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Eosinophilic esophagitis (EoE) is an antigen-driven disease associated with epithelial
barrier dysfunction and chronic type 2 inflammation. Eosinophils are the defining feature of
EoE histopathology but relatively little is known about their role in disease onset and
progression. Classically defined as destructive, end-stage effector cells, eosinophils (a
resident leukocyte in most of the GI tract) are increasingly understood to play roles in local
immunity, tissue homeostasis, remodeling, and repair. Indeed, asymptomatic esophageal
eosinophilia is observed in IgE-mediated food allergy. Interestingly, EoE is a potential
complication of oral immunotherapy (OIT) for food allergy. However, we recently found
that patients with peanut allergy may have asymptomatic esophageal eosinophilia at
baseline and that peanut OIT induces transient esophageal eosinophilia in most subjects.
This is seemingly at odds with multiple studies which have shown that EoE disease
severity correlates with tissue eosinophilia. Herein, we review the potential role of
eosinophils in EoE at different stages of disease pathogenesis. Based on current
literature we suggest the following: (1) eosinophils are recruited to the esophagus as a
homeostatic response to epithelial barrier disruption; (2) eosinophils mediate barrier-
protective activities including local antibody production, mucus production and epithelial
turnover; and (3) when type 2 inflammation persists, eosinophils promote fibrosis.

Keywords: eosinophilic esophagitis, eosinophil, food allergy, oral immunotherapy, epithelial barrier, fibrosis, esophagus
INTRODUCTION

Eosinophilic esophagitis (EoE) is an increasingly prevalent disease entity clinically characterized by
symptoms of esophageal dysfunction (1). Endoscopically, EoE is defined by the presence of edema,
longitudinal furrows, exudates, and rings and esophageal narrowing in more advanced disease (2).
Histopathologic diagnosis requires the presence of esophageal eosinophilia with a tissue eosinophil
org December 2020 | Volume 11 | Article 6032951
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density ≥15 eos/hpf (1). Patients with EoE are often atopic and up to
70%may have IgE-mediated food allergy (3–5). Treatments for EoE
include high-dose proton-pump inhibitors, swallowed topical
steroids, dietary elimination, and esophageal dilation (6). While
there are no FDA-approved therapies for EoE, a number of clinical
trials investigating biologic agents are ongoing (7). In terms of its
pathogenesis, EoE is driven primarily by food antigens (8, 9) and
less commonly environmental allergens (10, 11); however, EoE does
not appear to be IgE-mediated (12). Recent literature suggests that
EoE is associated with impaired epithelial barrier function of the
esophageal mucosa (13–15). Barrier disruption may alter local
antigen processing leading to chronic type 2 inflammation and
dysregulation of endogenous protease activity (16, 17). These
inflammatory responses (including eosinophilia) may
subsequently give rise to a perpetual cycle of remodeling and repair.
ORAL IMMUNOTHERAPY AND THE
INITIATION OF EOE

OIT for IgE-mediated food allergy represents a unique vantage
point from which to understand the pathogenesis of EoE. OIT is
based on the principle that graduated antigen exposure
desensitizes acute effector cells (e.g. mast cells, basophils) and
modulates antigen-specific T- and B-cell responses allowing for
ingestion of pre-defined doses of a triggering food protein (18).
Importantly, approximately 50% of subjects receiving OIT
develop gastrointestinal symptoms and up to 5% develop EoE
(19, 20). Generally, EoE resolves with cessation of OIT; however,
some subjects develop persistent disease (21, 22). The prevalence
of EoE among patients with food allergy is substantially
increased compared to the general population and subjects do
not routinely undergo upper endoscopy before starting OIT;
therefore, it is difficult to exclude the possibility that OIT subjects
have pre-existing subclinical EoE (5).

To address this, we performed a study analyzing longitudinal
endoscopic biopsies during a 2-year clinical OIT trial in adults with
IgE-mediated peanut allergy (23, 24). We observed that some
subjects did, indeed, have asymptomatic esophageal eosinophilia
Abbreviations: EoE, Eosinophilic esophagitis; GI, Gastrointestinal; OIT, Oral
immunotherapy; FDA, Food and Drug Administration; Ig, Immunoglobulin;
EoEe, EoE endotype; IL, Interleukin; TSLP, Thymic stromal lymphopoietin;
MBP, Major basic protein; EPX, Eosinophil peroxidase; TGF, Transforming
growth factor; ILC, Innate lymphoid cell; LPS, Lipopolysaccharide; S. aureus,
Staphylococcus aureus; C5a, Complement component 5a; EETs, Eosinophil
extracellular traps; DNA, Deoxyribonucleic acid; EMT, epithelial-mesenchymal
transition; MMP, Matrix metalloproteinase; MHC, Major histocompatibility
complex; CD, Cluster of differentiation; GM-CSF, Granulocyte-macrophage
colony-stimulating factor; PG, Prostaglandin; CRTH2, Prostaglandin D2
receptor; Th, T helper; VEGF, Vascular endothelial growth factor; NGF, Nerve
growth factor; EDN, Eosinophil-derived neurotoxin; IFN, Interferon; TNF, Tumor
necrosis factor; APRIL, A proliferation-inducing ligand; BAFF, B-cell activating
factor; SCF, Stem cell factor; FGF, Fibroblast growth factor; HB-EGF, Heparin-
binding EGF-like growth factor; PDGF, Platelet-derived growth factor; VIP,
Vasoactive intestinal peptide; DAO, Diamine oxidase; ALOX, arachidonate
lipoxygenase; IDO, Indoleamine 2,3-dioxygenase; ECP, Eosinophil cationic
protein; PAF, Platelet activating factor; CCL, C-C motif chemokine; CXCL, C-
X-C motif chemokine.
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(≥ 15 eos/hpf) at baseline; eosinophils are not present in the normal
esophagus. Tissue eosinophilia was associated with mild endoscopic
abnormalities (rings, edema, linear furrows) as well as other
histopathologic alterations (basal zone hyperplasia). Importantly,
while a few subjects had tissue eosinophilia at baseline, all subjects
had evidence of dilated intercellular spaces in at least one segment of
the esophagus suggesting IgE-mediated food allergy is also
associated with epithelial barrier disruption of the esophagus.
When participants were followed longitudinally, OIT induced or
exacerbated esophageal eosinophilia in almost all subjects.
Intriguingly, esophageal eosinophilia was transient in most
subjects despite the fact that antigen exposure with OIT was
continued. For a majority, tissue eosinophilia was mild and
asymptomatic, although one patient developed dysphagia and
food impaction and was diagnosed with EoE. The only other
subject with persistent esophageal eosinophilia failed the final
desensitization challenge after two years of peanut OIT.

The esophageal eosinophilia observed in OIT subjects is
usually asymptomatic and transient. However, it is unclear to
what extent or when this may occur in EoE subjects. We
hypothesize that patients diagnosed with EoE have more
profound epithelial barrier impairment and/or dysfunctional
wound healing and repair responses that perpetuate type 2
inflammatory responses. It remains an open question as to
whether controlled, graduated antigen exposure can desensitize
EoE subjects to trigger foods. This is the rationale for recent
studies of epicutaneous therapy in EoE (25).

In addition to clinical and histologic features, OIT and EoE
subjects share similar immunologic characteristics. For example,
OIT induces food-specific IgA and IgG4 responses in saliva and
peripheral blood (26, 27). These markers are also increased in the
saliva, biopsy homogenates and peripheral blood of patients with
EoE (28–30). Importantly, food-specific IgA and IgG4 levels are
associated with the development of sustained unresponsiveness
to food challenge following OIT (27).

Overlaps in the clinical and histopathologic features of OIT and
EoE subjects suggest that food allergy and EoE exist on the same
disease spectrum. Taken together, these observations suggest that:
(1) IgE-mediated food allergy, like EoE, is associated with epithelial
barrier dysfunction of the esophagus; (2) antigen exposure in this
context promotes tissue eosinophilia; (3) esophageal eosinophilia
during OIT is often asymptomatic; and (4) antigen-driven tissue
eosinophilia can resolve or persist resulting in EoE. We hypothesize
that eosinophils are recruited initially during OIT to restore
homeostasis; however, when tissue inflammatory and remodeling
responses become dysregulated they contribute to EoE pathogenesis
(Figure 1).
EOE ENDOTYPES AND DISEASE
PROGRESSION

Similar to asthma, EoE may be clustered into different endotypes
using clinical, endoscopic, histopathologic, and molecular features.
A single, multi-site cross-sectional study of endoscopic, histologic,
and molecular data from esophageal biopsies identified three
discrete EoE endotypes (31). EoE endotype 1 (EoEe1) has a
December 2020 | Volume 11 | Article 603295
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normal endoscopic appearance and is usually steroid-sensitive.
Markers of inflammation and epithelial differentiation are
relatively unchanged in this endotype. EoE endotype 2 (EoEe2) is
usually pediatric-onset, associated with atopy, and steroid-
refractory. Gene expression in EoEe2 is notable for marked
upregulation of pro-inflammatory mediators (e.g. IL-4 and TSLP).
EoE endotype 3 (EoEe3) tends to be adult-onset, non-atopic, and is
associated with fibrostenosis and narrow-caliber esophagus. Gene
expression in this group denotes loss of epithelial differentiation.
Among the endotypes, EoEe1 is the most benign, while EoEe2 is
associated with marked type 2 inflammation. Unsupervised
clustering of cytokine gene expression suggests these endotypes
may be further subdivided into additional subgroups (32). Of note,
validation and verification of these endotypes requires further study
and natural history studies have not followed EoE cohorts
longitudinally in order to understand specific relationships
between endotypes; however, these EoE endotypes may represent
different points of progression across a continuum of disease. This
same principle may be reflected in the fact that children have non-
specific gastrointestinal symptoms; whereas, food impaction due to
fibrostenosis is much more common in teens and adults.
LESSONS FROM TARGETING
EOSINOPHILS AND EOE-LIKE DISEASE

Unsuccessful clinical trials targeting eosinophils and EoE-like
disease provide two lines of evidence supporting the hypothesis
Frontiers in Immunology | www.frontiersin.org 3
that eosinophils may be dispensable in EoE pathology. Given their
conspicuous presence in tissue pathology, early clinical trials of
biologics in EoE focused on depletion of eosinophils. IL-5
promotes eosinophil maturation, proliferation, activation, and
survival (33); therefore, targeting this cytokine pathway was a
logical first step. Three anti-IL-5 agents, mepolizumab, reslizumab,
and benralizumab, have been developed. Mepolizumab and
reslizumab neutralize IL-5 by binding it directly preventing
interaction with IL-5Ra. Benralizumab binds to IL-5Ra
blocking interaction with IL-5 and promoting antibody-
dependent cellular cytotoxicity (ADCC) and deletion of
eosinophils. In an alternative strategy, lirentelimab targets siglec-
8. Siglec-8 is a transmembrane protein shared by eosinophils and
mast cells. Ligation of siglec-8 induces apoptosis of eosinophils
and inhibits mast cell activity. Lirentelimab both mediates these
activities and induces ADCC of eosinophils (34).

Promising results of an open label trial of mepolizumab in 4
patients with EoE led to the first randomized, double-blind,
placebo-controlled (DBPC) trial of mepolizumab in 11 patients
(35, 36). The results of this clinical trial were notable for reductions
in tissue eosinophil counts but limited clinical improvement in EoE
symptoms. A subsequent prospective trial randomized 59 pediatric
subjects with EoE to three different dosing arms, using the lowest
dose of mepolizumab as a comparator, as opposed to a placebo
group (37). While the investigators demonstrated reductions in
tissue eosinophilia, again there were no significant differences in
clinical symptoms between treatment arms. In the largest
randomized DBPC trial of anti-IL-5 therapy in EoE to date, 226
pediatric subjects received reslizumab and, again, significant
improvements in clinical symptoms were not seen in the
treatment arm compared to placebo (38). Importantly, despite
overall reductions in tissue eosinophilia, in each of these trials a
majority of subjects did not achieve histologic remission (peak tissue
eosinophil counts <15 eos/hpf). Indeed, mepolizumab and
reslizumab appear to have greater effects on peripheral blood
eosinophils compared to esophageal tissue eosinophils [e.g. 90 vs
55% reduction respectively with mepolizumab (39)]. Together, the
outcomes of these trials suggest that eosinophils do not exclusively
mediate tissue pathology in EoE or incomplete eosinophil depletion
accounts for the persistence of symptoms. Trials of benralizumab
and lirentelimab, drugs more likely to completely deplete tissue
eosinophils, may be more informative.

Additional evidence that eosinophils may not be the primary
driver of clinical symptoms is the existence of EoE-like disease; an
entity characterized by EoE symptoms responsive to swallowed
topical corticosteroids, but without tissue eosinophilia (40).
Kindred of patients with EoE-like disease often reveal multiple
family members affected with EoE. Generally, these patients do not
have advanced endoscopic findings and their histopathology
reveals papillary elongation with increased T cells. These
patients are distinguished from EoE patients by reduced
eotaxin-3 expression. Finally, patients with EoE-like disease may
evolve to develop classical EoE. It is tempting to speculate that
EoE-like disease represents yet another endotype on the EoE
spectrum. Molecular studies comparing patients with EoE-like
disease, food allergy, and EoEe1 are needed to evaluate
disease overlap.
FIGURE 1 | Proposed model of esophageal eosinophilia. Eosinophils are
initially recruited to the esophagus to restore barrier function. When
inflammatory and remodeling responses become dysregulated eosinophils
contribute to type 2 inflammation, worsening of barrier integrity, and fibrosis.
This paradigm allows for categorization of (1) patients with IgE-mediated food
allergy or subclinical barrier dysfunction; (2) OIT patients, EoEe1, and EoEe2
representing asymptomatic, mild or severe phases of the inflammatory
response; (3) OIT patients who successfully develop sustained
unresponsiveness or those who naturally outgrow a food allergy; and (4)
EoEe3, which is characterized by fibrostenosis.
December 2020 | Volume 11 | Article 603295
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ROLES OF EOSINOPHILS IN EOE

Eosinophils are often considered destructive end-stage effector
cells defined by their ability to release toxic granule proteins that
can damage surrounding tissue. However, comprehensive reviews
of eosinophil activities suggest a much more complex cell with
roles in health and disease (41–45). As shown in Table 1,
eosinophils produce and release various mediators that are
involved in inflammation, immunoregulation, and tissue
remodeling and repair. In EoE, levels of tissue eosinophilia
correlate with disease severity as well as response to treatments
(156, 164). On the other hand, eosinophils clearly have a
homeostatic or physiologic role as resident cells in the rest of
the GI tract and findings from EoE-like disease along with the
limited effectiveness of anti-IL-5 therapy suggest a minor role in
clinical symptoms in EoE. Moreover, we have recently identified
asymptomatic eosinophilia in the esophagus of OIT subjects at
baseline. These seemingly divergent observations can be explained
by considering the temporal effects of eosinophil activities
throughout the progression of EoE. Specifically, we propose that
the appearance of eosinophils in the esophagus begins as an
extension to their homeostatic function in other GI tissues to
enhance barrier function. These eosinophils may become activated
to contribute to further protective activities and wound repair and,
over time, contribute to disease pathology and fibrosis.

Eosinophil activities in allergic disease are well studied,
particularly in asthma, with identified roles for inflammation
(e.g. MBP, IL-13), mucus production (IL-13), epithelial damage
(MBP, EPX), tissue remodeling/fibrosis (IL-13, TGF-b), and
smooth muscle hyperresponsiveness (IL-13, leukotrienes) (165,
166). These pathways have also been observed in EoE by
examination of patient biopsies, cell culture experiments, and
mouse models. The many potential roles of eosinophils in EoE
are well reviewed (67, 167–174). Below we highlight examples of
eosinophil activities in barrier maintenance, defense, repair, and
fibrosis that suggest esophageal eosinophilia is a protective
response that becomes problematic over time.
EARLY PHASE/PROTECTIVE RESPONSE
IN EOE

Recruitment of Eosinophils
The epithelial barrier has been implicated as central to the disease
process in EoE (13, 175). While initiating events remain unclear in
EoE, environmental insults to the epithelium (e.g. allergens) can
trigger the release of inflammatory signaling molecules including
TSLP, IL-25, and IL-33 [all shown to be elevated in EoE (79)] that
promote a type 2 inflammatory response [e.g. IL-13 production by
ILC2s (176, 177)] which leads to production of eosinophil
chemotactic factors, particularly eotaxin-3 (178).

Eosinophils and Epithelial Barrier
Maintenance
Eosinophils have been linked with a host of activities that help to
protect/restore the epithelial barrier including antimicrobial
Frontiers in Immunology | www.frontiersin.org 4
defenses, remodeling and repair activities, and immune
regulation. Mice deficient for eosinophils have shown that under
homeostatic conditions eosinophils support mucus-secreting goblet
cell numbers in the small intestine (50). Expression of certain
mucins has been shown to be upregulated in biopsies of patients
with EoE and EoE mouse models [e.g (51, 179).] but further
investigation is needed to understand the activities of esophageal
glands that are located beyond the reach of these biopsies (i.e. in the
lamina propria and submucosa). Interestingly, in our experience
with mouse and pig models of EoE, eosinophils tend to accumulate
in the lamina propria similar to the rest of the GI tract (unpublished
observations). Notably, IL-5 induced esophageal eosinophilia in a
transgenic mouse model was not sufficient to induce pathology but
with additional stimulus from a hapten increased epithelial layer
eosinophilia was observed along with pathologies associated with
EoE (180). In humans, a recent retrospective study of esophageal
biopsies utilizing specialized forceps that enabled more reliable
subepithelial sampling found that one-third of subjects
demonstrated greater subepithelial eosinophil density as
compared to the epithelium (181, 182). These observations
suggest a likely unappreciated level of eosinophils in the
esophageal lamina propria. Further investigation is needed to
understand the role of subepithelial esophageal eosinophilia in
disease pathogenesis.

Eosinophils and Epithelial Barrier Defense
Eosinophils have been shown to directly mediate host anti-
microbial defense activities in the gut. For example, in response to
activation with LPS, S. aureus, C5a, or TSLP, eosinophils release
eosinophil extracellular traps (EETs). EETs are mitochondrial DNA
laced with toxic eosinophil granule proteins (i.e. MBP, EPX, EDN,
ECP) that are released into the extracellular space and can bind and
kill bacteria. Indeed, hypereosinophilic mice exhibited local
extracellular DNA deposition and were protected against sepsis
after cecal ligation and puncture (183). Notably, EETs were detected
in the esophagus of active EoE subjects (79), suggesting a role for
this mechanism in protection against microbes in EoE. In addition,
MBP and IL-13 in particular induce epithelial turnover, an effective
mechanism for expulsion of organisms/substances and replacement
of damaged epithelium (126, 184).

Eosinophils and Epithelial Barrier Repair/
Immune Tolerance
As shown in Table 1, eosinophils can produce factors that help to
restore the barrier by promoting epithelial to mesenchymal
transition (EMT) which facilitates wound repair. These factors
may include, but are not limited to, TGF-b (92), MMP-9 (114),
IL-4 (185), IL-13 (185), EPX (127), and MBP (92, 93, 186). IL-13
in particular is considered a central mediator in EoE (68, 69) and
IL-13 expressing eosinophils have been identified in the
esophageal tissue of EoE subjects (185). Notably, IL-33
promotes IL-13 production by eosinophils (70, 187–190).
Recently, IL-13 has been shown to upregulate synaptopodin,
an actin-associated protein associated with wound healing, and
barrier integrity, in the epithelium of EoE subjects (71).
Eosinophils can also modulate the immune response to
December 2020 | Volume 11 | Article 603295
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TABLE 1 | Protective and pathologic effects of eosinophil-derived mediators.

Eosinophil-derived Mediator Protective effects Pathologic effects References*

IL-1a Fibrosis (46–49)
IL-1b Barrier function: mucosal IgA production

wound repair: EMT
Fibrosis (46, 49–52),

IL-1Ra Immune tolerance: inhibits IL-1a, IL-1b (53)

IL-3 Inflammation (54)
IL-4 Wound repair: EMT Fibrosis (46, 49, 55)

IL-5 Eosinophil survival Eosinophil survival (49, 56, 57)
32197970

IL-6 Barrier function: mucosal IgA production Fibrosis (49, 58, 59)

IL-8 Inflammation
angiogenesis

(49, 51, 55,
60–62)

IL-9 Inflammation: mast cell survival and activation
Barrier function: decreases adherens and tight
junction expression

(63, 64)

IL-10 Immune tolerance: IgG4 production, Treg induction (65, 66)

IL-13 Wound repair: EMT, synaptopodin barrier function: mucus
production, synaptopodin
intracellular pH regulation
expulsion: epithelial turnover

Inflammation: promotes TARC, MDC, eotaxin
barrier dysfunction: synaptopodin, ↓ filaggrin,
vimentin, desmoglein, ↑calpain-14
epithelial hyperplasia
dilated intercellular space formation
fibrosis: activates fibroblasts, stimulates production
of TGF-b

(32, 49, 67–
73)

IL-17 Antimicrobial Inflammation (74)

IL-18 Inflammation (75–78)

IL-25 Inflammation (79, 80)

IFNg Antimicrobial Inflammation (81–83)

TNF-a Wound repair: EMT Inflammation
angiogenesis

(52, 81, 84,
85)

Osteopontin Angiogenesis
fibrosis

(86)

Amphiregulin Wound repair
immune tolerance: Treg activity

Fibrosis (87)

APRIL Plasma cell survival Plasma cell survival (59, 88)

BAFF Plasma cell survival Plasma cell survival (88)

SCF Inflammation: mast cell survival (89, 90)

TGF-a Wound repair: EMT Fibrosis
epithelial hyperplasia
angiogenesis

(91)

TGF-b Wound repair: EMT
barrier function: mucosal IgA production
immune tolerance: Treg induction

Fibrosis: activates fibroblasts, promotes collagen
production
smooth muscle proliferation/activation
epithelial hyperplasia

(46, 92–95)

GM-CSF Wound repair Inflammation (54, 56, 96–
98)

VEGF Angiogenesis
Tissue remodeling

(99–101)

FGF-2 Epithelial turnover
wound repair

Fibrosis
Epithelial hyperplasia
smooth muscle activation
angiogenesis

(102, 103)

NGF Nerve growth
fibrosis
angiogenesis

(104, 105)

HB-EGF Wound repair Smooth muscle activation (106)

PDGF-bb Wound repair Angiogenesis
smooth muscle activation
fibrosis

(107)

(Continued)
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TABLE 1 | Continued

Eosinophil-derived Mediator Protective effects Pathologic effects References*

Substance P Wound repair Pain
inflammation
angiogenesis

(108)

VIP Smooth muscle relaxation (108, 109)

a-defensin Antimicrobial Inflammation: innate immune activation (110, 111)

Angiogenin Angiogenesis (99, 112, 113)

MMP-9 Wound repair
IL-1b, TGF-b activation

IL-1b, TGF-b activation (114, 115)

Heparanase Wound repair Inflammation
angiogenesis

(116–118)

DAO (histaminase) Resolution of inflammation (119)

15-lipoxygenase derivatives
(e.g ALOX15).

Resolution of inflammation arachidonic acid metabolism (120–123)

IDO Immune tolerance Inflammation
angiogenesis

(124, 125)

Superoxide (O2
-) Antimicrobial Inflammation (61)

MBP-1 Antimicrobial
epithelial hyperplasia/proliferation (FGF-9)

Cytotoxic
barrier dysfunction
smooth muscle activation
inflammation: mast cell/basophil degranulation
fibrosis

(126–132)

EPX Antimicrobial Cytotoxic
inflammation: mast cell activation
fibrosis

(127, 130,
132–134)

ECP Antimicrobial Inflammation: mast cell activation
neurotoxic
cytotoxic

(132, 135)

EDN Antimicrobial Inflammation: dendritic cell activation
neurotoxic

(132, 136–
138)

CLC Antimicrobial Inflammation: carrier for other eosinophil granule
cationic RNases

(32, 132, 139,
140)

EET’s Antimicrobial Contain toxic granules - see above (79)

PAF Inflammation (141)

Thromboxane B2 Smooth muscle activation (142)

Leukotriene C4 Barrier function: mucus production Smooth muscle activation
inflammation

(143, 144)

PGD2 Inflammation (145)

PGE2 Resolution of inflammation Inflammation
pain

(142)

PGF2a Smooth muscle activation
inflammation

(146, 147)

Protectin D1 Resolution of inflammation (148, 149)

CCL17 (TARC) Inflammation (150, 151)

CCL22 (MDC) Inflammation (150, 151)

CCL5 (RANTES) Inflammation (152, 153)

CCL11 (eotaxin-1) Inflammation (154)
CXCL5 (ENA-78) Inflammation

angiogenesis
(155)

CXCL1 (GRO-a) Wound repair Inflammation
angiogenesis

(49, 62, 156–
158)

CCL2 (MCP-1) Inflammation (159, 160)

CCL23 (MIP-1a) Inflammation (49, 84, 161)

CCL4 (MIP-1b) Inflammation (62, 159, 162)

CXCL9 (MIG) Inflammation (163)

CXCL10 (IP10) Inflammation (163)
Frontiers in Immunology | www.
frontiersin.org 6
 December 2020 | Volume 11
*Each mediator has references listed that support production by eosinophils. Additional references implicate certain mediators in EoE, though the source may not be identified.
| Article 603295

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Doyle et al. Eosinophils in EoE
facilitate barrier repair. Indeed, mice deficient for eosinophils
have established that eosinophils support IgA production (50,
88), which in turn, is secreted to the lumen to facilitate barrier
function. Notably, food-specific IgA is increased in EoE (30).
Finally, eosinophils expressing MHCII and CD80 have been
identified in EoE subjects (191, 192) and may present antigen
to T cells. TGF-b and IL-10 can influence the production of IgA,
IgG4, and T regulatory cell responses. Both cytokines are
produced by eosinophils in EoE (92, 185) but a mechanistic
link remains to be established.
CHRONIC PHASE/PATHOLOGIC
ACTIVITIES IN EOE

During the chronic phase of the disease, eosinophil activities may
contribute to inflammation, tissue remodeling, and fibrosis.
Eosinophil-derived mediators that are helpful in barrier
defense and repair can, over time, contribute to these activities.

Eosinophils and Inflammation
Eosinophils may promote sustained eosinophilic inflammation by
production of eosinophil survival factors GM-CSF and IL-5,
expression of which has been observed in tissue eosinophils from
EoE subjects (185). The eosinophil microenvironment may become
problematic for the epithelium with chronic inflammation—for
example, eosinophil oxygen metabolism may induce tissue hypoxia
resulting in barrier impairment (193). Eosinophils are also a source
of IL-9 and have been linked with mast cell numbers in the
esophagus (63) which are, in turn, linked with disease severity
(194). Interestingly, mast cell numbers are increased in EoE as
compared to EoE-like disease (40). In addition, eosinophils produce
eicosanoids including PGD2. PGD2 signals through CRTH2, which
has been shown to support ILC2 accumulation (195). CRTH2 has
also been shown to be expressed by a subset of IL-5 and IL-13
producing Th2 cells in EoE (196). Interestingly, elevated numbers of
CRTH2+CD4+ T cells are observed in EoE as compared to EoE-like
disease (40). Finally, eosinophil granule proteins includingMBP can
damage epithelium resulting in increased pro-inflammatory
mediators (197) and have been shown to reduce barrier integrity
in the colonic epithelium (128). MBP also can induce mast cell and
basophil degranulation as well as smooth muscle and fibroblast
activation (129, 198–200) thereby contributing to inflammation
and fibrosis.

Eosinophils and Remodeling/Fibrosis
Chronic IL-13-mediated wound healing activities may become
problematic. For example, IL-13 induced synaptopodin
overexpression has been shown to impair barrier integrity and
reduce epithelial differentiation (71). IL-13 is also linked with
epithelial barrier disruption by downregulation of epithelial
junction molecules and upregulation of the protease calpain-14
(201). Phase 2 trials of biologics targeting IL-13 pathways have
demonstrated improvement in endoscopic and histologic findings
in EoE (202–204). Data from mouse models of EoE crossed with
eosinophil deficient lines suggest a role for eosinophils in
Frontiers in Immunology | www.frontiersin.org 7
hyperplasia and fibrosis in an allergen-driven model (179, 205)
while no role was observed in an IL-13 overexpression model (206).
Together these findings would be consistent with a role for
eosinophil-derived IL-13 in these remodeling activities that are
hallmark pathological features of human EoE (206). Notably,
eosinophil-derived IL-13 caused extensive remodeling in the
mouse lung by promoting MMP-12 production, a mediator
identified as elevated in EoE (120, 207). The activities of MMP-12
in human EoE require investigation. Eosinophil-derived factors IL-
13 and TGF-b (and others including IL-1b, and IL-4) induce
fibroblast to myofibroblast differentiation and eosinophil-derived
TGF-b in particular is linked with production of collagen (46, 208,
209). TGF-b also can induce smooth muscle proliferation,
hyperplasia, and contraction (210) which may contribute to
esophageal dysmotility. Finally, activated eosinophils produce
angiogenic factors such as VEGF and nerve remodeling factors
such as NGF and EDN which may contribute to nerve growth and
cytotoxicity, respectively.
DISCUSSION

The role(s) of eosinophils remains unclear in EoE. The observations
we and others have made show asymptomatic eosinophilia is likely to
be a common occurrence. This suggests that, like other areas of the GI
tract, eosinophils may promote tissue homeostasis. Eosinophil
activities in EoE and other diseases suggest a role for protecting/
restoring the barrier. However, if the barrier is not restored it is likely
that eosinophils contribute to inflammation and remodeling/fibrosis.
Notably, many of the eosinophil-derived mediators discussed herein
have wound healing barrier restoring activities in addition to being
linked with pathologies associated with chronic inflammation such as
fibrosis. Thus, we suggest the road to fibrostenosis is paved with good
intentions. These observations also suggest it may be important to
target eosinophils based on EoE endotype. Conceivably targeting
those with the fibrostenotic EoE (EoEe3) may result in reduced
chronic remodeling pathology while sparing subjects in whom
eosinophils may primarily benefit esophageal barrier function. In
addition, our perspective suggests therapeutic strategies aimed at
protecting, improving, or restoring barrier function by promoting
homeostatic eosinophil pathways (e.g. mucus and antibody
production) may be helpful.
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