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Acute respiratory distress syndrome (ARDS) is characterized by an uncontrollable
cytokine storm, which is associated with high mortality due to lack of effective
treatment. Regulatory T cells (Tregs) play an indispensable role in maintaining immune
homeostasis and CD39 is considered as a functional cell marker of Tregs. In this study, we
aimed to evaluate the effect of CD39" Tregs on acute lung injury (ALI) and investigate the
frequency of CD39* Tregs in ARDS patients. We found that after lipopolysaccharide (LPS)
treatment, CD39™~ mice exhibited more severe inflammation and wild type (WT) mice
exhibited a decreased frequency of CD39" Tregs in the peripheral blood. Furthermore,
CD39" Tregs had a protective effect on LPS-induced inflammation in vitro and the
adoptive transfer of CD39" Tregs had a therapeutic effect on ALl in vivo. We further
sought to explore the mechanisms that affect CD39 expression on Tregs. LPS-induced
inflammation in the lung impaired the immunosuppressive effect of Tregs via the
autophagy-mediated downregulation of CD39. In addition, CD39 induced the
expression of itself in Tregs via activating the ERK1/2-FOS pathway. Consistent with
this finding, the frequency of CD39"* Tregs was also decreased in the peripheral blood of
ARDS patients and was positively correlated with disease severity. Our results suggested
that the adoptive transfer of CD39" Tregs may provide a novel method for the clinical
prevention and treatment of ARDS.

Keywords: acute respiratory distress syndrome, CD39, regulatory T cells, acute lung injury, adoptive transfer,
autography, ERK, FOS
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INTRODUCTION

Acute respiratory distress syndrome (ARDS), previously known
as acute lung injury (ALI), is a type of acute diffuse, inflammatory
injury of the lung that leads to increased pulmonary vascular
permeability and lung weight, as well as the loss of aerated lung
tissue (1). Since the conception of ARDS was proposed in 1967
(2), there are a limited number of effective treatments aimed at
pathogenesis. Despite considerable progress in the understanding
of molecular mechanisms, advances in ventilatory strategies, and
general care of critically ill patients, the mortality remains
unacceptably high at 35-45% (3). Currently, supportive care with
low tidal volume ventilation is still the predominant therapeutic
strategy for ARDS (4). Several novel pharmacological therapeutics,
including B-2 agonists (5), statins (6, 7), aspirin (8), nitric oxide (9),
and keratinocyte growth factor (10) also showed no obvious clinical
benefit. To date, while cell-based approaches, primarily using
mesenchymal stem/stromal cells represents the most promising
therapy, research remains stagnated in early-phase clinical trials
(11). Therefore, there is an urgency to identify innovative and
effective therapeutics that can be used to target ARDS.

Inflammatory and hypoxic conditions in ARDS lead to the
increased release of adenosine triphosphate (ATP)/adenosine
diphosphate (ADP). Extracellular ATP (eATP) acts as danger-
associated molecular patterns (DAMPs), binds to purinergic
receptors, thereby triggering signaling cascades to induce an
inflammatory response (12). ATP/ADP is then metabolized to
adenosine monophosphate (AMP) via CD39 (ectonucleoside
triphosphate diphosphohydrolase-1, ENTPD1). AMP is further
hydrolyzed to adenosine via CD73 (ecto-5’-nucleotidase).
Adenosine is a endogenous molecule that inhibits T cell
responses by activating G-protein-coupled P1 receptors
expressed on immune cells (e.g., macrophages, dendritic cells,
and lymphocytes) (13). In an acute setting, adenosine signaling
serves an anti-inflammatory, tissue-protective role (14). CD39,
not CD73, is the rate-limiting enzyme in the ATP/ADP-AMP-
adenosine pathway. Taken together, CD39 plays a non-ignorable
part in the shift from an ATP-mediated pro-inflammatory milieu
to an immunosuppressive setting driven by adenosine (15).
CD39 has been reported to be expressed on the surface of
human and murine Tregs (16, 17). Previous studies have
revealed a close relationship between CD39 and Tregs (18-20)
and CD39 is one of the most pronounced overlapping genes
related to the suppressive function of Tregs (21). The ATP-
CD39- CD73- adenosine axis contributes to Foxp3® CD4"
suppressor T cell activity (22). CD39" Tregs present stronger
stability and function under inflammatory conditions (23). The
role of CD39 on Tregs in limiting tissue injury has been studied
in myocardial infarction (24) and benign prostate hyperplasia
(25). All of these findings suggest a potential role of CD39" Tregs
in acute lung inflammatory disease.

In the present study, to address the functional role of CD39"
Tregs during the ARDS, we used CD39 deficient mice.
Subsequently, we evaluated the adoptive transfer CD39" Tregs
for use in the immunotherapy of ALI mice and explored the
potential mechanism affecting CD39 expression on Tregs. We
investigated the effect of CD39" Tregs in ARDS patients. Our

findings implied that CD39" Tregs played a protective role in
ARDS and may represent a potential therapeutic target.

MATERIALS AND METHODS

Experimental Animals

CD397~ and C57BL/6] mice (GemPharmatech, CHN) were
housed with free access to sterile water and food under 12-h
light:12-h dark cycle conditions. The animal protocols were
performed in accordance with the China Council on Animal
Care and approved by the Institutional Animal Care and Use
Committee of Jingling Hospital.

ALI Model and Adoptive Transfer

To establish the ALI model, male mice, aged 8 to 10 weeks, were
anesthetized with pentobarbital (3 mg/kg) before the procedure.
LPS (Sigma-Aldrich, USA) at 10 mg/kg (for an evaluation of lung
injury and inflammation) or 20 mg/kg (for an analysis of survival
rate) were intratracheally instilled. Mice in the control group
were intratracheally instilled with PBS. To investigate the effect
of CD39" Tregs for AL different isolated Tregs subsets (5 x 10°)
were injected by tail vein 30 min before the instillation of LPS.

Lung Histology and Lung Injury Scoring
Mice were killed by a pentobarbital overdose followed by
exsanguination. The lungs were fixed in a 4% paraformaldehyde
solution overnight and subsequently embedded in paraffin,
sectioned to 5 um-thick sections, and stained with hematoxylin
and eosin (H&E) as described previously (26) for histopathological
scoring or anti-myeloperoxidase (MPO) antibodies for
immunohistochemistry (IHC) analysis.

Two random H&E-stained tissue sections were examined by a
pathologist who was blinded to the genetic background and
treatment of the mice. ALI was scored as described previously
(27), in accordance with the following criteria: 1) alveolar
congestion; 2) hemorrhage; 3) infiltration or aggregation of
neutrophils in the airspace or vessel wall; and 4) thickness of
the alveolar wall/hyaline membrane formation. For each subject,
a five-point scale was applied: 0, minimal (little) damage; 1+,
mild damage; 2+, moderate damage; 3+, severe damage; and 4+,
maximal damage. Points were totaled and expressed as the
median + range.

Bronchoalveolar Lavage Fluid (BALF)

and Blood Analysis

BALF was obtained as previously described and 1 ml PBS was
intratracheally instilled into the lung and then lavaged three
times. All of the removed fluid was immediately centrifuged
(300 x g, 5 min). The total cells were stained using the
Papanicolaou method to obtain cell counts. The supernatant
was collected for cytokine analysis. After sacrificing the mice, the
blood from the vena cava was immediately collected (300 x g
for 5 min). The cells were prepared for further flow cytometry
analysis and the plasma was used for cytokine analysis.
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Flow Cytometry

Cells from the BALF were stained with surface markers, including
PE-Cy7 conjugated anti-CD45 (BD Biosciences, CA, USA), AF488
conjugated anti-CD11b (BD Biosciences, CA, USA), and PE
conjugated anti-Ly6G (BD Biosciences, CA, USA). Cells from
blood and spleen were stained with various surface markers,
including PE-Cy7 conjugated anti-CD45 (BD Biosciences, CA,
USA), Percp-cy5.5 conjugated anti-CD3 (BD Biosciences, CA,
USA), FITC conjugated anti-CD4 (BD Biosciences, CA, USA), PE
conjugated anti-CD25 (BD Biosciences, CA, USA), and APC
conjugated anti-CD39 (BD Biosciences, CA, USA).

Peripheral blood mononuclear cells (PBMCs) from ARDS
patients and healthy donors were stained with PerCP conjugated
anti-CD3 (BD Biosciences, CA, USA), FITC conjugated anti-CD4
(BD Biosciences, CA, USA), APC conjugated anti-Foxp3 (BD
Biosciences, CA, USA), and PE conjugated anti-CD39 (BD
Biosciences, CA, USA). This study was approved by the Jinling
Hospital Ethics Review Committee and written informed consent
was provided by all subjects or their legal representatives.

Cytokine Analysis

Concentrations of IL-6, IL-1, and TNF-o in the BALF, plasma,
and supernatant of the co-cultured system were measured
using an ELISA kit (eBioscience, USA) according to the
manufacturer’s recommendations.

Immunofluorescence

Immunofluorescent (IF) staining was used to show the changes
in CD39" Tregs in the mouse lung tissue. Tissue sections were
stained with primary antibodies against Foxp3 (Abcam, USA)
and CD39 (Abcam, USA). The sections were then stained with
an AF594 donkey anti-mouse IgG antibody (Abcam, USA),
AF488 donkey anti-rabbit IgG antibody (Abcam, USA), and
4’6-diamidino-2-phenylindole (DAPI, Abcam, USA).

Tregs Isolation and Stimulation

Tregs from mouse spleens and blood were isolated by a
CD4'CD25" Regulatory T-cell Isolation Kit (Miltenyi Biotec,
GEM) according to the manufacturer’s recommendations. The
Tregs were stained with APC conjugated anti-CD39 (BD
Biosciences, CA, USA) and subjected to flow cytometry.

Tregs isolated from WT and CD39 ™'~ mice were stimulated in
vitro for 3 days with 4 ng/ml recombinant mouse IL-2 (Absin,
CHN) in 24-well plates, which were precoated with 1 pug/ml anti-
mouse CD3 (Absin, CHN) and anti-mouse CD28 Abs (Absin,
CHN). The purity of the isolated Tregs was >95% by a flow
cytometric analysis with FITC conjugated anti-CD4 (BD
Biosciences, CA, USA) and PE conjugated anti-CD25 (Miltenyi
Biotec, GEM).

In Vitro Suppression Assay

Different activated Tregs subsets were cultured with RAW264.7
macrophages in DMEM medium (Bioind, ISR) containing 10%
fetal bovine serum (Bioind, ISR) 30 min before LPS stimulation
(1 pg/ml). Supernatants were collected at the indicated time
points (300 x g for 5 min), flash-frozen, and stored at —80°C for
further analysis. The cells that had adhered to the tube after

centrifugation and the cells adhered to the plate were used for
transcriptional analysis.

Quantitative Real-Time Reverse
Transcription Polymerase Chain Reaction
(qRT-PCR)

The level of IL-6, IL-1B3, TNF-o, and CD39 mRNA expression were
detected by qRT-PCR. Total RNA was isolated from RAW264.7 or
Tregs using TRIzol Reagent (TaKaRa, Japan). cDNA synthesis was
performed using a PrimeScriptTM RT reagent Kit (Takara, Japan).
qRT-PCR was then performed using ABIQ3 (Applied Biosystems,
USA) and a SYBER Prime ScriptTM RT Reagent Kit (Takara,
Japan) according to the manufacturer’s recommendations. The
following primer sequences were used: murine IL-6 5-TAGTCCTT
CCTACCCCAATTTCC-3" and 5-TTGGTCCTTAGCC
ACTCCTTC-3 (sense/antisense); IL-13 5-GCAACTGTTCCT
GAACTCAACT-3 and 5-ATCTTTTGGGGTCCGTCAACT-3
(sense/antisense); TNF-oo 5- CCCTCACACTCAGATCAT
CTTCT-3" and 5- GCTACGACGTGGGCTACAG-3’ (sense/
antisense); CD39 5-TACCACCCCATCTGGTCATT-3 and 5-
GGACGTTTTGTT TGGTTGGT-3 (sense/antisense).
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and [-
actin were used as the reference genes. The primer sequences for
murine GAPDH and fB-actin were 5-AGGTCATCCCAGA
GCTGAACG-3’ and 5-CACCCTGTTGCTGTAGCCGTAT-3’
(sense/antisense) and 5-ACAT TGGCATGGCTTTGTTT-3’ and
5-GTTTGCTCCAACCAACTGCT-3’ (sense/antisense),
respectively. The levels of mRNA expression were calculated
using the 2-AACT method.

Western Blotting

In the Western blot analysis, proteins were extracted from Tregs
using a protein extraction kit (KeyGene, NED). The extracted
proteins were added to 10% sodium dodecyl sulfate-
polyacrylamide gel electrophoresis followed by migration with
120 V electric tension, and transferred onto nitrocellulose
membranes. The membranes were blocked with 5% skimmed
milk powder in Tris-buffered saline containing Tween 20 (TBST),
and incubated with specific primary antibodies (Abcam, USA) at
4°C overnight. The following day, the membranes were washed for
15 min three times in TBST, and incubated with secondary
antibodies (Abcam, USA) for 2 h at room temperature. HRP
Substrate (Millipore, USA) was used to visualize the protein bands,
and the band intensities were quantified using Image Pro plus
software (Mediacy, USA). For more detailed steps, please refer to
the antibody specification and protocol description.

GFP-mRFP-LC3 Detection by Confocal
Microscopy

Lentivirus particles carrying GFP-mRFP-LC3 (double-labeled
fusion gene with LC3) were generated by Shanghai Genechem
Company (Shanghai, China) and used to infect Tregs according
to the manufacturer’s instructions. Tregs were evaluated by
confocal microscopy (ZEISS, GEM) after Hoechst 33342
staining. The number of puncta per cell was calculated in six
high-power field areas (63 x oil-immersion objectives).
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Chromatin Immunoprecipitation

(ChIP) Assay

A ChIP assay was carried out using an EZChip kit (Millipore, USA)
according to the manufacturer’s protocol. Briefly, samples from the
experimental and input groups were cross-linked with 1%
formaldehyde for 10 min at room temperature, and glycine was
added to terminate the reaction. A DNA-protein complex was
formed by this cross-linking. An FOS antibody (Abcam, USA)
was added to the samples from the experimental group to fully form
the target DNA fragment/FOS/FOS antibody complex. The
complex was precipitated with protein A/G magnetic beads and
washed three times to remove any non-specific DNA, the elution
buffer was added to elute the DNA. The cross-linking buffer was
decoupled overnight, the DNA in the product was extracted, and
purified by DNA extraction kit (Qiagen, USA). The target DNA
was detected by PCR, and the target DNA results was presented as
the % of input. The primers were designed based on the 50
bp around the predictive site on the CD39 promoter for
PCR detection.

Luciferase Reporter Assay

The CD39 promoter regions (region 1: =700 to —600 bp; region 2:
-1,500 to —1,400 bp) were cloned into pGL4 luciferase reporter
plasmids (ViGene Biosciences, CHN). Control plasmids were
constructed with a pRL-TK vector containing Renilla luciferase.
FOS-overexpressed plasmids were constructed using the
PCDNA3.1 vector (ViGene Biosciences, CHN). Next, 293T cells
were plated into 24-well plates and cultured until the cell density
reached 60%. The promoter (300 ng) and control plasmids (30 ng)
were co-transfected with or without FOS-overexpressed plasmids
(600 ng) into the cells using Lipofectamine 3000 reagent (Thermo
Fisher Scientific, USA). After culturing for 48 h, the relative
luciferase activity was determined using the dual-luciferase
reporter assay kit in accordance with the manufacturer’s
instructions (Promega, USA). The level of fluorescence was
detected using a microplate reader.

Statistical Analysis

Data are expressed as the mean + SD or percentage in the figures.
Survival analysis was performed using the Kaplan-Meier
method. Continuous data were tested using an unpaired
Student’s t-test between two groups and a one-way ANOVA
was performed for multiple comparisons. A Mann-Whitney U
test and a Kruskal-Walls test was performed for the
nonparametric data. All analyses were performed using SPSS
26.0 (IBM, USA). P < 0.05 was considered to be significant.

RESULTS

A CD39 Deficiency Exacerbates
LPS-Induced ALI in Mice

First, we examined the role of CD39 on ALI in vivo. For this
purpose, we used previously characterized CD39™'~ mice (28) or

age-, sex-, and weight-matched littermate controls and induced
ALI via an intratracheal administration of LPS. To investigate
the effect of CD39 on the survival of ALI mice, we challenged
mice with 20 mg/kg LPS. As shown in Figure 1A, CD39/
mice started to die on Day 1, and none survived to Day 7. The
mortality of the WT group was 60%. A CD39 deficiency
significantly impaired the survival of ALI mice. To evaluate the
level of lung injury and inflammation, mice were subjected to an
intratracheal injection of 10 mg/kg LPS or PBS as a control. After
12 h, the lung tissue was subjected to H&E staining and scored to
determine the severity of tissue injury. Figure 1B shows the
typical manifestations of murine ALI, including marked
infiltration or aggregation of neutrophils, thickening of the
alveolar wall, and hemorrhaging. Regarding the lung injury
score (Figure 1C), a CD39 deficiency significantly enhanced
the degree of lung injury compared with that of the WT mice.
The IHC of MPO further proved that additional infiltration of
polymorphonuclear neutrophils (PMN) occurred in CD397/~
mice (Figure 1D). Moreover, the total number of BALF cells
(Figures 1E, F) and the subset of neutrophils (Figures 2A-C)
were both significantly increased in CD39 '~ mice. Furthermore,
a significant increase of BALF and plasma inflammatory cytokine
levels was observed in CD39™"~ mice, including IL-6, IL-1p, and
TNEF-o. (Figures 2D-I). Taken together, these data revealed that
CD39 played a functional role in ALI resolution.

CD39 Expression on Tregs Is Decreased

in ALI Mice

Previous studies have shown that Tregs play a key role in the
resolution ALI (29), whereas other studies demonstrate that Treg-
dependent immune functions are linked to CD39 expression (15).
To investigate the kinetics of Tregs after stimulation with LPS in
WT mice, the population of Tregs in the blood and spleen were
analyzed by flow cytometry. Foxp3 and CD39 expression in lung
tissues were examined by immunofluorescence. The percentage of
CD39 expression on CD4'CD25" Tregs among CD4" T-cells
within the blood had a tendency to decrease at 12 h following LPS
stimulation, continued to become down-regulated for 24 h and
spontaneous recovery for 36 h (Figure 3A). In contrast, the
percentage of CD4"CD25" Tregs among CD4" T cells did not
exhibit a significant difference (Figure 3B); however, both the
percentage of CD39 expression on CD4"CD25" Tregs and the
percentage of CD4"CD25" Tregs among CD4" T cells within
the spleen were similar between the different groups (Figures 3C,
D). Moreover, CD39" Tregs in the lung tissue at 12 h also showed a
decrease (Figure 3E). Therefore, our data indicate a potential role
for CD39" Tregs in the course of ALIL

CD39" Tregs Decreased LPS-Induced
Inflammation In Vitro

To further substantiate the role of CD39 expressed on Tregs during
inflammation, we performed a set of in vitro experiments. First, we
harvested CD4"CD25" T cells from the spleen and characterized the
CD39" (from WT mice) and CD39 (from CD39™'~ mice) Treg
populations. The Tregs were activated with IL-2, anti-CD3, and
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FIGURE 1 | A CD39 deficiency exacerbated LPS-induced acute lung injury in mice. (A) Survival curve of WT mice and CD397~ mice following lung injury. Log rank
test, P = 0.005. (B) and (C) H&E staining of the lung tissue (200x) and lung injury score of each group (n = 5). (D) Representative MPO immunohistochemistry
images of each group. (E) Representative images of the total cells in the BALF (400x). (F) The total BALF cells in each group were counted (n = 3). *P < 0.05.

anti-CD28 for 3 days. The activated Tregs were then incubated with
RAW264.7 cells in the presence or absence of LPS. Following
LPS stimulation, both the level of mRNA and protein expression
of IL-6, IL-1f3, and TNF-o. were increased in the CD39™ Treg group
(Figures 4A-F). Moreover, a preincubation with adenosine could
reduce these proinflammatory cytokines. These results suggested
that the upregulation of CD39 on Tregs exhibited anti-
inflammatory activity.

Adoptive Transfer of CD39" Tregs Protects
Against LPS-Induced ALI

To address the functional role of Treg-dependent CD39 during
ALIL we next performed adoptive transfer studies. A total of 5 x
10° CD4"CD25" T cells were separated from the spleen with a
purity above 95% (Supplementary Figure 2), and transferred
into recipient mice prior to intratracheal LPS stimulation. As

expected, mice treated with CD39" Tregs exhibited attenuated
ALL Lung histology and lung injury scoring reflected a
progressive resolution in mice receiving CD39" Tregs
compared with CD39~ Tregs (Figures 5A, B). The lavage from
mice receiving CD39™ Tregs contained significantly higher
number of total cells (Figures 5C, D) and neutrophils (Figure
5E). In line with the findings of the in vitro studies, the level of
IL-6, IL-1PB, and TNF-o expression was decreased in the BALF
and plasma in those mice injected with CD39" Tregs (Figures
5F-K). Taken together, these studies indicated the therapeutic
potential of CD39" Tregs for ALL

CD39 Self-Upregulates Its Expression via
Activating the ERK/FOS Pathway in Tregs
Previous studies have found that cellular autophagy inhibits CD39
expression in Tregs during inflammation (30). To evaluate the
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FIGURE 2 | Deficiency of CD39 increases inflammation in ALl mice. (A) Representative FACS analysis shows neutrophils in the BALF. The total BALF cells were first gated
on CD45-positive cells, and then gated on Ly6G- and CD11b-positive cells. (B, C) Analysis of neutrophils in the BALF of each group (n = 3). (D-F) The BALF concentration
of IL-6, IL-1B, and TNF-at in each group (n = 3). (G-1) The plasma concentration of IL-6, IL-1f, and TNF-o. in each group (n = 3). *P < 0.05; ***P < 0.0001.

effect of autophagy on CD39 in Tregs, we isolated and activated
Tregs in vitro, then transfected the Tregs with a GFP-mRFP-LC3
lentivirus. We then determined the dual-fluorescence of LC3
following treatment with LPS or PBS in a co-culture system.
As expected, LPS treatment increased the number of
autophagosomes in Tregs compared to that of the PBS group.
However, this promotive effect was abrogated by either
transfecting the cells with small interfering RNA against either
BECN1 or ATGS5, two vital genes in the autophagy pathway
(Figures 6A and Supplementary Figure 3). Furthermore, CD39
expression was significantly downregulated following LPS
stimulation; however, this suppressive effect on CD39 was also
reverted by transfection with siBECN1 or siATG5 (Figure 6B).

This evidence suggested that LPS-induced lung inflammation
impaired the immunosuppressive effect of Tregs via autophagy-
mediated downregulation of CD39. One recent study found that
CD39 protects cardiac tissue against ischemic injury via
activation of the ERK1/2 pathway in myocardial cells (24). To
investigate that whether CD39 activates the ERK1/2 pathway in
Tregs, we detected activation of the ERK1/2 pathway by western
blotting of Tregs collected from WT mice, CD39™'~ mice, and
CD39" Tregs enriched from WT mice following in vitro
treatment with PBS or LPS. We found that the level of
phosphorylated ERK1/2 and its downstream transcription
factor, FOS, were significantly increased in CD39" Tregs
compared to that of other Tregs (Figure 6C). In addition, we
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observed that ERK1/2 phosphorylation and FOS expression was
decreased in Tregs extracted from CD39~~ mice compared to
that of WT mice after an intratracheal instillation of LPS (Figure
6D). Intriguingly, through a bioinformatics analysis, we
identified two potential binding sites of FOS on the CD39
promoter (Figure 7A and Supplementary Table 1). Moreover,
CD39 expression was gradually downregulated in Tregs
following 2, 5, and 10 nM LY3214996 treatment, a
phosphorylated ERK1/2 inhibitor (Figures 7B, C). Utilizing a
promoter luciferase reporter assay, we found that the
fluorescence intensity was improved following co-transfecting
293T cells with FOS-overexpressed plasmids and reporter
plasmids containing -700 bp to -600 bp of the CD39
promoter, but not the —1,500 bp to -1,400 bp region
compared with controls (Figure 7D). To determine the

accurate binding site of FOS on the CD39 promoter, we
developed a ChIP-PCR assay. As shown in Figure 7E, the
GGTAATTCATG (-685 bp to —675 bp) region of the CD39
promoter was detected in the ChIP extracts using an FOS
antibody, but not the —1,447 bp to —1,437 bp region. Taken
together, our data revealed that CD39 induced the expression of
itself in Tregs via activating the ERK1/2-FOS pathway. This
formed a positive feedback loop, as well as enhanced the
protective effect of Tregs in response to inflammation.

The Frequency of CD39" Tregs Was
Decreased in ARDS Patients

After the above investigation of CD39" Tregs was conducted in an
animal model, we sought to determine the regulation of CD39"
Tregs in ARDS patients. A total of 20 patients and 13 healthy
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FIGURE 4 | CD39" Tregs decreased LPS-induced inflammation in vitro. Both CD39*
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and CD39" Tregs were co-cultured with RAW264.7 cells in the absence of

LPS after activation. The level of LPS-induced protein expression of (A) IL-6, (B) IL-18, and (C) TNF-o in the supernatant were determined by an ELISA. The level of
LPS-induced (D) IL-6, (E) IL-1B, and (F) TNF-oo mRNA expression in macrophages were analyzed by gRT-PCR. *P < 0.05; “*P < 0.01.

controls were enrolled in the present study. The general
characteristics of the patients and healthy controls are presented
in Table 1. Blood samples were collected within 24 h after the
patients were diagnosed with ARDS. Figure 8A shows the
representative FACS analysis of CD39" Tregs. We found that
the percentage of CD39" Tregs in the CD4" T cell population was
significantly decreased compared to that of the healthy donors
(Figure 8B). We classified the ARDS patients as either mild,
moderate, and severe according to PaO,/FiO,. A significant
difference was observed between the three groups (P = 0.002)
(Figure 8C). As the disease worsened, the proportion of CD39"
Tregs gradually decreased.

DISCUSSION

ARDS is an inflammatory disorder leading to acute hypoxemic
respiratory failure following inflammatory injury to the lung
endothelium and alveolar epithelium (31). Inflammatory cell

infiltration and the release of multiple pro-inflammatory
cytokines are the core, as well as the cardinal step of ARDS. A
large number of compounds have been reported to restrain LPS-
induced lung inflammation, including Clara secretory cell protein
(32), 13-glutathionyl, 14-hydroxydocosahexaenoic acid (33), and
vitamin D (34). Unfortunately, no pharmacological interventions
have proven to be effective in preclinical or clinical studies to date.
Despite the heterogeneity of ARDS, potential adverse events may
also compromise safety or adherence. Cell-based therapy gradually
gained the attention of researchers due to its effective control of
disease initiation and progression by cell replacement, including
autologous hematopoietic stem cells, mesenchymal, and related
stem cells. While early-phase clinical trials suggest that the
allogeneic administration of mesenchymal stem/stromal cells is
safe, considerable challenges exist in moving forward to phase III
efficacy studies (11). Tregs, as an immune regulatory cell, is
extremely suitable for allogeneic administration; however, the
mechanism underlying the use of Tregs for clinical treatment
requires further exploration. In this study, we found that despite
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FIGURE 5 | Adoptive transfer of CD39" Tregs protects against LPS-induced ALI. (A, B) H&E staining of the lung tissue (200x) and lung injury score of each group
(n = 5). (C) Representative images of the total cells in the BALF (400x). (D) Total cells in the BALF were counted in each group (n = 3). (E) Analysis of neutrophils in
the BALF of each group (n = 3). The concentration of IL-6 (F, I) IL-1B (G, J), and TNF-a. (H, K) in the BALF and plasma in each group (n = 3). *P < 0.01; **P <
0.001; =P < 0.0001; *P < 0.01; **P < 0.001; *"**P < 0.0001 vs. LPS.

the frequency of Tregs remained unchanged, the rate of CD39"
Tregs was significantly downregulated following inflammation.
Increasing information indicates that distinctive Treg subtypes
seem to play a different role in controlling the immune system.
CD39 is an ectoenzyme that hydrolyses ATP and ADP to AMP
and exhibits immunosuppressive effects. CD39 is considered to be
a Treg marker because of its important regulatory function;
however, whether CD39" Tregs are functional in ARDS and the
associated underlying mechanisms remains unknown. Utilizing
CD39 knockout mice models and Treg transplantation methods,

we demonstrated that allotransplanted CD39" Tregs significantly
relieved LPS-induced inflammation in the lung, as well as the
secretion of IL-6, IL-1B, and TNF-o. Moreover, adenosine
incubation rescued these effects in vitro. Thus, we concluded
that CD39" Tregs restrained LPS-induced ALI via converting
ATP/ADP into adenosine.

Recent studies have demonstrated a strong relationship between
autophagy and CD39 expression. The role for autophagy in the
regulation of ATP-CD39 axis in a murine model of lung cancer has
previously been defined (35), and knockout of autophagy genes has
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been demonstrated to increase the level of CD39 expression on
tumor cells (36). Furthermore, the level of autophagy and ROS
modulate CD39 upregulation in Tregs (31). Thus, we evaluated the
level of cellular autophagy through confocal microscopy after
transfecting Tregs with GFP-mRFP-LC3 reporter plasmids. As
expected, the level of cellular autophagy was significantly
increased in Tregs following LPS stimulation along with a
decrease in CD39 expression. Accordingly, a knockdown of
autophagic-related genes abrogated this effect on CD39
expression. These results indicated that CD39 expression was at
least partially suppressed by LPS-induced autophagy in Tregs. It is
important to note that we also detected a significant upregulation in
the level of ERK phosphorylation in CD39" Tregs. This finding is
consistent with a previous study that found a positive relationship
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FIGURE 6 | Autophagy and the ERK/FOS pathway co-mediated CD39 expression on Tregs during inflammation. After isolation and activation in vitro, Tregs
transfected with the GFP-mRFP-LCS lentivirus were treated with LPS or PBS in a co-culture system. (A) Confocal microscopy was performed to determine the level
of LC3 expression. (B) CD39 expression was measured by RT-PCR. (C, D) Western blotting to determine the level of phosphorylated ERK1/2 and FOS in Tregs

between CD39 and phosphorylated ERK in myocardial ischemia/
reperfusion (37). In addition, CD39 expression was significantly
downregulated after the addition of the p-ERK1/2 inhibitor,
LY3214996. This leads us to speculate that the phosphorylation of
ERK1/2 also induced CD39 expression. According to a
bioinformatic analysis integrated with the Jaspar and GO
databases, we determined that there are two potential binding
sites of FOS on the CD39 promoter, which is a transcriptional
factor that is activated downstream of ERK. A promoter reporter
luciferase assay and ChIP assay were used to determine that the
GGTAATTCATG (-685 bp to —675 bp) region on the CD39
promoter was the direct binding site of FOS. Together, this
evidence reveals that except for autophagy-mediated inhibition,
CD39 could also induce its self-expression via activation of the
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TABLE 1 | Characteristics of ARDS patients and healthy controls.

Clinical parameters ARDS Healthy controls
Age (years)

<65 13 10
>65 7 3
Sex

Male 11 7
Female 9 6
ARDS severity

Mild 6 /
Moderate 10 /
Severe 4 /
Cause of admission

Severe pneumonia 8 /
Pancreatitis 12 /

ERK/FOS pathway, which further enhanced the inflammation-
suppressive effect of CD39" Tregs on ALL

For the first time, the findings of this study demonstrated that
LPS-induced inflammation in the lung inhibited CD39
expression in Tregs via autophagy. This contributes to the
functional impairment of Tregs in immunological surveillance.
Adoptive transfer of CD39" Tregs restrains LPS-induced ALI via
catabolizing ATP/ADP to adenosine. In addition, CD39 was also
observed to increase its self-transcription via activating the ERK/
FOS pathway, which formed a feedback loop in Tregs and
resisted the impairment of LPS-induced inflammation.
Although further research is required, CD39" Treg-based
therapeutics may be an avenue for the early diagnosis,
prevention, and precise treatment for ARDS.
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