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Despite significant breakthroughs in understanding of immunological and physiological
features of autoimmune diseases, there is currently no specific therapeutic option with
prolonged remission. Cell-based therapy using engineered-T cells has attracted
tremendous attention as a practical treatment for autoimmune diseases. Genetically
modified-T cells armed with chimeric antigen receptors (CARs) attack autoreactive
immune cells such as B cells or antibody-secreting plasma cells. CARs can further
guide the effector and regulatory T cells (Tregs) to the autoimmune milieu to traffic,
proliferate, and exert suppressive functions. The genetically modified-T cells with artificial
receptors are a promising option to suppress autoimmune manifestation and
autoinflammatory events. Interestingly, CAR-T cells are modified to a new chimeric
auto-antibody receptor T (CAAR-T) cell. This cell, with its specific-antigen, recognizes
and binds to the target autoantibodies expressing autoreactive cells and, subsequently,
destroy them. Preclinical studies of CAR-T cells demonstrated satisfactory outcomes
against autoimmune diseases. However, the lack of target autoantigens remains one of
the pivotal problems in the field of CAR-T cells. CAR-based therapy has to pass several
hurdles, including stability, durability, trafficking, safety, effectiveness, manufacturing, and
persistence, to enter clinical use. The primary goal of this review was to shed light on CAR-
T immunotherapy, CAAR-T cell therapy, and CAR-Treg cell therapy in patients with
immune system diseases.
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INTRODUCTION

The hallmark of the immune system is its ability to distinguish
self from foreign antigens (1). This capability can be misdirected
against healthy tissues under certain circumstances such as
breakage of immune tolerance and disrupted rearrangement of
homeostasis, resulting in mistaken attack and destruction of
normal host cells, known as autoimmune diseases (2).
Autoimmune diseases include over 100 types of diseases,
accounting for an estimated 3.1% and 7.6–9.4% cases affected
in the USA and Europe, respectively (3). Based on the affected
region, the age of onset, response to the therapeutic agents and
clinical manifestation may vary among different people (4). Both
auto-antibody-secreting B lymphocytes and self-reactive T-
lymphocytes play a key role in the development of
autoimmune diseases (5). Based on the extent of tissue
damage, autoimmunity is classified into two general categories,
including organ-specific and systemic autoimmune. The former
involves a specific area of the body such as type I diabetes (T1D),
multiple sclerosis (MS), rheumatoid arthritis (RA), inflammatory
bowel diseases (IBDs), and myasthenia gravis (MG), while the
latter affects multiple regions of the body, causing systemic lupus
erythematosus (SLE) and Sjögren’s syndrome (SS) (6, 7).

A variety of mechanisms have been proposed to be involved
in the development of autoimmunity. Such factors are classified
into the following categories: I) epitope spreading, where
infections alter the primary epitope into the secondary epitope
or form several neoepitopes on antigen-presenting cells (8); II)
bystander activation, also known as pre-primed autoreactive T
cell activation in a T cell receptor (TCR)-independent manner
(9); III) persistent virus infection, where the constant presence of
viral antigens prompts immune responses (10); and IV)
molecular mimicry, which is explained by immunological
cross-reactivity between the host and pathogen due to shared
immunologic epitopes or sequence similarities (11).

Conventional and common therapies currently used for
autoimmune diseases include immunosuppressive agents, such
as steroids or cytostatic drugs, analgesics, non-steroidal anti-
inflammatory drugs, and glucocorticoids. Such drugs typically
manage and inhibit auto-antibody production but lack the ability
to completely eliminate the diseases (12, 13). The typical
immunosuppressive and immunomodulatory agents, such as
methotrexate, leflunomide, hydroxychloroquine, and
sulfasalazine, are known as disease-modifying antirheumatic
drugs (DMARDs). Each of these drugs has a particular
mechanism of action that targets crucial pathways in the
inflammatory cascade suppressing the immune system;
however, they increase the risk of opportunistic infections (14–
16). Several new drugs, known as biologic agents, have been
introduced for localized treatment instead of affecting the entire
immune system. These drugs include TNF-a inhibitors,
belimumab and rituximab depleting B cells, T-cell co-
stimulation blocker, anti-interleukin 6 (IL-6), anti-IL-1, and
protein kinase inhibitors (16). In addition, monoclonal
antibodies (mAbs), such as anti-TNFa, anti-CD19, anti-CD20,
anti-CD22, and anti-IL6R, target multiple B cell subtypes, and
other aberrant cells in autoimmune diseases (17, 18).
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Immunotherapy is a field of immunology which helps
immune cel ls fight against diseases through either
enhancement or suppression and manipulation of the immune
system. Biological therapy, such as immunotherapy, cytokines,
cancer vaccines, and cell-based therapies with chimeric antigen
receptor (CAR) T-cell, is a type of cancer treatment which
augments the anti-tumor response of the host’s immune cells
to fight and eliminate cancer cells (19–21).

CAR-based immunotherapy has attracted tremendous
attention and is considered as a possible therapy option for
autoimmune diseases. CAR modified-T cells kill aberrant
immune cells such as B cells or antibody-secreting plasma cells
in autoimmune diseases. CARs can guide the effector and
regulatory T cells (Tregs) to the autoimmune milieu to traffic,
proliferate, and exert suppressive functions (22). This study
provided key features of CAR-based therapy against
autoimmune diseases and critically discussed recent studies
conducted on CAR modified-T cells to fight against
autoimmune diseases.

CAR Design and Key Requirements
CAR is a hybrid antigen receptor that redirects T cells toward
cells or tissues expressing the antigen of interest and empowers
the T cells to recognize antigens in a major histocompatibility
complex (MHC)-independent manner (23, 24). In contrast,
TCR requires peptide processing in the MHC-dependent
manner to identify cells with particular human leukocyte
antigen (HLA) expression (25, 26). A typical CAR is
composed of three major components, including ectodomain
consisting of an antigen-recognition domain and a hinge
domain, a transmembrane domain, and endodomain defined
in co-stimulatory(s) and an intracellular signaling domain
(Figure 1A) (27–29).

Ectodomain
Ectodomain is a domain of a membrane protein outside the
cytoplasm and exposed to the extracellular space, which consists
of a single-chain variable fragment (scFv) and a spacer (30, 31).
scFv serves as a signal peptide of ectodomain in CAR structure
which is formed by a variable fragment of heavy (VH) and light
(VL) chains of a mAb and fused to a flexible linker (32).
Molecular engineers have continued to diversify the scFv
molecule, resulting in a) bispecific scFvs that are present on
two CARs separately and target two distinct antigens; b) tandem
scFvs in which two scFvs expressed on one CAR construction
simultaneously; and c) nano-scFvs that mostly derived from
camel’s antibody (33). The antigen-recognition domain is
derived mainly from variable lymphocyte receptors, TCR-
mimic, and mAb. Among, scFv is designated as the most
common choice of antigen-recognition domain for CAR
construction (34, 35).

The hinge domain, also known as a spacer, provides a bridge-
like connection between the transmembrane domain and the
antigen-binding domain. The spacer gives a different range of
motions to the binding domain to facilitate antigen recognition.
Proteins used in the hinge region of CAR-T cells are the fragment
crystallizable region (Fc region), the tail region of an antibody, of
November 2020 | Volume 11 | Article 603237
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IgG1, IgG4, IgD, and cell surface molecules such as CD28, CD8a,
and CD7 (36, 37).

Transmembrane Domain
The transmembrane domain, which consists of a hydrophobic
alpha helix that spans the membrane, provides a connection
between the extracellular and intracellular section of a CAR
molecule. This domain also influences the expression and
stability of CARs (31, 38, 39).

Endodomain
Despite the initial signals provided by FcR-g or CD3z domain,
full activation of T cells requires a second signal known as co-
stimulation (40). The early T cells expressing the first-generation
CARs (with no co-stimulatory domain) had insufficient cytokine
secretion and showed disappointing outcomes in vivo (41, 42).
Consequently, the first-generation CARs were fused with a co-
stimulatory molecule to augment their proliferation and
responses (43). A wide variety of co-stimulatory molecules
have been investigated, including CD28, 4-1BB/CD137, OX40,
ICOS, CD27, MyD88/CD40, NKG2D, CD244, and DAP10.
These molecules have been, and continue to be, examined in
various clinical and preclinical trials; however, among them,
CD28 and 4-1BB/CD137 are the most common choices of
Frontiers in Immunology | www.frontiersin.org 3
co-stimulatories for CAR-T cell manufacturing (44–46). Upon
antigen recognition, CAR endodomains transmit activation and
co-stimulatory signals to the T cells. The activation relies on the
phosphorylation of immunoreceptor tyrosine-based activation
motifs (ITAMs) present within the cytoplasmic domain of the
TCR complex and CD3-z domain (47, 48).

The Principal of CAR-T Cell Manufacturing
T Cell Source
Because most CAR-T cells are derived from autologous T cells,
the general workflow for CAR-T manufacturing begins with
harvesting specific T cell subsets via leukapheresis procedure.
Different commercial devices provide size-based cell
fractionation for the depletion of monocytes and the isolation
of lymphocytes (49). The isolated cells undergo a washing
process to discard contaminated platelets or RBCs and
anticoagulants. In some protocols, T cells are enriched for a
specific subset of T cells, such as CD4+, CD8+, CD25+, and
CD62L+ T cells. Although CD3+ T cells are used mainly in CAR-
T clinical purposes, other subsets of T cells such as naive, central
memory, and memory stem cells may also show promising
advantages. T cell subsets, which provide robust or effective
therapeutic attitudes and have the least side effects than other T
cell populations, should be considered as a T cell source in the
A

B

FIGURE 1 | A common CAR construction. (A): CAR is comprised of antigen-recognition domain (scFv), a hinge domain or spacer (CD28, CD8a, CD7, IgG4, and
IgG1), a transmembrane domain (CD28, CD8a, CD7, CD4, CD3z, and OX40), a co-stimulatory domain (CD244, CD28, CD27, OX40, ICOS, and CD137), and a
signaling domain (CD3z, DAP10, and DAP12). (B): The process of CAR-T manufacturing from peripheral blood mononuclear cells to genetically modified-T cells and
administration. CAR-T therapy starts with accumulating the patient’s white blood cells by leukapheresis. The apheresis products are enriched or deleted for a
specific cell subset and then activated by one of following methods, including interleukins (IL-2, IL-7, and IL-15), anti-CD3/CD28 antibody-coated magnetic beads,
soluble CD3 antibody, artificial antigen-presenting cells, plate-bound antibodies, and adhesion molecules. The activated T cells are introduced with the CAR
transgene through lentiviral or retroviral and non-viral methods (electroporation of naked DNA and plasmid-based transposon/transposase). Afterwards, the
engineered-T cells undergo an expansion process in static culture bags or dynamic culture vessels or rotating bioreactors. Eventually, cell numbers are calculated
based on the patient’s disease burden, weight, and another formulation. The CAR modified-T cells transfer to either a container for infusion purposes or
cryopreserved for storage.
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CAR-T cell manufacturing process. Finally, the purified T cells
can be either used for the next procedure or cryopreserved for
future work (50–52).

Activation Process
Processed T cells need sustained and adequate activation to be
prepared for CAR cDNA transduction. T cells receive the first
signal from their FcR-g or CD3z domain and the second signal
from co-stimulatory signals such as CD28, 4-1BB, or OX40.
Technically, several activation methods are available, each of
which has its own advantages and disadvantages. The methods
include a) anti-CD3 based activation, in which soluble anti-CD3
mAb and IL-2 interact with T-cell surface CD3 receptors (53,
54); b) cell-based activation, in which antigen presenting cells
such as dendritic cells and artificial antigen-presenting cells
(K562 cell lines) are used to stimulate the expansion of CAR-T
cells (55, 56); c) magnetic-bead activation, in which anti-CD3/
CD28 antibody-coated magnetic beads are used for selection and
ex vivo T-cell activation; and d) other strategies, which include
plate-bound antibody, adhesion molecules (CD2), and
interleukins (IL-2, IL-7, and IL-15) (57, 58).

CAR Transgene Delivery
Currently, CAR gene delivery relies predominantly on viral and
non-viral gene transfer systems. The most popular vectors are
lentiviral vectors, g-retroviral vectors, and the transposon/
transposase system. Besides, messenger RNA (mRNA)-
mediated gene transfer and electroporation of naked DNA are
other methods to introduce CARs into cells of interest (59).

Lentiviral vectors, as a widely used vector in CAR delivery,
transduce non-dividing cells and have a high gene transfer
efficiency, resulting in a safe genomic integration profile (60).
In contrast, g-retroviral vectors attracted tremendous attention
as they provide multiple stable packaging cell lines with broad
tropism and have a high gene expression property (61). Both of
these viral vectors require complicated and expensive equipment
and reagents. Therefore, a new inexpensive and straightforward
gene delivery method, such as transposon/transposase system,
needs to be introduced in CAR-T manufacturing platform.
However, this system has a random integration and increases
the possibility of oncogenic risks (62). mRNA-mediated gene
transfer is another potential choice of gene delivery, as it provides
a cytoplasmic gene expression and does not involve the genome
of host cells. The mRNA-based gene delivery decreases
genotoxicity due to its cytoplasmic expression system (63, 64).

Expansion Process
Several expansion procedures have been introduced for
genetically modified-T cells, each of which has its unique
characteristics. These systems are known as the Miltenyi
CliniMACS Prodigy system, G-Rex bioreactor, GE WAVE
bioreactor, and T-flask. Therefore, the expansion system
should be chosen based on the CAR-T cell construction
strategy (65–67).

After expansion system selection, modified-T cells are
expanded into media using supplemental factors and strict
control over temperature, pH, agitation, dissolved oxygen
Frontiers in Immunology | www.frontiersin.org 4
(DO) levels, gas sparging, and cytokine supplementation (68).
Expansion protocols for CAR-T cells rely typically on cytokines,
such as IL-2, IL-7, IL-15, and IL-21. The choice of cytokines and
their concentration is likely associated with the CAR-T cell
phenotypes (69–71).

Eventually, the modified-T cells are ready to be introduced
into the recipient patient through IV injection or intratumoral
administration (Figure 1B). Notably, the success of CAR-T
therapy may impede due to fiasco to administer the genetically
modified-T cells properly and promptly before patients reach
end-stage or progressive complications.

Despite the breakthrough in CAR development, there is still
no solid manufacturing process across the therapeutic platforms
(49). Prior to CAR-T manufacturing, selection of a particular T
cell population such as the central memory or stem cell-like
memory T cells can affect the therapeutic outcomes (72–74).
CD4 and Tregs and the Mechanism
of Suppression in Autoimmune Diseases
CD4 effector T cells, also known as T helper (Th) cells, affect the
immune functions by providing proper stimuli for immune cells.
Classically, CD4+ T cells are divided into Th1 and Th2 subsets.
Th1 cells express a particular transcription factor Tbet (TBX21)
during viral infections to support CD8+ T cells. In contrast, Th2
cells are in association with humoral immune responses by
assisting B cells. Th2 cells produce cytokines, such as IL-4, IL-5
and IL-13, and express transcription factor GATA3.
FoxP3+ Tregs and IL-17 producing Th17 cells (a new subset of
effector memory T cells) are dominant Th cells. Tregs play a
crucial role in maintaining peripheral tolerance, while Th17 cells
fight against extracellular pathogens. Factors that influence and
induce the Th17 cells are IL-1b, IL-21, IL-6, and transforming
growth factor-beta (TGF-b). Importantly, Th cells are believed to
play a central role in human autoimmune diseases (75, 76).

Tregs are a class of T cells which participate in suppression or
regulation of other cell types in the immune system and control
the immune feedback to self or foreign antigens to prevent
autoimmune manifestation (77). Tregs are developed from two
major sources, including thymus and periphery (outside the
thymus). The former produces thymic Treg cells (tTreg cells),
while the latter develops induced Treg cells (iTreg cells) (78, 79).
Tregs have a potent immunosuppressive function in which
differentiation, development, and the suppressive manner of
Tregs are closely associated with primary TCR contact (80, 81).
Thymic Tregs expressing CD4, CD25, and FoxP3 are the most
studied Tregs in different clinical purposes and hold promise in
treating autoimmune diseases (82, 83). Under normal
circumstances, Tregs have several suppressive mechanisms
depending on the inflamed regions and type of immune
responses. Tregs secret anti-inflammatory cytokines such as
TGF-b , IL-10, and IL-35, to prevent autoimmune
manifestation and autoinflammatory events (84, 85). These
cytokines within the inflammation zone affect different cell
subsets. After the activation, Tregs can destroy autoreactive
CD4+ T and CD8+ T cells through different potential
mechanisms (86). Many possible mechanisms have been
November 2020 | Volume 11 | Article 603237
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proposed for suppression mechanisms used by Tregs, which
include i) secreting inhibitory cytokines, such as IL-10 and
TGFb; ii) producing granzymes and perforin to induce
apoptosis in target cells; iii) expressing a high level of the
CD25 receptor that enables Tregs to consume more IL-2 and
deplete the surrounding cells of this cytokine; iv) inhibiting the
effector T-cell function by adenosine generated by CD39 and
CD73 co-expression; and v) preventing the effector T-cell
activation by targeting dendritic cells (6, 87, 88). There would
be a particular mechanism of suppression used by Tregs that may
play a central role under certain conditions to mediate immune
tolerance (89). Identification of the molecular characteristics and
the main suppression mechanism of Tregs enables researchers to
develop promising therapeutic approaches such as CAR-Tregs to
fight against autoimmune diseases.

CD8+ T Cells and the Mechanism
of Suppression in Autoimmune Diseases
T cells stem from common lymphoid progenitor cells in the bone
marrow and migrate through the bloodstream to the thymus.
They undergo a series of maturation stages to express some
specific cell surface receptors, such as TCR, CD4, and CD8
receptors (90, 91). Among, cytotoxic T cells, also known as
CD8+ T cells or cytotoxic lymphocytes (CTLs), are characterized
based on their cytolytic activities. Naïve CD8 T cells circulate
through secondary lymphoid organs where they are activated via
interaction between their TCR and antigen-presenting cells, such
as dendritic cells. After activation, the characteristics of CD8 cells
are determined through changes in their functions, gene
expression, and migration. They begin to differentiate and
proliferate to turn to cytotoxic T cells (CTLs). These cells
detect infected or malignant cells by direct contact or in a
TCR-dependent manner, destroy the target cells and provide a
safe harbor for other cells. The mechanism used by CTLs to
eliminate the infected cells lie within different strategies,
including secretion of chemokines, perforin, granzymes,
expression of Fas ligand, and effector cytokines such as tumor
necrosis factor and interferon-g mechanism (92, 93).

CTLs fight autoimmune diseases by exerting different
strategies against infected cells. They suppress B cells through a
CD40 pathway to mitigate the CD23+ cells and secretion of IL-
10. Meanwhile, they influence the balance between Th1 and Th2
population, by decreased Th2 population (94, 95). In
Frontiers in Immunology | www.frontiersin.org 5
inflammatory conditions, CTLs recognize and destroy
oligodendrocytes, astrocytes, and neurons/axons expressing
MHC-I molecules by secreting perforin, IFN-g, and TNF-a
(96). Nevertheless, CTLs can produce some specific cytokines
such as IL-10, IL-4, and TGF-b that negatively regulate the CD4+

T cell ’s performance and proliferation (97–99). This
characteristic highlights the regulatory role of CTLs on CD4+

T cells in autoimmune conditions. Despite the present evidence
that shows the cytotoxic and regulatory role of CTLs in
autoimmune conditions, the exact mechanism of CTLs in
autoimmune diseases has not been understood profoundly and
requires comprehensive investigations.

CAR-Treg Therapy in
Autoimmune Diseases
Autoimmune diseases are defined by a loss of tolerance. Cells with
immunosuppressive attitudes like Tregs play a significant role in
restoring the immune system (100). Strategies to genetically
manipulate Tregs are a promising option to suppress the
autoimmune manifestation and the autoinflammatory events
(Table 1) (104).

Tenspolde et al. used adoptive immunotherapy with genetically
engineered-Tregs expressing an insulin-specific CAR against
NOD/LtJ female mice with type 1 diabetes (T1D). Because
there are a small number of Tregs specific for diabetes-
associated antigens in patients, the generation of CAR-
modified Tregs would encounter a problem due to the lack of
Tregs of interest. Therefore, they converted CD4+ effector T cells
into Tregs by introducing the Foxp3 gene. Further, effector T
cells were transduced with gamma-retroviral encoding second-
generation insulin-specific CAR plasmid, providing converted
insulin CAR-modified Treg cells (insulin CAR-cTregs). Their
findings revealed that infusion of 2.5×106 of insulin CAR-cTregs
was ineffectual to prevent NOD/Ltj female mice from becoming
diabetes. However, insulin CAR-cTregs persisted approximately
4 months in diabetic mice. The possible explanation for this
phenomenon can be ascribed to storage and biological form or
molecular structure of insulin. There might be other forms of
insulin in the body that hinder the treatment process, such as a
hexamer (a unit of six insulin molecules) and a monomer as an
active form. The diversity of insulin structure is expected to
hinder the therapeutic effect of engineered-T cells; therefore, a
strategy to neutralize other forms of insulin could enhance the
TABLE 1 | CAR-Treg-based therapy in preclinical models of autoimmune diseases.

Condition Target antigen CAR-construct Delivery
route

Preclinical study Dosage
of CAR-
Tregs

Overall outcomes Year
[Ref]

Type 1
diabetes

Insulin CAR-Treg cells
(insulin scFv,
CD28, CD3z)

Retroviral BALB/cJ, C57BL/6J,
and non-obese
diabetic (NOD/LtJ) mic

25×105 The study showed successful treatment of CAR-Tregs
without affecting the general immune competence of the
recipient.

2019
(101)

Ulcerative
colitis

Carcinoembryonic
antigen (CEA)

CEA CAR-Tregs
(SCA431 scFv,
CD28, CD3z)

Retroviral CEABAC-2 and
CEABAC-mice (n=10)

15–30 ×
105

In general, CAR-Tregs were successfully tested in two
distinct complementary model systems, indicating the
viability of CAR-Treg-based treatment.

2014
(102)

Multiple
sclerosis

Myelin
oligodendrocyte
glycoprotein

MOG CAR-Tregs
(MOG scFv,
CD28, CD3z

Lentiviral Female C57BL/6 mice 1 × 105 CAR-Tregs targeting myelin localized to the CNS
efficiently suppressed ongoing inflammation and
alleviated disease symptoms.

2012
(103)
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success of CAR-T cells. Insulin CAR-cTregs were also shown to
have minimal off-target toxicity due to their high specificity to
insulin (101).

Likewise, a study transduced CD4+ T cells using a lentiviral
vector system encoding the myelin oligodendrocyte glycoprotein
(MOG) CAR gene and Foxp3 gene. The main role of MOG CAR-
Tregs is to localize and bind to MOG+ oligodendrocytes in CNS,
providing a protective shield for these cells against immune
attacks (Figure 2A). In this study, 1 × 105 of MOG CAR-Tregs
infused through intraperitoneal delivery routes in female C57BL/
6 mice afflicted with encephalomyelitis (EAE). Their findings
demonstrated that MOG engineered-Tregs could treat all the
EAE mice, decrease the IL-12 and IFN levels, and suppress
effector T cell proliferation 10 days after infusion. The treated
mice were again introduced with the second dose of EAE-
inducing inoculum and, as a consequence, the MOG CAR-
Tregs effectively protected the MOG+ cells against EAE
inflammation. Fifteen days post cell treatment, mice were
analyzed using the immunohistochemical technique. The
results revealed reactive astrogliosis and myelination of axons
in mouse brains treated with MOG CAR-Tregs. In contrast,
the number of CAR-Tregs decreased during migration to the
target site where MOG+ cells are present. This low number
may interpret into different concepts, including on-target/off-
Frontiers in Immunology | www.frontiersin.org 6
tumor toxicity, insufficient trafficking and migration, and
immunogenicity (103). Thus, further evaluation is required to
study the probability of these phenomena in MOG CAR-
Treg treatment.

Furthermore, CEA transgenic CAR was introduced into Tregs
to generate CEA CAR-Tregs for preventing ulcerative colitis
(UC) development, a form of inflammatory bowel disease. CEA
CAR-Tregs were able to suppress the occurrence of colitis and
decreased the manifestation of colitis-associated colorectal
cancer. CEA CAR-modified Tregs trafficked and expanded in
the site of inflammation, just for 7 days, and finally were removed
by day 9. Findings highlighted that the low persistence of
engineered-Tregs might be associated with immunogenicity
due to the presence of CEA CAR antibodies in the sera of
treated mice (102).

Recently, Boroughs et al. have investigated the types of co-
stimulation domains used in CAR-Tregs to identify the best co-
stimulatory serving in persistence, phenotype maintenance,
survival, and proliferation in engineered-Tregs. They
engineered primary human Tregs with the second-generation
CAR containing either CD28 or 4-1BB co-stimulatory domain,
and then monitored the effects of each domain in a preclinical
model and in vitro. Their results demonstrated that the CD28
domain was more beneficial in CAR-Treg’s suppressive behavior
and maintained Treg phenotypes compared with 4-1BB co-
stimulatory domain. CAR-Tregs with the CD28 domain were
also capable of suppressing the effector T cell–mediated graft
rejection and secreting more IL-10. Of note, the 4-1BB signaling
domain attenuated the immunosuppressive activity of CAR-
Tregs, whereas CD28-based CAR-Tregs expressed a high
level of LAP and CTLA4 and depleted more of IL-2 in the
zone of interest (105). Hence, using CD28 as a co-stimulatory
domain in CAR construction outperforms the 4-1BB co-
stimulatory domain.

CAR-T Therapy in Autoimmune Diseases
Rituximab, a mAb targeting the B-lymphocyte restricted surface
antigen CD20, is a promising therapeutic approach against some
autoimmune diseases, especially B cells (106–108). Adoptive cell
therapy with CD19 CAR-T cells demonstrated significant success
in hematologic malignancies (109). The application of CAR-
based therapy can be drawn into autoimmune diseases to
eliminate malignant B cells producing autoantibodies.

Researchers developed CD19 CAR engineered-T cells to
eliminate aberrant CD19+ B cells in two lupus mouse models.
CD19 CAR-T cells could successfully eliminate CD19+ B cells,
leading to decreased auto-antibody secretion. Additionally, the
disease burden was ameliorated in both female NZB/W and
MRL-lpr mice. The serology of modified T cell-treated mice
exhibited decreased levels of total IgM and IgG antibodies as well
as Anti-DNA IgG and IgM. However, all the IgM+ B cells were
not removed completely, and plasma IgM was detectable in mice.
Further success was detected in the pathogenesis and survival of
mice. The life span of both treated mice increased to almost one
year, demonstrating the profound effect of CAR-based therapy in
autoimmune diseases. This long persistence of CD19 CAR-T
cells in mice led to a functional test to assess whether modified-T
A

B

FIGURE 2 | The mechanism of action of CAAR-T cells and CAR-Treg cells
against autoimmune disease. (A): MOG CAR-Treg cells effectively bind
and is localized to the MOG+ oligodendrocytes in CNS and exert their
immunosuppressive manner to protect myelin against immune attack. (B): (a);
T cell expressing CAAR specific for B cell receptors targets aberrant B cells.
(b); further, it inhibits B cell development from secreting autoreactive
antibodies and prevents B cells from presenting autoantigens to autoreactive
T cells, which leads to suppression of T cell-mediated autoimmune diseases.
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cells have cytotoxic efficacy toward B cells. Results indicated that
CD19 CAR-T cells actively continue to eliminate B cells up to 11
months and CD19+ B cell aplasia has occurred during the
treatment. Moreover, RNA analysis highlighted that modified-
T cells did not eliminate normal B cells whether splenic B cell
populations or plasma cells resident in the bone marrow. These
findings clearly suggested that CD19 CAR-T cells could remain
functional for months and remove transferred autologous CD19+

B cells without harming other B cell populations in the bone
marrow of murine lupus (110).

Recently, a novel study has redirected genetically modified-T
cells expressing scFv of mAb287 against Ag7 I-B:9–23(R3)
complex on antigen-presenting cells (APCs) to assess the
therapeutic effects of CAR-T cells in a NOD mouse model of
T1D. The B:9–23 peptide is defined by amino acids 9 to 23 of the
insulin B chain which binds to MHC class II molecules of APCs.
The modified-T cells were accumulated in pancreatic lymph
nodes by 9 and 14 days after infusion, highlighting the favored
homing and migration of the CAR-T cells where APCs present
their cognate antigens. Five-week-old female NOD mice were
introduced to these CAR-T cells and then examined for T1D
development and CAR protective attitudes. Findings revealed
that none of the treated mice developed diabetes before 18 weeks
of age until only 35% of them were diabetes-free by 25 weeks.
Autoantibodies to insulin (IAA) were measured to determine the
CAR-T suppressive manner against autoantibodies development.
Evidence indicated no IAAs at 4 weeks post-infusion, but IAAs
were detected in 5/17 treated mice at 14 weeks, meaning that
CAR-T cells could inhibit islet autoimmunity. Meanwhile,
pancreatic lymph nodes were analyzed at 25 weeks of age to
determine the persistence of modified-T cells. No engineered-T
cells were detected in the treated mice, showing a limited lifespan
of CAR-T cells. Taken together, these CAR-modified T cells
could effectively kill APCs presenting I-Ag7:B:R3 complexes,
signifying that APCs expressing the pathogenic T cell epitope
are associated with autoimmunity and can be prevented by
genetically modified-T cells (111). Table 2 shows further
Frontiers in Immunology | www.frontiersin.org 7
comprehensive details of CAR T-based treatment in the studies
mentioned above.

Chimeric auto-antibody receptor T (CAAR-T) cells are the
modified form of CAR-T cells which identify cells secreting
antibodies like autoreactive B cells. The construction of CAAR-
T cells consists of a specific antigen, a transmembrane domain,
and an intracellular signaling domain with or without a co-
stimulatory domain. CAAR-T cells recognize and bind to the
target autoantibodies expressed on autoreactive cells via the
specific antigen, and subsequently, destroy them. Importantly,
one of the key considerations before constructing CAAR-T cells
is the specific antigen of CAAR. This section should meticulously
be designed to develop a specifically engineered epitope to
recognize cognate autoantibodies (14). The concept of
targeting pathogenic autoimmune cells is an alternative
approach for autoimmune diseases. Ellebrecht et al. conducted
a study that armed T lymphocytes with desmoglein (Dsg) 3
CAAR to target cells expressing anti-Dsg3 B cell receptors
(BCRs), which are responsible for pemphigus vulgaris (PV)
(Figure 2B). The preclinical-based experiments showed that
Dsg3 modified CAAR-T cells remarkably reduced Dsg3 serum
antibody levels and controlled the PV hybridoma growth. Dsg3
CAAR-T cells further destroyed the anti-Dsg3 BCR+ selectively
and spared the BCR– cells even in the presence of soluble serum
anti-Dsg3 IgG. This attitude indicates that circulating
autoantibodies do not prevent CAAR-T cells activity and
efficacy. Next, Dsg3 CAAR-T cells were exposed to
keratinocytes expressing desmocollins and desmogleins to
assess their off-target activity. They showed no cytotoxicity
upon encountering the keratinocytes. Furthermore, Dsg3
CAAR-T cells were introduced to human skin-xenografted
mice and exhibited no significant cytotoxicity or off-
target activity, highlighting their low risks of general
immunosuppression. Finally, the study emphasized the
applicability of targeted therapy of antibody-mediated
autoimmune diseases by CAAR-T cells as a promising
therapeutic option. A further consideration is required to
TABLE 2 | CAR-T-based therapy in preclinical models of autoimmune diseases.

Condition Target
antigen

CAR-construct Delivery
Route

Preclinical Study Dosage
of CAR-
T cells

Overall Outcomes Year
[Ref]

Type 1
diabetes

I-Ag7-B:9–23
(R3)
complex

CD8+ CAR-T cells.
(mAb287 scFv,4-1BB,

CD28, CD3z)

Retroviral Female NOD/LtJ,
Thy1.1 NOD, and
NOD.SCID mice

5 ×106 CAR-T cells can selectively target pathogenic MHC
class II: peptide complex relevant to an autoimmune
disorder. The study only delayed type 1 diabetes mice
and did not prevent the development of T1D.

2019
(111)

Pemphigus
vulgaris

Keratinocyte
adhesion
protein Dsg3

Dsg3 CAAR-T (Dsg3,
CD137-CD3z)

NA Mice bearing human
skin xenografts, NSG
(NOD-scid-gamma)
immunodeficient

mouse

NA CAAR-T cells demonstrated a targeted-based therapy
against antibody-mediated autoimmune diseases with
the potential generation of long-term memory.

2016
(112)

Systemic
lupus
erythematosus

CD19 CD19 CAR-T cells
(CD19 scFv, CD28 and

two intracellular
signaling domains,

CD28, CD3z

Retroviral Female NZB/W or
MRL-lpr mice

1.2×106 CD19+ B cells depletion led to inhibition of auto-
antibody production, and mitigated the manifestations
of lupus pathogenesis, and increased the lifespans of
mice.

2019
(110)
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evaluate the long-term side effects of modified-T cells and
possible mutations in corresponding epitopes (112).

Clinical Perspective: Challenges
and Barriers
To the best of our knowledge, there are less than 10 clinical trials,
registered at http://ClinicalTrials.gov, using CAR-T cells for the
treatment of autoimmune diseases. Autoimmune diseases are
caused by physiologic immune responses to self-antigens. Several
distinct autoantigens have been discovered in different
autoimmune diseases. Treatment can easily be developed for
diseases where the culprit target antigens are identified. The
concept of autoantigen-based immunotherapy, especially using
CAR-T cells, has brought a state-of-the-art therapeutic approach
for autoimmune diseases. CAR-T development is easier when the
target autoantigens are known. Researchers have analyzed the
desired autoantigens to shed light on their characteristics and
physiological features. It is well-understood that the power of
CAR-T cells defines by their antigen-recognition domain. This
domain is mostly derived from mAb; therefore, developing a
specific mAb against one of these autoantigens can enhance the
specificity and success of CAR-T cell therapy in autoimmune
diseases. CAR-T cells with a specific antigen-recognition domain
avoid unexpected toxicities and spare the healthy tissues.
Furthermore, one of the key components of CAAR-T cells is
the antigen specific. The exact construction and characteristic of
target autoantigens boost the therapeutic success of CAAR-T
cells because these engineered-T cells recognize cells secreting
antibodies like autoreactive B cells. Here, some of the potential
autoantigens have been identified and classified to help future
CAR or CAAR T cells design.

Type 1 diabetes: carboxypeptidase H, chromogranin A,
glutamate decarboxylase, Imogen-38, insulin, insulinoma
antigen-2 and 2b, islet-specific glucose-6-phosphatase catalytic
subunit related protein (IGRP), and proinsulin (113).

Rheumatoid arthritis: citrullinated protein, collagen II, heat
shock proteins, and human cartilage glycoprotein (114).

Systemic lupus erythematosus: double-stranded DNA, La
antigen, nucleosomal histones and ribonucleoproteins (snRNP),
phospholipid-b-2 glycoprotein I complex poly (ADP-ribose)
polymerase, and Sm antigens of U-1 small ribonucleoprotein
complex (115).

Multiple sclerosis: a enolase, aquaporin-4, b-arrestin, myelin
basic protein, myelin oligodendrocytic glycoprotein, and
proteolipid protein S100-b (116, 117).

Other conditions: celiac disease (R1-type reticulin),
pernicious anemia (gastric H+/K+-ATPase), and adrenalitis
(21-hydroxylase, 17-hydroxylase, and the cytochrome P450
side-chain cleavage enzyme) (118).

Genetically modified-T cells demonstrated a promising
therapeutic approach against antibody-mediated autoimmune
diseases and potentially eliminated autoreactive cells with no
significant off-target toxicities (112). Despite several preclinical
studies conducted in autoimmune diseases which resulted in
satisfying outcomes, CAR-based therapy has to pass several
hurdles, including stability, durability, trafficking, safety,
Frontiers in Immunology | www.frontiersin.org 8
effectiveness, manufacturing, and persistence to enter the realm
of clinical use. Another pivotal concern is the dosing strategy
since the primary goal of CAR-based therapy is to be curative
with low-cost and time-efficient. In contrast to hematological
malignancies, few studies of CAR T-based therapies have been
conducted in autoimmune diseases. Therefore, obstacles and
challenges are somehow unclear when it comes to CAR-T cell
therapy against autoimmune diseases. Nevertheless, some of the
hurdles of hematological CAR-T cell therapies seem to be closely
associated with obstacles in autoimmune CAR-T cell therapy.
Importantly, the lack of exclusive antigens hinders the
establishment of highly specific engineered-T cells. CAR-T
cells with low specificity can result in severe off-target effects
and preclude the clinical application. Therefore, the first step is to
identify pivotal autoantigens in autoimmune diseases. Other
hurdles that CAR-T cells may encounter are insufficient
homing of engineered-T cells or inadequate numbers of CAR-
T cells into the inflamed zone where they cannot destroy and
fight against infected cells properly. One constructive approach is
to equip CAR-T cells with appropriate chemokine receptors to
respond to chemokines from the inflamed area. Furthermore,
factors that may limit the success of CAR-T cells against
autoimmune diseases include i) the lack of an exclusive antigen
in most of the autoimmune diseases; ii) inefficient trafficking of
CAR-T cells to the inflamed site; iii) insufficient ex vivo
expansion of CAR-T cells to proliferate and persist; iv) off-
target effects as a result of the heterogeneous expression of the
targeted antigens; v) action of immunosuppressive cells against
CAR-T cells; vi) the lack of supplementary and growth factors,
and vii) toxicities resulting from cytokine release syndrome
(mostly by pro-inflammatory cytokines such as TNF-a, IL-6,
IFN-g, and IL-2) and neurotoxicity (119, 120).

CAR-Based Therapies: Future Perspective
Current conventional and common autoimmune disease therapies
are based on anti-inflammatory and immunosuppressive agents,
including steroids or cytostatic drugs, and engineered biologics
such as humanized mAbs. The constant introduction of such
agents leads to some pernicious side effects and increases the
chance of infections (121). A novel practical therapeutic strategy,
CAR-based therapy, demonstrated a promising treatment option
for leukemia and lymphoma patients. The same approach against
solid tumors was ineffectual and laborious due to various identified
and unidentified physiological factors (122). Indeed, the
application of CAR-based therapy has not been investigated
thoroughly in autoimmune diseases because there is no
appropriate antigens to target them on the aberrant autoreactive
cells selectively. By the advent of next-generation sequencing
(NGS), different types of epitopes can be predicted and
identified for future CAR-based immunotherapy (123). In
addition, genome editing technology, CRISPR/Cas9, has a great
influence on detecting hidden self-antigens in autoimmune
diseases to increase the specificity of CAR-T cells (124).
Nevertheless, the success of CAR-T cells profoundly relies on
the scFv of the extracellular domain. The scFv is widely derived
from murine mAb. This type of scFv increases the concern of
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immunogenicity; however, the problem can be handled using a
humanized version of scFv (125).

In terms of using CAR modified-Tregs, several key features
should meticulously be considered. Tregs have a potent
immunosuppressive function in different autoimmune diseases.
A mutation in their transcription factor Foxp3 can influence the
suppressive manner of Tregs and lead them to severe
autoimmune conditions. Tregs encounter different cellular
milieu and inflammation zones. Within each zone, Tregs alter
their functions and undergo the apoptosis process, signifying the
feeble stability of Tregs because they can convert their
immunosuppressive manner into an effector function (126).
Meanwhile, the low rate of Tregs in peripheral blood is the
other challenge for high scale production; thus, a strategy to
increase the number of Tregs is imperative for clinical purposes.
One distinguished strategy to produce Tregs is to introduce the
Foxp3 gene into CD4+ effector T cells.

Interestingly, natural killer cells have also shown an
alternative source of T cells for adoptive cell therapy. Studies
demonstrated that La/SSB CAAR NK92MI cells were
successfully redirected to La/SSB-specific B cell receptor-
bearing lymphoma cells, a model of antibody-mediated
autoimmune diseases, in vitro (127). Other approaches, such as
pre-treatment of cells with some specific agents that elevate the
expression of target antigens, may address some of the hurdles.
Using other therapeutic strategies, such as immune checkpoint
antibodies, combination treatments, and tyrosine kinase
inhibitors, may represent interesting results. Approaches to
identify several candidate antigens of targets and managing the
associated-hurdles of CAR-based therapy should be prioritized
and measured. Based on the types of autoimmune diseases,
selecting the appropriate cells among different potential
sources such as T cells, Tregs, and NK cells for engineering
may increase the therapeutic success. Thus, it needs to consider
the physiological aspects of these cells. These include the biology,
co-receptor ligation, cytokines and chemokines, and the
Frontiers in Immunology | www.frontiersin.org 9
potential side effects or cytotoxicity of the cells to boost the
therapeutic outcomes.
CONCLUSION

By the advent of CAR-T cell therapy, autoimmune diseases have
entered a new era of therapy. CAR-T cells can be considered as a
promising alternative option for conventional based treatment
due to their fewer side-effects compared to current drug therapy.
However, more preclinical studies, possibly under GLP (good
laboratory practice) are required for evaluation of CAR-based
treatment before embarking on multicentral clinical trials. Since
there are not many studies dealing with CAR-T cell therapy
against autoimmune diseases, these pioneer studies mentioned
earlier brought the concept of cell-based treatment in
autoimmune diseases and paved the way to demonstrate that a
viable novel therapy is on its way to clinical use.
AUTHOR CONTRIBUTIONS

All authors contributed to the study conception and design. Data
acquisition: MSN, and AS. Quality control of data and algorithms:
NB, SY, and MHK. Data analysis and interpretation: MSN, MK,
MA-A, and NB. Manuscript preparation: MSN, AS, and SY.
Manuscript editing: MSN, MHK, and MA-A. Manuscript
review: MSN, AS, MHK, and MA-A. All authors contributed to
the article and approved the submitted version.
ACKNOWLEDGMENTS

The authors would like to acknowledge the reviewers for their
helpful and constructive comments on this manuscript.
REFERENCES
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