGs), ultimately installing
an antiviral response that halts viral replication and spread (74).
Along shared pathways, mitochondrial DAMPs can also trigger
inflammation. In particular, mitochondrial DNA (mtDNA), due
to its bacterial ancestry and its hypomethylated CpG motifs, is a
potent trigger of innate immunity response involving the release
of pro-inflammatory mediators installing an inflammatory milieu
(75, 76). Indeed, mtDNA can interact with PRRs including TLRs,
but also NOD-like receptors (NLRPs), and the cyclic GMP-AMP
synthase–stimulator of interferon genes (cGAS–STING) systems
(77, 78). The TLR pathway is engaged by mtDNA via its binding
to TLR9 at the endolysosomal level, followed by the recruitment
of the innate immune signal transduction adaptor myeloid
differentiation primary response 88 (MyD88). The latter, by
activating the mitogen-activated protein kinase, triggers
inflammation via NF-kB signaling (79–81). Alternatively,
mtDNA can ignite inflammation as part of the innate
immunity response either via inflammasome or cGAS–STING
system activation at the cytosolic level (82–86). The cGAS–
STING DNA-sensing pathway operates via the TBK1/IRFs/
IFNs pathways described above as part of inflammation
mounted in the presence of viral infections (84–86). The
activation of the STING pathway is also triggered as part of
FIGURE 2 | Proposed mechanism of mitochondrial-derived vesicle generation and release. Mitochondrial-derived vesicles (MDVs) may represent an additional level
of mitochondrial quality control through which mildly damaged mitochondria are targeted and displaced. Phosphatase and tensin homolog-induced kinase 1 (PINK1)
and Parkin prime damaged mitochondria for disposal. Membrane curvatures generated by oxidized cardiolipin (oxoCL) and other unknown proteins allow generation
of MDVs that form multivesicular bodies (MVBs) within the endolysosomal system. Eventually, MVBs are extruded from the cell as extracellular vesicles (EVs).
PARL, presenilin-associated rhomboid-like; ROS, reactive oxygen species; TIM23, translocase of inner mitochondrial membrane 23; TOM, translocase of the outer
mitochondrial membrane.
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neutrophil activation and neutrophil extracellular trap (NET)
formation, a specific cell death route characterized by the
extrusion of chromatin-bound cytosolic content (87). NETs
have been implicated in the pathogenesis of autoimmune
disorders. In particular, NETs enriched in oxidized mtDNA
stimulate a type I IFN response and have been implicated in
lupus-like diseases (88). In systemic lupus erythematosus,
mtDNA binding to the histone-like protein mitochondrial
transcription factor A (TFAM) has shown to assist in rerouting
oxidized mtDNA of neutrophils to lysosomes for degradation
(89). Once extruded, TFAM-oxidized mtDNA complexes are
powerful immune system activators (89). Similarly, the release
of activated platelet-derived microparticles enriched with high-
mobility group box 1 (HMGB1) protein has been described in
systemic sclerosis (90). This DAMP molecule might contribute to
vasculopathy and tissue fibrosis possibly via the presentation of
HMGB1 to neutrophils to induce their activation and consequent
endothelial damage (90).

Finally, the engagement of NLRP3, the best studied multi-
subunit inflammasome system, elicits caspase-1 signaling and
promotes caspase-1-dependent cleavage and activation of
interleukin (IL) 1 and 18 via binding to adaptor molecules
(91). This route of inflammation is particularly relevant to
mitochondrial dysfunction since the synergistic activation of
redox-sensitive inflammation and inflammasome reinforce
inflammation (92). The molecular triggers of the inflammatory
response via inflammasome are unclear. However, bacterial-like
motifs of mtDNA are sensed by NLRs (93). Furthermore, NLRP3
is involved in facilitating the organization of the mitochondrial
transition pore and assist in mtDNA release (94). A self-
sustaining circle involving mitochondrial damage, ROS
production, and consequent mtDNA damage/DAMPs release
triggered by NLRP3 activators has been hypothesized (83). In
particular, damaged/oxidized mtDNA/DAMPs are preferentially
sensed and bound by NLRP3 (83).

Following the view of MQC failure as a source of MDVs/
DAMPs, we will discuss in the next section the main literature
supporting the involvement of mitophagy impairment and
DAMPs release in the setting of cancer and two common
neurodegenerative diseases (AD and PD).
IMPLICATION OF EXTRACELLULAR
VESICLES AND DAMAGE-ASSOCIATED
MOLECULAR PATTERNS IN DISEASE

Cancer
Although the involvement of DAMPs in cancer pathogenesis is
debated, the installment of an inflammatory milieu is recognized
as a factor favoring tumor progression (95, 96). In particular,
increasing levels of pro-inflammatory mediators, including IFN-
g, IL1, IL6, lymphotoxin (LT)-b, tumor necrosis factor alpha
(TNF-a), and transforming growth factor b, have been
implicated in the promotion of carcinogenesis (95–97), for
their potential role in modulating DAMPs expression and
Frontiers in Immunology | www.frontiersin.org 6
release (95, 98). Intracellular and extracellular DAMPs are,
indeed, hallmarks of cancer that have been implicated in the
early stages of carcinogenesis (95). While oxidative stress triggers
the release of DAMPs in the extracellular space thus stimulating
hyper-inflammation and immune injury, the loss of intracellular
DAMPs, [i.e., HMGB1, histones, ATP, and DNA] induces
genomic instability, epigenetic alterations, telomere attrition,
reprogrammed metabolism, and impaired degradation (98). In
the setting of such DAMPs-mediated pathogenic changes, cancer
initiation and development are favored. Along with this, the
release of ATP, IL1a, adenosine, and uric acid have also been
implicated in carcinogenesis via induction of inflammation,
immunosuppression, angiogenesis, and tumor cell proliferation
(95) (Figure 3).

Strikingly, inflammatory pathways may also be activated
by damaged mitochondrial constituents displaced within
MDVs (65) that may trigger caspase-1 activation and secretion
of pro-inflammatory cytokines (99). Interestingly, adaptive
immunity responses are suppressed by PINK1 and Parkin
that redirect MDVs toward lysosomal degradation to prevent
endosomal loading with mitochondrial cargoes on major
histocompatibility complex (MHC) class I molecules for
antigen presentation purposes (48). Furthermore, the
possibility that MDVs are used by cells as a homeostatic
mechanism by horizontal mitochondrial transfer cannot be
disregarded (100). Bone marrow mesenchymal stromal cells
(BM-MSCs) eliminate damaged depolarized mitochondria
through EVs and export them to neighbouring macrophages
(101). Macrophages, in turn, recycle these MDVs to secrete
exosomes which contain microRNAs (miRNAs) that inhibit
TLR stimulation and induce macrophage tolerance to
transferred damaged mitochondria (101). Moreover, cells with
impaired mitochondria are able to transfer and take up fully-
functional mitochondria displaced within MVDs to rescue
aerobic respiration (102–105). A mitochondrial transfer was
also shown between A549 mtDNA depleted (p0) lung cancer
cell and BM-MSCs to rescue respiration in lung cancer cells
lacking mtDNA-encoded subunits of the electron transport
chain (ETC) (104). However, vesicles enriched in whole
mitochondria or mitochondria void of envelops can also be
released and serve as DAMPs in pathological conditions,
including tissue injury and cancer (106). In particular, the
release of mitochondria by damaged mesenchymal stem cells
has been found to function as a danger signal to activate their
rescue properties (107). The uptake of whole mitochondria by
epidermal growth factor-activated human osteosarcoma cells via
macropinocytosis has also been described (108).

Recent findings indicate that cancer cells can reprogram their
energy metabolism to adapt and survive in unfavorable
microenvironments via EVs (109). Indeed, an efficient
mitochondrial respiration is required by cancer cells to
maintain their tumorigenicity (110). Upon acquisition of
mtDNA through EVs, estrogen receptor (ER)-positive breast
cancer can evolve from hormonal therapy sensitive (HTS) to
dormant (HTD) or resistant (HTR) with poorer outcome. EVs
from patients with HTR disease contain full mitochondrial
November 2020 | Volume 11 | Article 601740
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genome that might have been transferred to HTS/HTD cells to
sustain oxidative phosphorylation, an exit from dormancy and
the development of HTR disease (111). Additional findings show
that EVs frommelanoma, ovarian and breast cancer tissues contain
mitochondrial membrane proteins and active mitochondrial
enzymes that are not detected in healthy controls (112), thus
corroborating the hypothesis that energy metabolism
reprogramming in cancer cells may occur also via EVs.

Similar to HMGB1 and histones, miRNAs can also be releases
in the extracellular space as DAMPs in cancer (113, 114). Recent
work has shown an exosomes-dependent pathway to secrete
miRNA in cancer cells (115). For instance, in pancreatic cancer
cells, exosomes containing miR-212-3p are secreted and lead to
decreased expression of MHC II in dendritic cells (DCs), thereby
inducing immune tolerance (116). Another system used by
cancer cells to escape their recognition by the immune system
is based on PD-L1. This factor binds to the PD1 receptor on
immune cells thereby inhibiting proliferation and survival of
CD8+ cytotoxic T lymphocyte (117). A recent study has shown
that exosomes derived from lung cancer express PD-L1 and this
is implicated in immune escape and promotion of cancer growth
(118). These mechanisms enable cancer cell survival,
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proliferation, and undisturbed dissemination into other bodily
districts, even located at long distance from the primary
neoplastic mass. Thus, exosomes are useful shuttles for cancer
cells to elude the immune system’s response and achieve
undisturbed survival and proliferation.

Moreover, cancer cells can also transfer miRNAs via exosomes to
favor angiogenesis. These miRNAs of exosomal origin are ultimately
DAMPs promoting cancer proliferation. Indeed, their secretion is
induced under oxidative stress (119). An elegant work by Deng et al.
(120) showed that gastric cancer cells released exosomes containing
miR-155 to increase the expression of vascular endothelial growth
factor (VEGF) and promote proliferation and tube formation of
vascular cells. In further support to the role of exosomal miRNAs in
promoting angiogenesis are findings showing a strong enhancement
of angiogenesis and tumor growth in mice under the infusion of
exosomes containing miR-155 (120).

Finally, DAMPs may also act as a suppressor of tumor
progression by promoting immunogenic cell death. Under
physiologic conditions, cell death linked to normal turnover is
not immunogenic and does not activate PRRs, such as TLRs and
NLRPs (121). In contrast, immunogenic cell death is essential for
tumor suppression after chemotherapeutic treatments (122).
November 2020 | Volume 11 | Article 601740
FIGURE 3 | Schematic representation of the main pathways triggered by damage-associated molecular patterns and involved in tumor progression. ATP, adenosine
triphosphate; DAMPs, damage-associated molecular patterns; HMGB1, high-mobility group box 1, IL1a, interleukin 1a; miRNA, micro RNA.
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Immunogenic and non-immunogenic cell death are
characterized by different biochemical and metabolic events. In
particular, during immunogenic cell death, antigens from dying
cells are incorporated by DCs and presented bound to MHC to
mount a T cell immune response. In this context, co-stimulatory
signals and cytokines are required for differentiation of specific T
cells (123). The preapoptotic exposure of calreticulin on the
plasma membrane of dying cells promotes their uptake by DCs
(124). Interestingly, the release of HMGB1 in the surroundings
of dying cells (125) induces an increase in tumor antigen
presentation and regulates the TLR4-dependent immune
response (126). The role of the NLRP3 inflammasome is
crucial for the immune response against dying tumor cells as it
interacts with the adaptor molecule apoptosis-associated speck-
like protein to induce caspase-1 activation (127). The caspase-1
pathway is involved in the production of proinflammatory
cytokines (i.e., IL1b and IL18) which are essential to induce an
immunogenic response (127). Notably, ATP released from dying
tumor cells mediates immunogenic cell death via the activation
of the NLRP3 inflammasome (128). Therefore, understanding
the fine-tuning of DAMPs release may be crucial for unveiling
new pathways that modulate tumor cell’s death vs. survival.
Frontiers in Immunology | www.frontiersin.org 8
Neurodegeneration
As a first line of defense against microbes, microglial cells of the
central nervous system (CNS) preserve tissue homeostasis by
clearing out damaged neurons and limiting the spread of
infections. This macrophage population accomplishes these
housekeeping activities by triggering inflammation via the
release of cytokines and by instigating ROS production (129).
However, upon prolonged stressors, a persistent microglia
activation installs a pro-inflammatory and pro-oxidant
environment that impinges on tissue homeostasis. A state of
chronic, low-grade inflammation is observed during aging (i.e.,
inflamm-aging) which has been associated also with metabolic
changes in microglia (130, 131). The age-related microglial and
metabolic reshaping plays relevant roles in the context of AD and
PD (132, 133). Indeed, neuroinflammation may represent a
common thread in a large set of neurological disorders for
which DAMPs of different origins, including mitochondrial,
may support disease progression (134) (Figure 4).

Alzheimer’s Disease
AD is the most common age-associated dementia and is
characterized by neuronal degeneration mainly in the
FIGURE 4 | Cellular alterations and damage-associated molecular patterns involved in neuroinflammation. cGAS–STING, GMP-AMP synthase–stimulator of
interferon genes; IFN, interferon; IL, interleukin; IRF-1, IFN-regulatory factor 1; MDV, mitochondrial derived vesicle; MHC, major histocompatibility complex; mtDNA,
mitochondrial DNA; NLRP3, NOD-like receptor 3; NF-kB, nuclear factor kappa B; TLR, toll-like receptor; TNF-a, tumor necrosis factor alpha.
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neocortex and the hippocampus (12). The extracellular
deposition of amyloid beta (Ab) aggregates and intracellular
neurofibrillary tangles are distinctive histopathological traits of
AD (12). Amyloid plaque deposition instigates microglia
activation which, in turn, promotes the development of a pro-
inflammatory environment through the release of inflammatory
cytokines, including IL1b, IL6 and TNF-a (135). This
neuroinflammatory response may represent an inter- and
intracellular signaling system between microglia and astrocytes
aimed at clearing damaged neuronal components (136). Indeed,
in the setting of inefficient intracellular quality control (137), the
persistence of damaged components and hyper-inflammation
may favor the generation and spread of Ab peptides, thereby
triggering neurotoxicity (135).

Dysregulation of the endo-lysosomal system contributes to
the generation of amyloid plaques and AD pathogenesis. Indeed,
Ab42 aggregates, the most pathogenic Ab peptides, have been
detected in the soma of neurons at the level of lysosomes or
lysosome-derived components (138). Furthermore, neurons
from AD transgenic mice show enlarged and dysfunctional
MVBs in the presence of Ab42 accrual (139). As a
consequence of MVB dysfunction, higher levels of the amyloid
precursor protein (APP) are secreted extracellularly in this
murine model (139). In the endosomal compartment is also
located the activity of the b-site APP-cleaving-enzyme (BACE1),
a hub for the intracellular trafficking of APP and a relevant
contributor to amyloid plaque generation (140). Conversely, a
retrograde transport of APP from endosomes to the trans Golgi
network is in place to reduce Ab production (141). Notably, an
impairment in the retromer complex activity has been involved
in AD pathogenesis (141).

Circulating levels of HMGB1 and the soluble form of the
receptor for advanced glycation end products (RAGE) have been
detected in the serum of AD patients. The concentration of these
DAMPs correlate with the extent of Ab deposition (142).
Moreover, HMGB1 and thrombin proteins have been
identified as pro-inflammatory mediators contributing to
dysfunction of the blood-brain barrier (BBB) (142). Similarly,
serum levels of the brain-derived protein S100B have been
associated with the severity of the disease (143). The
administration of the S100B inhibitor pentamidine was able to
reduce the levels of S100B and RAGE and blunt Ab-induced
gliosis and neuroinflammation in a mouse model of AD (144).

Mitochondrial dysfunction and the ensuing oxidative stress
have also been involved in the pathogenesis of AD. Indeed, a
lower copy number and a higher levels of mtDNA heteroplasmy
have been found post-mortem in brains of people with AD (145–
147). In addition, oxidative damage to mitochondrial
components has been described as an early event in AD, which
suggests a role for oxidative stress in disease pathogenesis (148,
149). Interestingly, Ab peptide aggregates and neurofibrillary
tangles can impact mitochondrial function by binding to
proteins of the mitochondrial import machinery (150). As a
result, increased ROS production occurs (151). The
mitochondrial localization of fragments of the E4 variant of
apolipoprotein E, the main susceptibility gene for sporadic AD,
Frontiers in Immunology | www.frontiersin.org 9
has also been reported and associated with mitochondrial
dysfunction and oxidative stress in hippocampal neurons
(152, 153).

While primary mitochondrial deficits have been observed in
AD, aberrant mitochondria can also result from defective quality
control mechanisms, especially mitophagy. In particular, a
vicious circle between defective mitophagy and mitochondrial
dysfunction may be triggered Ab and phosphorylated Tau (p-
Tau), ultimately leading to neuronal disruption (154–156).
Altered expression of the mitophagy receptor disrupted-in-
schizophrenia 1 (DISC1) has been reported in AD patients,
transgenic AD mice, and cultured cells treated with Ab (157).
DISC1 is a promoter of mitophagy that binds to microtubule-
associated proteins 1A/1B light chain 3 (LC3) and protects
synaptic plasticity from the toxicity of Ab accrual (157). The
positive effect exerted by the pharmacological restoration of
mitophagy on cognitive dysfunction and Ab proteinopathy
in APP/PS1 mice highlights the central role of defective
mitophagy in AD pathogenesis (158). Following pro-
mitophagy pharmacological treatments, reduced levels of Tau
phosphorylation and mitigation of inflammation induced by
microglia activation have also been observed (154). As such, a
link between neuronal bioenergetic failure resulting from
defective MQC, inflammation, and neuronal loss can also be
hypothesized in AD (92). Following mitophagy impairment,
cGAS–STING-DNA-mediated inflammation has been
described in neurodegeneration (159) and NLRP3-induced
inflammation has been observed in AD [reviewed in (160)].

A defective mitophagy and the resulting accrual of
dysfunctional mitochondria in AD may instigate the extrusion
of damaged organellar components with consequent stimulation
of innate immunity (77, 78). Mitochondrial DAMPs have been
retrieved within circulating EVs in several age-related conditions,
including neurodegeneration (161, 162). Whether this
mechanism is relevant to AD is worth being explored.

Parkinson’s Disease
PD is the second most common age-related neurodegenerative
disorder (163) and is characterized by a progressive degeneration
of dopaminergic neurons of the substantia nigra pars compacta
and dopamine depletion in the striatum (164). These
histopathological and biochemical abnormalities underlie a set
of motor (i.e., bradykinesia, postural inability, rigidity, and
tremor) and non-motor signs and symptoms (e.g., constipation,
depression, sleep disorders, cognitive dysfunction) (164).

Neuroinflammation is a noticeable feature of PD (165). In
particular, the HMGB1-TLR4 axis seems to plays an important
role. Higher serum levels of HMGB1 and TLR4 protein have
been detected in PD patients and correlated with disease stage
(166). Moreover, the administration of anti-HMGB1
monoclonal antibody in a rat model of PD was able to reduce
inflammation by preserving the BBB and lowering IL1b and IL6
secretion (167). The chemokine fractalkine (CX3CL1), which is
mainly expressed by neurons and serves as a modulator of
microglial-neuronal communication, has been indicated as a
possible biomarker for PD (168). Increased levels of the S100B
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protein were also detected in the substantia nigra and
cerebrospinal fluid of persons with PD and in the ventral
midbrain of a murine PD model treated with 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP) (169). Notably, the
ablation of S100B in the murine model was neuroprotective by
reducing microgliosis and the expression of both RAGE and
TNF-a (169). Noticeably, a systemic inflammatory signature,
involving IL8, IL9, and macrophage inflammatory protein 1a
and 1b, has been identified in older adults with PD (170).

A defective cellular quality control, manifested by deposition
of aberrant a-synuclein in dopaminergic neurons, is
acknowledged as an important mechanism underlying
neurodegeneration in PD (171). The accumulation of a-
synuclein at the mitochondrial complex I has been shown to
impair its activity (171). Such an inhibitory function, together
with mutations in genes encoding for the mitochondrial
regulators Parkin, PINK1, and protein deglycase DJ-1 have
been linked with enhanced ROS generation in PD (172, 173)
and a-synuclein aggregation (174–177). Derangements in
mtDNA homeostasis, including large deletions, have been also
detected in neuronal cells of the substantia nigra of persons with
PD (178–180). These observations indicate that mitochondrial
dysfunction plays a major role in the pathogenesis of familial PD
(181). On the other hand, PD in its sporadic form recapitulates
all major hallmarks of aging (182). Indeed, MQC derangements
and the generation of DAMPs have been indicated as a major
contributors to the co-occurrence of mitochondrial dysfunction
and neuroinflammation in PD (159, 183, 184). An innate
immune response triggered by defective autophagy and
impaired disposal of damaged mitochondria has been
described in mice lacking PINK1 or parkin gene (PARK2)
(159). Moreover, the activity of the mitophagy mediator Parkin
mediates a mitophagic control over inflammation (48). In
particular, Parkin regulates adaptive immunity via the
presentation of mitochondrial antigens to endosomes for
loading onto MHC class I molecules (48). Similarly, the
intracellular trafficking regulator RAB7A exerts also a
mitochondrial antigen presentation role by controlling the
fusion of MDVs with late endosome for their subsequent
degradation (48). The function of RAB7A as a mitochondrial
antigen-presenting system in immune cells via MDV trafficking
ensures that the process can be finalized in the absence of PINK1
or Parkin (48). Indeed, alterations in PINK1/Parkin expression
and activity in PD result in MQC dysregulation and possibly
neuroinflammation via mitochondrial antigen presentation by
MDVs (48). Recent work by our group described the presence of
mitochondrial DAMPs among circulating EVs in older adults
with PD along with a specific inflammatory signature (162). In
particular, higher serum concentrations of small EVs including
exosomes of endosomal origin were identified in older adults
with PD (162). However, lower levels of MDVs were retrieved in
people with PD relative to non-PD controls (162). A lower
secretion of MDVs in older adults with PD is in keeping with
the hypothesis of intracellular accrual of dysfunctional
mitochondrial secondary to engulfed MQC system (162).
According to this view, MDV generation may serve as a
Frontiers in Immunology | www.frontiersin.org 10
housekeeping mechanism that complements MQC to preserve
cell homeostasis (15). A link between mitochondrial damage and
inflammatory and metabolic disarrangements in PD has also
been proposed (184, 185); however, the molecular mechanisms
linking these processes are missing. An involvement of the
cGAS–STING-DNA driven inflammation in neurodegeneration
following mitophagy impairment has been reported (159). Indeed,
higher circulating levels of the pro-inflammatory cytokines IL6 and
IFNb have been detected in Pink and Parkin knockout mice
challenged with exhaustive exercise (159). Notably, the deletion
of STING or the administration of IFNa/b receptor-blocking
antibody was able to blunt this response, thus suggesting that the
accrual of dysfunctional mitochondria may trigger inflammation in
people with PD (159). Among the ever-growing list of molecules
linking mitochondrial dysfunction to systemic inflammation in
PD, the fibroblast growth factor 21 (FGF21) has emerged as a
relevant mediator (162). Indeed, FGF21 has been indicated as a
“mitokine” for its association with impaired MQC in neurons of
murine models of tauopathy and prion disease (186). Taken as a
whole, these findings suggest that a deeper understanding on the
intracellular and extracellular trafficking of DAMPs and vesicles,
including those of mitochondrial origin, may be key to unveiling
relevant pathogenetic pathways of PD and, hence, novel targets for
drug development.
CONCLUSION

Cells bearing DAMPs receptors sense and bind extracellular
DAMPs as triggers of inflammation and fibrotic responses.
Higher levels of circulating DAMPs have been identified during
aging and related to inflamm-aging (3, 98, 187). A multicomponent
senescence-associated secretory phenotype consisting of cytokines,
chemokines (CXCLs), growth factors, and proteases has also been
reported (188–191). While these secreted molecules contribute to
preserving cell homeostasis in healthy tissues (192), the installment
of an age-associated chronic secretory phenotype is a candidate
pathway for the deployment of pathological hallmarks of aging,
(e.g., inflamm-aging, tumorigenesis, loss of cell stemness). A core of
circulating factors has been identified among plasma biomarkers of
aging; however, their relationship with DAMPs is still unclear. The
identification of circulating EVs stemming from altered regulation
of the endosomal-lysosomal system in several age-related
conditions, including cancer and neurodegeneration, holds hope
for targeting this route for therapeutic purposes (13). Therefore, a
deeper understanding of the complex, dynamic, intracellular and
extracellular trafficking of DAMPs and vesicles, including those of
mitochondrial origin, may be key to unveiling relevant pathogenic
pathways and novel targets for drug development.
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