
Frontiers in Immunology | www.frontiersin.

Edited by:
Christelle Langevin,

Institut National de Recherche pour
l’agriculture, l’alimentation et

l’environnement (INRAE), France

Reviewed by:
Stephen Barr,

Western University, Canada
John C. Schwartz,

Pirbright Institute, United Kingdom

*Correspondence:
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Studying the evolutionary diversification of mammalian antiviral defenses is of main
importance to better understand our innate immune repertoire. The small HERC
proteins are part of a multigene family, including HERC5 and HERC6, which have
probably diversified through complex evolutionary history in mammals. Here, we
performed mammalian-wide phylogenetic and genomic analyses of HERC5 and
HERC6, using 83 orthologous sequences from bats, rodents, primates, artiodactyls,
and carnivores—the top five representative groups of mammalian evolution. We found
that HERC5 has been under weak and differential positive selection in mammals, with only
primate HERC5 showing evidences of pathogen-driven selection. In contrast, HERC6 has
been under strong and recurrent adaptive evolution in mammals, suggesting past and
widespread genetic arms-races with viral pathogens. Importantly, the rapid evolution of
mammalian HERC6 spacer domain suggests that it might be a host-pathogen interface,
targeting viral proteins and/or being the target of virus antagonists. Finally, we identified a
HERC5/6 chimeric gene that arose from independent duplication in rodent and bat
lineages and encodes for a conserved HERC5 N-terminal domain and divergent HERC6
spacer and HECT domains. This duplicated chimeric gene highlights adaptations that
potentially contribute to rodent and bat immunity. Our findings open new research
avenues on the functions of HERC6 and HERC5/6 in mammals, and on their
implication in antiviral innate immunity.
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INTRODUCTION

As a result of sustained exposure to viral infections, mammals
have evolved a sophisticated and diversified immune repertoire
against viruses. A hallmark of mammalian antiviral immunity is
the induction of type I interferon (IFN) upon viral infection. This
cytokine upregulates the transcription of hundreds of interferon-
stimulated genes (ISGs) in viral infected cells (1). Many of these
ISGs encode proteins with antiviral functions, named restriction
factors, which are critical players in the first line of the innate
immune defense inhibiting different steps of the viral replication
cycle (2).

Viruses have adapted to circumvent, subvert, or antagonize
these host restriction factors (3). Reciprocally, restriction factors
have rapidly and repeatedly evolved to maintain defenses against
evolving viral pathogens, leading to virus-host evolutionary
arms-races (3, 4). These dynamics of reciprocal adaptations
can leave genetic signatures in the host restriction factors.
Significant accumulations of non-synonymous changes over
synonymous substitutions—designated as positive selection, as
well as codon deletions or insertions that may alter the virus-host
interface—are common genetic signatures of such long-term
evolutionary arms-races (3–6). At the genomic level, gene
duplication and recombination are among the most important
mechanisms that can diversify the antiviral immune repertoire.
In particular, gene duplication can generate adaptive molecular
novelty allowing hosts to escape viral antagonism, evolve new
immune functions, or increase the depth of antiviral response (3,
7, 8). The weight of such evolutionary mechanisms in
mammalian immunity is highlighted by the extent of
multigene families, which encode important ISG-encoded
proteins, such as the Tripartite Motif-containing (TRIM) (9–
12), Apolipoprotein B Editing Complex (APOBEC3) (13–15),
Interferon-induced Protein with Tetratricopeptide Repeats
(IFIT) (16–18), Interferon induced Transmembrane protein
(IFITM) (19) families. For example, the APOBEC3 family has
expanded in a lineage-specific manner in primates (20),
artiodactyls (21), and bats (15), generating variability in
mammalian antiviral response (14). However, the evolutionary
and functional diversification of many antiviral families remains
poorly characterized in mammals. Deciphering the evolutionary
trajectories of multigene family members can provide insights
into the genetic mechanisms underlying the diversification of
antiviral responses and may allow identifying novel
antiviral proteins.

The HECT and RLD domain containing E3-ubiquitin protein
ligases, known as HERC proteins, are encoded by a multigene
superfamily that is poorly studied in mammals. With six gene
members, the HERC family is divided into two subfamilies, the
large (HERC1 andHERC2) and the small (HERC3–6)HERCs (22).
The small HERC proteins are structurally characterized by a N-
terminal RCC1-like domain (RLD), a spacer region, and a C-
terminal HECT (Homologous E6-AP Carboxyl Terminus)
ubiquitin E3-ligase domain, while the large HERCs possess at
least two RLD domains in addition to a HECT domain (23). This
structural difference between large and small HERCs reflects their
independent evolutionary history (24). In the antiviral immune
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context, much attention has been devoted to the small HERCs, in
particular to HERC5 - an ISG-encoded antiviral effector - and
HERC6 its closest relative (24, 25). In humans, HERC5 acts as a
HECTubiquitin andE3-ligase (26–28).HERC5notably conjugates
the ubiquitin-like protein ISG15 to different protein targets, a
process termed ISGylation (29–31). The protein targets may be
non-specific newly synthetized viral proteins, specific viral
proteins, or specific host proteins (29–31). ISGylated proteins are
modified, functionally disrupted, or altered in their localization
within the cells. Through this ISGylation activity, HERC5 has an
antiviral function against highly divergent viruses, including
retrovirus (Human and Simian immunodeficiency viruses, HIV
and SIV), papillomavirus, and influenza virus (25, 31–33). For
example, HERC5 targets the early stage of HIV assembly by
catalyzing the ISGylation of the viral Gag protein (30), while it
reduces influenza A viral replication through the conjugation of
ISG15 to the viral NS1 protein (31). Besides, HERC5 appears to
further interfere with HIV replication in an ISGylation-
independent manner by impacting the nuclear export of Rev/
RRE-dependent viral RNA, most likely through determinants in
the RLD domain (33). In contrast, although HERC6 is the most
closely-related protein of HERC5, little is known about its
functional implication in mammalian antiviral immunity (25).
The antiviral role of HERC6 has mainly been described in mouse,
in which the HERC5 gene has been lost and functionally
substituted by HERC6, the main murine E3-ligase of ISG15 (28,
34, 35). Inhumans, although theHERC6proteinpossesses aHECT
E3-ligase domain, it is devoid of ISGylation function (25).

These evolutionary and functional differences between
mammals suggest lineage-specific adaptive changes in HERC5
and HERC6. Two previous studies showed that HERC5 and
HERC6 genes have evolved under positive selection during
vertebrate evolution (25, 33). They further showed that the
RLD domain plays an important role in the antiviral activity of
HERC5 and HERC6 proteins. While these studies have provided
important insights into the diversification of HERCs, the
evolutionary analyses have certain limitations: (i) the scarcity
of species analyzed (only 12 species, versus 81 species with
at least 10 species per order in this current study), (ii) the
overrepresentation of primates compared to other mammalian
species (seven primates, two to three carnivores, two artiodactyls,
and one perissodactyl), (iii) the integration of highly divergent
species, which may bias the genetic inferences by increasing the
number of false positives (36). Moreover, a recent study in
primates have shown differences in HERC5 and HERC6
selective pressures (37). Therefore, how HERC5 and HERC6
genes have evolved within mammalian orders has not been fully
deciphered. Nor is the evolutionary dynamic of HERC5 and
HERC6 expansions and contractions across mammals.

Here, we decipher the evolutionary history of mammalian
HERC5 and HERC6 via mammalian-wide and lineage-specific
phylogenetic and genomic analyses. We analyzed the
orthologous sequences of HERC5 and HERC6 from bats,
rodents, primates, artiodactyls, and carnivores the top five
mammalian orders in terms of zoonotic viral diversity they
host (38, 39). First, we show that HERC6—and to a much
lesser extent HERC5—has been under strong positive selection.
December 2020 | Volume 11 | Article 605270

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Jacquet et al. Evolutionary History of Mammalian HERC5-6
Second, we stressed the HERC6 spacer region as a potential
pathogen-mammal interface, targeting viral proteins and/or
being the target of virus antagonists. Finally, we identified
independent gene duplications through recombination between
HERC5 and HERC6 in some bat and rodent lineages, which have
led to the fixation of a chimeric HERC5/6 gene in both
mammalian orders. Taken together, our results suggest that
HERC6 may be an important antiviral protein in mammals
and identified a novel chimeric HERC member in bats and
rodents that may contribute to unique antiviral responses in
these species.
MATERIALS AND METHODS

Collection of Mammalian HERC5
and HERC6 Orthologous Sequences
Full-length HERC5 and HERC6 coding sequences were analyzed
in bats, rodents, primates, artiodactyls, and carnivores. HERC5
and HERC6 coding sequences from each group were obtained
using the Little Brown bat (Myotis lucifigus), mouse (Mus
musculus), human (Homo sapiens), cow (Bos taurus), and dog
(Canis lupus familiaris) Refseq proteins as queries, respectively,
through tBLASTn searches of the “Nucleotide” database in
GenBank (40, 41). The species and accession numbers are
presented in Supplementary Table 1.

Characterizing the Evolution of HERC5
and HERC6 Synteny in Mammals
The genomic locus of HERC5 and HERC6 genes in Little Brown
bat, mouse, human, dog, and cow were obtained from Ensembl
(http://www.ensembl.org/index.html), and GenBank Refseq
genome database (41). Their coding sequences were used as
queries for BLASTn searches against a total of 110 whole genome
assemblies from bats, rodents, primates, carnivores, and
artiodactyls (Supplementary Table 1) available in GenBank
database (41). We analyzed eight additional mammalian
genomes from Proboscidea, Lagomorpha, Scandentia,
Perissodactyla, Sirenia, Soricomorpha, Eulipotyphla, and
Tubulidentata orders (Orycteropus afer, Loxodonta Africana,
Trichechus manatus, Tupaia chinensis, Condylura cristata,
Ceratotherium simum, Equus przewalskii, and Sorex araneus,
respectively) (Supplementary Table 1). The synteny of HERC5
and HERC6 genes was analyzed and visualized through BLAST
searches against the 110 annotated genomes in GenBank
database (41). Newly identified HERC-like paralogs (see
Results) were confirmed by blasting and aligning their whole
sequence (intron and exon regions) to the genomic region
containing HERC5 and HERC6 genes in three bat species
(Myotis lucifigus , Rhinolophus ferrumequinum , and
Phyllostomus discolor), and three rodent species (Chinchilla
lanigera, Mastomys coucha, Cavia porcellus), which are
representative genomes with good assembling quality (based
on the N50, the number of scaffolds, and sequencing coverage).

HERC5 and HERC6 orthologs as well as HERC-like
paralogous sequences were aligned for each mammalian order
Frontiers in Immunology | www.frontiersin.org 3
separately using the program MACSE (42), and the alignments
were manually curated. A phylogenetic tree was then built for
each gene and mammalian order, and for a combined dataset of
HERC5 and HERC6 genes (rooted with HERC3 as an outgroup,
which is the most closely related gene to HERC5 and HERC6),
using the maximum likelihood method implemented in the
ATGC-PhyML Web server (43). Each phylogenetic tree was
based on the best substitution model (GTR+G+I), as
determined by the Smart Model Selection (SMS) program in
PhyML (44) and node statistical support was computed through
1,000 bootstrap replicates.

Assessing Recombination Events
in HERC5 and HERC6 Paralogs
and Orthologs
To test whether recombination has occurred in HERC5, HERC6,
and HERC-like genes, we ran the GARD (Genetic Algorithm for
Recombination Detection) method (45) implemented in the
HyPhy package (46, 47), using a general discrete site-to-site
rate variation with three rate classes. The program uses a genetic
algorithm to screen multiple-sequence alignment for putative
recombination breakpoints and provides the probability of
support for each breakpoint. GARD analyses were run for each
mammalian order and each gene separately, including the newly
identified HERC-like paralog.

Positive Selection Analyses of HERC5 and
HERC6 Coding Sequences in Mammals
To determine whether HERC5 and HERC6 have been targets of
natural selection during mammalian evolution, we carried out
positive selection analyses on orthologous coding sequences
from bats (n = 10 and 13, respectively), rodents (n = 11 and
16), primates (n = 19 and 20), carnivores (n = 20 and 23), and
artiodactyls (n = 21 and 11). As combining highly divergent
sequences for positive selection analyses can lead to misleading
results, we performed positive selection analyses on separate
dataset for each mammalian order. For Artiodactyls, three
different datasets were analyzed: the first dataset included all
the available species, the second was restricted to cetacean
species, and the third excluded the cetaceans. Analyzing each
mammalian order separately allowed us to qualitatively compare
the evolutionary profile of both genes in each mammalian order.
We first tested for positive selection at the gene level using two
different methods available in the Codeml program, which is
implemented in the PAML package (48). This program allows
both gene- and site-specific detection of positive selection by
comparing constrained models that disallow positive selection
(models M1 and M7) to unconstrained models allowing for
positive selection (M2 andM8). We ran the different models with
the codon frequencies of F61 and F3x4 with a starting omega w
(dN/dS ratio) of 0.4. Likelihood ratio tests were computed to
compare the models (M1 vs M2 and M7 vs M8), and codons
evolving under significant positive selection (dN/dS >1) were
identified using the Bayes Empirical Bayes (BEB) with a posterior
probability ≥0.95. The residues under positive selection were
further assessed using two othermethods, the Fast, Unconstrained
December 2020 | Volume 11 | Article 605270
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Bayesian AppRoximation for Inferring Selection (FUBAR) (49)
and the Mixed Effects Model of Evolution (MEME) (50), both
implemented in theHYPHYpackage. To increase the specificity of
our results, we only kept the sites that were identified as being
under significant positive selection by at least two of the four
methods used. When significant recombination breakpoints were
detected, positive selection analyses were carried out for each
fragment identified by GARD. Similarly, we sought for
signatures of adaptive selection in the HERC-like paralogs of
rodents (see Results), for which five orthologous coding
sequences were available. Furthermore, we tested if the three
HERC domains (RLD, spacer region, and HECT) have similarly
been subjects of positive selection, by analyzing each
domain separately.

Finally, to determine if HERC5 and HERC6 have experienced
episodic selection within mammalian orders, we carried out the
branch-specific analysis aBSREL (51, 52), implemented in the
HYPHY package. This program allows testing the significance of
positive selection and quantifying the dN/dS ratio for each
branch independently.
Frontiers in Immunology | www.frontiersin.org 4
RESULTS

Lineage-Specific Changes in HERC5
and HERC6 Copy Number
To determine the genomic evolutionary history of HERC5 and
HERC6 in mammals, we performed a complete synteny analysis
for 14 chiropteran, 25 rodent, 25 primate, 23 artiodactyl, and 23
carnivore species, and eight more species from different orders.
We first found that HERC5 and HERC6 synteny is mostly
conserved throughout eutherian mammals (Figure 1 ,
Supplementary Figure 1).

However, we also detected that gene erosion has repeatedly
shaped the evolution of HERC5 and HERC6 in mammals. While
primate and carnivore genomes encode both genes, the
artiodactyls and the rodents have experienced gene loss or
pseudogenization, generating HERC gene copy number
variation in each group. Indeed, although all the studied
artiodactyl species encode an intact HERC5 gene, the cetacean
genomes showed HERC6 pseudogenization, through nucleotide
deletions that impacted frameshift, as well as early stop codons
FIGURE 1 | Evolutionary dynamics of mammalian HERC5 and HERC6 gene loci. Representation of the HERC5 and HERC6 gene loci from mammalian genomes.
Plain colored arrows represent intact HERC5 and HERC6 genes, striped colored arrows indicate HERC5 or HERC6 pseudogenes, and white arrows are adjacent
syntenic genes. The newly identified chimeric HERC5/6 genes are bicolored. The numbers in brackets indicate the total number of genomes analyzed which contain
the corresponding genomic organization in each mammalian order. In primates and carnivores, the HERC5 and HERC6 genes are well conserved. In the cetacean
and rhinoceros’ species, the HERC6 has been pseudogenized and lost, respectively, while rodent HERC5 has been lost in the Muridae and Cricetidae families. A
duplicated HERC5/6 fused gene is independently fixed in several rodent species and in the Myotis genus in bats. Duplication followed by pseudogenization of
HERC5 in primates, carnivores and artiodactyls is presented.
December 2020 | Volume 11 | Article 605270
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(Figure 1, Supplementary Figure 2). Moreover, we confirmed the
erosion ofHERC5 in rodents (25), and we further showed that this
loss has most probably occurred in the common ancestor of the
Cricetidae and Muridae. Interestingly, we also did not find the
HERC5 gene in the rhinoceros genome, suggesting at least two
independent losses of HERC5 in mammals, specifically in the
Rodent and Perissodactyl orders (Figure 1).

Finally, in addition to these independent losses of HERC5 or
HERC6 in mammals, we found multiple evidences of HERC5
duplication followed by pseudogenization in primate (Sapajus
apella, Cebus capucinus, Aotus nancymaae, and Saimiri
boliviensis), carnivore (Canis lupus, Vulpes Vulpes, leptonychotes
weddellii), andartiodactyl (Ovis aries) species, highlightinga strong
dynamic of gene gain and loss inmammalianHERC5 andHERC6.

Ancient and Recent Recombinations Have
Shaped the Evolution of a Duplicated
Chimeric HERC5/6 Gene in Rodents
and Bats
While most mammalian species possess one or both HERC
genes, we found independent duplications of HERC5 in the
chiropteran Myotis genus and the rodent Hystricognathi infra-
order (Figure 1, Supplementary Figure 3). These duplicated
genes were identified in three batMyotis species (M. lucifigus,M.
brandtii, and M. davidii) and five rodent species (Fukomys
damarensis, Heterocephalus glaber, Cavia porcellus, Chinchilla
lanigera, and Octodon degus) (Table S1). This dates these
duplication events to at least 30 MYA (million years ago) and
44 MYA, respectively.

Surprisingly, alignments of HERC5, HERC-like, and HERC6
proteins in each mammalian group revealed 96–99% amino acid
identity between the HERC5 and HERC-like N-terminals, and
74–84% amino acid identity between the HERC-like and HERC6
C-terminals (Figure 2A, Supplementary Figure 4). To test
whether this may be reminiscent of recombination in rodents
and bats, we used the GARD program.We identified a significant
recombination breakpoint located upstream from the spacer
region at 1,103 bp in bats and 1,118 bp in rodents (Figures
2A, B). The phylogenetic analyses of the resulting fragments
(identified by GARD) confirmed the recombination in both bats
and rodents. Specifically, we found that the HERC-like 5’-
fragment clustered with the HERC5 gene (clade supported by a
significant bootstrap), while the 3’-fragment grouped with the
HERC6 gene (Figures 2C–F). Taken together, our findings reveal
that a similar ancient mechanism has independently led to the
fixation of a HERC-like gene, which in fact is a chimeric HERC5/
6 gene containing the HERC5 RLD domain and the HERC6
spacer and HECT domains in bats and rodents.

Moreover, by analyzing the phylogenetic trees of HERCs in
bats and rodents (Figures 2C–F), we found that the 5’ fragment
of HERC5/6 was genetically closer to HERC5 from the same
species. This was not the case for the 3’ end, where all 3’
fragments of the HERC5/6 genes significantly grouped
together. Combined with several GARD analyses, this supports
that recent recombinations further occurred between the RLD
domains of HERC5 and HERC5/6 genes (Figure 2G).
Frontiers in Immunology | www.frontiersin.org 5
HERC6, but Not HERC5, Has Been Under
Strong Positive Selection During
Mammalian Evolution
We next investigated whether HERC5 and HERC6 have been
under selective pressure in mammals.

Our results revealed some signatures of positive selection in
artiodactyl, primate, and bat HERC5 (p-values <10−3), but none
in rodent and carnivore species (p-value >0.5) (Table 1). At the
codon level, the signal was overall very weak, with less than three
positively selected codons assigned per order (posterior
probability threshold fixed at 0.95, and p-value <0.05) (Table
2). In primates, two significant positively selected sites were
identified in the RLD domain (Figure 3). Similarly, less than two
codons evolved under positive selection in bats and artiodactyls
(except for the MEME method which identified multiple
positively selected sites in the artiodactyls), and none of the
codons were common between methods (Table 2). Interestingly,
the separate analysis of cetacean species revealed stronger
signatures of positive selection at the gene (p-value = 6.10−6)
and the codon levels (five sites identified by at least two
methods), suggesting a lineage-specific adaptation.

In contrast, we found very strong signatures of ancient and
recurrent positive selection in HERC6, at both the gene and the
codon levels. All five mammalian orders exhibited a significant
excess of non-synonymous rate along the HERC6 coding
sequences, specifically in bats, carnivores, and rodents (p-value
<10−43 in bats, carnivores, and rodents; and p-value <10−6 in
artiodactyls and primates). Positive selection was observed in
each of the three domains of HERC6—the RLD domain, the
spacer region, and the HECT domain—in bat, carnivore, and
rodent species, while many of the signatures were concentrated
in the spacer region and the HECT domains in primates and
artiodactyls (Table 1, Figure 3). Remarkably, the fastest-evolving
codons mapped into the HERC6 spacer region of all five
mammalian orders (p-value <10−26 in bats, carnivores, and
rodents, p-value <10−5 in artiodactyls and primates). More
than 14 sites were identified by at least two methods in bats,
carnivores, and rodents, thereby constituting a hotspot of highly
variable sites in mammalian HERC6 (Table 2 and Figure 3). In
line with this finding, alignment of the spacer region revealed
that it is an extremely divergent domain, characterized by
multiple amino acid changes and indels between and within
groups, in particular in rodents and bats (Figure 4).

Therefore, although HERC5 presents low evidence of positive
selection in mammals, HERC6 has experienced very strong
adaptive evolution. Both genes showed differential evolutionary
profiles across/between mammals, with lineage-specific and
domain-specific adaptations.

The Rodent Chimeric HERC5/6 Paralog Has
Evolved Under Strong Positive Selection
We then addressed whether the newly identified chimeric
HERC5/6 gene, which contains the HERC5 RLD domain and
the HERC6 spacer and HECT domains, has also experienced
positive selection. As coding sequences from five rodent species
were available, we assessed the inter-species evolutionary history
December 2020 | Volume 11 | Article 605270
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FIGURE 2 | Independent duplication of a chimeric HERC5/6 gene through recombination in bats and rodents (A, B). Alignment of the protein sequence of HERC5,
HERC5/6, and HERC6 genes from bats and rodents, respectively. Additional sequence alignments are shown in Supplementary Figure 4. The percentages of
pairwise amino acid identities between the N-terminals of HERC5/6 and HERC5 or HERC6, as well as the C-terminals of HERC5/6 and HERC5 or HERC6 are
indicated. The significant recombination breakpoints (red arrows, p-value <0.05) assigned by the GARD program are shown for the rodent and bat HERC5/6 gene
(C–F). Maximum likelihood phylogenetic tree generated with the 5’ (at the left) and 3’ (at the right) of the HERC5, HERC6, HERC5/6, and HERC3 (as an outgroup)
nucleotide gene alignment based on GARD recombination results (corresponding to the breakpoint 1103 in Myotis lucifigus in bats, and 1118 in Chinchilla lanigera in
rodents). The duplicated chimeric HERC5/6 genes are shown in red. Asterisks indicate bootstrap values greater than 80%. The scale bar represents genetic variation
of a 0.2 (20%) for the length of the scale (G). A linear representation of HERC5 and HERC6 structures showing a chromosomal crossover between the 5’ regions,
upstream of the spacer region. This mechanism has led to a duplicated recombined HERC5/6 gene containing the HERC5 RLD domain and HERC6 spacer region
and HECT domain.

Jacquet et al. Evolutionary History of Mammalian HERC5-6
of the chimeric HERC5/6 gene within this group. Of note, there
were insufficient bat sequences/species to perform the
corresponding analyses. The likelihood ratio tests revealed
significant positive selection in rodent HERC5/6 (p-value
<0.0003, Table 2). Importantly, all the positively selected
codons mapped in the spacer region, and were concentrated
between the amino acids 409 and 660 (Figure 3), suggesting that
the spacer domain has been the target of strong positive selection
as observed in HERC6.
Frontiers in Immunology | www.frontiersin.org 7
Rodent and Bat HERC6 Genes Have Been
Under Stronger Positive Selection
Compared to Other Mammals
Finally, we tested whether positive selection has differentially
impacted the evolution of HERC5 and HERC6 across mammals.
We found that the chiropteran and rodent HERC6 genes have
experienced intensive episodic positive selection compared to the
other groups (Figure 5). In particular, five chiropteran lineages
distributed along bat phylogeny (Rhinolophus ferrumequinum,
TABLE 1 | Positive selection analyses of mammalian HERC5 and HERC6 genes.

Codeml M1 vs M2 Codeml M7 vs M8

p-valuea % of PSSb M2 wc p-valuea % of PSSb M8 wc

HERC5
Artiodactyls 0.0045 4.2 2.43 9.2E−05 10.3 1.9
Artiodactyls without cetaceans 0.0035 0.3 14.3 0.0024 0.3 13.6
Cetacea 4.4E-06 2.8 6.9 3.2E−06 2.9 6.9
Bats (1–192) 0.8423 – – 0.3658 – –

Bats (193–3,115) 0.0007 1 5.6 0.0002 1.3 4.8
Carnivores 0.6554 – – 0.2083 – –

Primates 0.0015 5.1 3.5 0.0009 5.6 3.4
Rodents (1–288) 1 – – 1 – –

Rodents (289–3,069) 1 – – 0.2361 – –

HERC6
Artiodactyls whole gene 3.1E−06 6.1 3.7 2.1 E−06 7.4 3.4
Artiodactyls RLD domain 0.1071 – – 0.0552 – –

Artiodactyls Spacer region 3.9E−05 6.9 5 3.9E−05 7.8 4.6
Artiodactyls HECT domain 0.0029 1.1 3.6 0.0022 1. 3 3.2
Bats whole gene 1.4E−40 7 4.4 1.1 E−44 8 4.2
Bats RLD domain 3.4E−06 5.7 3.8 2.2E−07 7.2 3.4
Bats Spacer region 2.9E−25 10.1 4.5 2.4E−27 10.3 4.6
Bats HECT domain 1.6E−10 7.7 4.2 4.1E−11 9.4 3.9
Carnivores whole gene 3.2E−43 7 5.2 3E−46 7.5 5.1
Carnivores RLD domain 2.7E−05 8 3.3 1.5E−05 9.5 3.1
Carnivores Spacer region 1.5E−33 9.8 6.1 5.5E−36 10 6.1
Carnivores HECT domain 6E−05 4.7 4.7 2.4E−05 5.3 4.3
Primates whole gene 4.3E−08 4.9 4.2 1.8E−08 4.5 4.3
Primates RLD domain 0.9476 – – 0.9016 – –

Primates Spacer region 1.2E−08 8.4 5.4 1.3E−08 9.2 5.2
Primates HECT domain 1.1E−06 5.1 7.6 2E−06 5.2 7.6
Rodents whole gene 7.2E−53 9.1 3.7 1.3E−60 10.3 3.3
Rodents RLD domain 6.6E−11 5.1 3.9 4.2E−13 6.7 3.4
Rodents Spacer region 2.8E−39 14.1 4.2 2.7E−41 15 3.9
Rodents HECT domain 7.9E−14 6.8 4.5 7.6E−16 7.9 3.8
HERC5/6 paralog
Rodents HECT domain 0.0003 20 2.1 0.0002 20 2.1
December 202
0 | Volume 11 | Article 6
Results of positive selection analyses comparing models that disallow positive selection (M1 and M7) to models allowing positive selection (M2 and M8). ap-values generated from
maximum likelihood ratio tests indicate whether the model that allows positive selection (models M2 and M8) better fits the data than the nearly neutral one (M1 and M7). bPercentage of
codons evolving under positive selection (dN/dS ratio > 1 over the alignment). - not significant. cAverage dN/dS ratio associated with the classes K3 and K11, in the Codeml models M2
and M8, respectively, which allow positive selection.
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Pteropus ancestral branch, Phylllostomus discolor, Molossus
molossus, and Pipistrellus kuhlii) and five rodent branches (two
ancestral branches of mouse related clade, Cricetulus griseus,
Mesocricetus auratus, and Urocitellus parryii) have undergone a
significant excess of amino acid changes, with a ratio w >3.8.
Differential selective pressure in HERC5 was also evidenced across
mammalian lineages, but to a lesser extent: only two branches were
found under significant positive selection, in bats (Hipposideros
armiger,w=189) andcarnivores (Ailuoropodamelanoleuca,w=78).
DISCUSSION

Deciphering the evolutionary and functional diversification of
the antiviral innate immunity in mammals is of primary
importance to better understand modern viral pathogens,
virus-host interfaces, and identify novel antiviral strategies. The
functional significance of HERC5 and HERC6 is underlined by
Frontiers in Immunology | www.frontiersin.org 8
their ancient origin and conserved expression in vertebrates (25).
However, their evolutionary history in mammals has remained
unclear. Here, we have carried out in-depth phylogenetic and
genomic analyses to address how mammalian HERC5 and
HERC6 have evolved over millions of years of divergence.

Differential Evolutionary Fate of HERC5
Across Mammals
Although mammalian HERC5 was previously reported as a
rapidly evolving gene (33), we only found strong evidences of
recurrent positive selection in primates. In particular, two codons
in primate HERC5 have rapidly evolved in the RLD domain,
possibly reminiscent of pathogen-exerted pressure (3, 53–55). In
line with this, blade 1 of the primate RLD domain was recently
reported to be an important functional region for HERC5 anti-
HIV antiviral activity (25). Thus, retroviruses may have played a
role in the diversification of HERC5 during primate evolution.
Such patterns have been reported in many primate restriction
TABLE 2 | Positively selected codons in mammalian HERC5, HERC6 and HERC5/6 genes.

MEME FUBAR Codeml M2 Codeml M8

HERC5
Artiodactyls 6, 42, 63, 263, 408, 539, 565,

672, 696, 745, 992
39 – 189

Artiodactyls without
Cetacea

– 39, 42, 552, 555, 1034 – 552

Cetacea 6, 664, 666, 683, 712 6, 175, 347, 663, 676, 683, 712,
732, 782

663, 676 6, 662, 663, 676, 712, 782

Bats (193–2,913 bp) 22, 39, 550 – 654
Carnivores 89, 90, 91, 93, 250, 265, 298,

323, 568, 573
189, 401, 439, 840 – –

Primates – 12, 19, 43, 233, 296, 480, 483 12, 19 12, 19
Rodents (289–2,773
bp)

59, 76, 87, 98, 191, 363, 462,
658, 870

191 – –

HERC6
Artiodactyls 56, 62, 112, 116, 164, 167, 568,

661, 708, 723, 797
15, 116, 599, 603, 655, 886

Bats 6, 57, 58, 163, 382, 396, 549,
552, 597, 600, 603, 608, 633,
646, 650, 663, 665, 671, 690,
704, 706, 716, 814, 910, 911,

995, 1014, 1015

6, 549, 603, 608, 642, 646, 647,
648, 663, 690, 704, 706, 911

6, 18, 74, 454, 546, 549, 591,
595, 603, 608, 642, 646, 647,
648, 650, 651, 663, 690, 706,

911, 964

6, 18, 74, 454, 471,546, 549, 591,
595, 603, 608, 642, 643, 646,
647, 648, 650, 651, 663, 690,

706, 911, 964, 974

Carnivores 30, 112, 166, 216, 225, 398,
447, 515, 517, 550, 574, 593,
596, 600, 602, 603, 659, 666,
669, 753, 794, 846, 1023

166, 216, 397, 398, 447, 549,
550, 593, 595, 600, 602, 603,

659, 666, 669, 713, 968

9, 23, 63, 70, 166, 216, 395,
396, 517, 547, 548, 591, 593,
594, 596, 598, 600, 601, 657,

699, 711, 917, 966

9, 23, 63, 70, 166, 216, 396, 517,
547, 548, 591, 593, 594, 596,
598, 600, 601, 657, 664, 667,

699, 711, 917, 966
Primates 401, 472, 556, 647, 759, 828,

1025
76, 597, 631, 651, 700, 828,

950, 989, 1021
597, 641, 710, 826 370, 596, 597, 641, 649, 698,

710, 826, 987, 1020
Rodents 10, 11, 16, 59, 66, 123, 209,

268, 275, 317, 328, 366, 450,
474, 546, 548, 550, 554, 602,
606, 609, 611, 638, 642, 643,
644, 649, 677, 686, 688, 697,
700, 743, 756, 797, 838, 842,

872

10, 11, 16, 287, 546, 548, 550,
551, 557, 593, 594, 597, 611,

642, 643, 688

10, 16, 22, 125, 166, 287, 317,
513, 517, 547, 550, 551, 552,
553, 557, 593, 594, 597, 601,
602, 603, 605, 606, 610, 611,
613, 614, 635, 638, 642, 643,
645, 656, 657, 686, 688, 901,

952

10, 16, 22, 125, 166, 219, 287,
317, 513, 517, 547, 550, 551,
552, 553, 557, 593, 594, 597,
601, 602, 602, 605, 606, 610,
611, 613, 614, 635, 638, 642,
643, 645, 656, 657, 686, 688,

901, 952
HERC5-6 paralogs
Rodents 69, 138, 261, 409, 467, 774, 926 29, 120, 361, 467, 506, 507,

518, 556, 566, 660
467 22, 409, 467, 518, 566, 660
December
Results from site-specific positive selection analyses, with a posterior probability (PP) of BEB >0.95 for the models M2 and M8 from Codeml, >0.9 for FUBAR, and a p-value <0.05 for
MEME. Codons in bold are those that were assigned by at least two different methods. Codon numbering is based on HERC5 sequences from Bos taurus, Tursiops truncates,
Phyllostomus discolor, Felis catus, Homo sapiens, and Dipodomys ordii, HERC6 sequences from Bos taurus, Rhinolophus ferrumequinum, Felis catus, Homo sapiens, and Musmusculus,
HERC5/6 sequence from Fukomys damarensis.
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factors, including BST2 (56–58), TRIM5 (10, 59–61), and
APOBEC3 (14, 62–64). Because the role of HERC5 is not
limited to host defense against retroviruses, its evolution in
primates may also reflect past selection against other viral
pathogens such as influenza viruses and papillomaviruses.

In contrast, positive selection was solely evident at the gene
level for artiodactyl and bat HERC5, and absent in rodents and
carnivores. This pattern may be a result of lineage-specific
selective drivers: differential viral exposure history, distinct
mechanisms of viral antagonism, and/or may reflect overall
pressure to maintain efficient cellular functions of HERC5. For
example, apart from its antiviral role, some evidences suggest
that HERC5 might be functionally involved in other pathways,
such as spermatogenesis and cell cycle (22), as well as cancer
(65). HERC5 may have thus evolved to maintain effective cellular
functions rather than to escape viral antagonisms or to target
viral pathogens in bats and artiodactyls. In mammals not
exhibiting positive selection, viruses may have evolved indirect
Frontiers in Immunology | www.frontiersin.org 9
mechanisms of antagonism to counteract HERC5 function. In
line with this, many viruses encode proteins that interfere with
the ISGylation activity of HERC5, through direct interaction
with the ISG15 protein (66–69). For example, the NS1B protein
encoded by influenza virus antagonizes ISG15 conjugation
through direct interaction (66).

Accelerated Evolution of HERC6
in Mammals
HERC6 is the only gene from the small HERC family exhibiting
such high levels of adaptive changes with an extremely divergent
spacer region in all mammals, except artiodactyls. Such rapid
evolution of HERC6, with accumulated mutations replacing the
amino acids and multiple amino acid insertions/deletions, most
likely mirrors pathogen-driven adaptations as a result of past
evolutionary arms-races (3, 53–55). This highlights a
fundamental antiviral role for HERC6 in mammals. Previous
functional evidences support that HERC6 is involved in
FIGURE 3 | HERC6, and not HERC5, has experienced strong and mammalian-wide positive selection. Graphic panels represent the posterior probabilities of
positive selection (Bayes empirical Bayes, BEB) (y axis) in the M2 Codeml model (allowing for positive selection, w >1) for each codon (x axis) in HERC5 (left) and
HERC6 (right) alignments. Red bars indicate the sites identified by both models, M2 and M8, with a BEB posterior probability greater than 0.95. Numbers in brackets
are total species analyzed in each mammalian order for each gene. Site numbering is based on HERC5 protein sequences from Homo sapiens, HERC6 sequences
from Bos taurus, Rhinolophus ferrumequinum, Felis catus, Homo sapiens, and Mus musculus. Above is a linear representation of HERC5 and HERC6 showing the
structural domains, the RLD, spacer region, and HECT domains.
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mammalian antiviral immune response (28, 34, 35, 66).
However, available studies have only focused on HERC6 anti-
retroviral activity and ISGylation function. For example, HERC6
has been shown to be an IFN-inducible E3-ligase of ISG15
conjugation in mouse (28, 34, 35). In contrast, human HERC6
lacks the ISGylation activity, but it potently inhibits the primate
lentivirus SIVmac viral production (25).

Specifically, we identified the spacer region as a potential
pathogen—HERC6 interface, involved in the recognition of viral
proteins and/or being the target of viral antagonists. Up to now,
most studies have been devoted to the functional characterization
of the RLD and HECT domains of HERC proteins, as they belong
to the well-characterized protein families, RCC1 and E3-ligases,
respectively. In contrast, the structural characteristic of the spacer
regionhasnot been related to anyknownprotein, whichhinders its
description and functional role. However, its propensity for amino
acid insertions/deletions and accumulated non-synonymous
mutations, including changes with strong chemicophysical
differences highlights a strong evolutionary plasticity. Such a
hotspot of variability in unstructured regions has been reported
for several restriction factors, such as MX1, in which the highly
variable L4 loop has led to differential virus-host interfaces and
plasticity (70, 71).

It is noteworthy that the RLD and HECT domains of HERC6
were also subjected to positive selection in bats, carnivores, and
rodents. These signatures may reflect different virus-host
interfaces. This pattern was reported in the primate PKR
protein, in which signatures of pathogen-driven selection are
scattered along the protein as a result of interactions with
multiple viral antagonists (72, 73). However, it is also possible
that all positively selected sites cluster in a same spatial region of
the protein. A 3D structural analysis of theHERC6 protein would
help assessing how the rapidly evolving sites are located in the
protein, and allow determining whether HERC6 presents
Frontiers in Immunology | www.frontiersin.org 10
multiple or unique host-pathogen interface(s). Up to now, the
3D structure has only been solved for the HECT domain and
RLD domain separately [e.g (74, 75)]. Therefore, how the spacer
region connects the HECT and RLD domains in a 3D structural
dimension is currently unknown. Further studies on small HERC
protein structure would help to better understand how the high
variability in HERC6 impacts its structure and function.

We found differential genetic profiles of HERC6 across
mammalian orders. The strongest signal was found in bats,
carnivores, and rodents, suggesting that different strength/
intensity of selective pressures have shaped the evolution of
HERC6 in mammals. This was confirmed by the branch-specific
analyses, in which rodents and bats exhibit significant lineage-
specific adaptive changes. Rodents and bats are the two most
diverse mammalian orders, and host the highest viral richness
among mammals (38). Both orders have thus been exposed to a
greater viral diversity, compared to primates and artiodactyls.
This may have increased the strength and extent of selective
pressure exerted on the HERC6 protein.

Unequal Recombination Has Led
to the Duplication of a Chimeric HERC5/6
in Rodents and Bats
Lineage-specific expansions of multigene families have shaped
and complexified the mammalian antiviral repertoire over
million years of evolution. Consequently, many unrecognized
genes encoding for antiviral proteins are yet to be discovered.
Here, we have identified duplications of a HERC paralog in the
rodent Hystricognathi infra-order and the chiropteran Myotis
genus, which has occurred around 30 MYA (76, 77) and 44 MYA
(78–80), respectively.

Interestingly, these paralogs are chimeric HERC5/6 genes
coding for the HERC5 RLD fused to the HERC6 spacer region
and HECT domain. This suggests that an independent
FIGURE 4 | Rapid evolution of mammalian HERC6 spacer region is characterized by multiple amino acid changes and major indels. Multiple alignment and
comparison of the HERC6 spacer region between and within mammalian orders. Left, cladogram with the number of sequences used for each clade (n = 6 to 9).
Right, colors indicate site variations between the sequences as compared to the consensus sequence with a threshold of 25% (Geneious, Biomatters; blue/red,
hydrophilic/hydrophobic residues), while gray represents similarity with the consensus. The average pairwise percentage of identity is graphically represented above
in gray. The codon numbers are based on human HERC6 sequence.
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duplication has occurred through a similar mechanism in bats
and rodents. Gene duplication can occur by different modes,
mainly including unequal crossing over, retroposition, or
chromosomal duplication (81, 82). In the former case,
duplicated genes are physically linked in the chromosome, and
can contain a fragment of a gene, a whole gene, or several genes
(81). In contrast, retroposition engenders a retrotranscribed
complementary DNA incorporated into the genome, which
generally lacks intronic regions and regulatory sequences (81).
Given that the HERC5/6 are located in the canonical locus of
HERC5 and HERC6 and contain the parental intronic regions,
they have most likely resulted from an unequal crossing over
between HERC5 and HERC6.

This hypothesis is supported by the recombination analyses,
which detected a significant breakpoint upstream of the spacer
Frontiers in Immunology | www.frontiersin.org 11
region in both mammalian orders. The fact that the
recombination occurred at the same genetic location can be
explained by two different, but not necessarily mutually
exclusive, hypotheses. First, the recombination event can only
occur at this location because of genomic structural constraints
(i.e. genomic homology between paralogs). Second, the HERC6
spacer region and HECT domains are required for functional
HERC5/6 proteins. The best example of such tandem duplication
with domain fusion is the lineage-specific expansion of the
APOBEC3 family in mammals. Originating from an ancestral
APOBEC3 gene, tandem duplications as well as retrocopying
events have radically expanded the repertoire of mammalian
APOBEC3 genes (14, 20). In primates, several of the APOBEC3
genes have most likely resulted from the fusion of A3 domains,
while the murine genome encodes a unique APOBEC3Z2-
FIGURE 5 | HERC6 has been under strong positive selection during rodent and bat evolution. Maximum likelihood phylogenetic tree of mammalian HERC6 gene
showing the branches under significant positive selection (p-value <0.05, in red) assigned by aBSREL from the HYPHY package. The numbers in brackets indicate
the estimated values of the w at the branch. The scale bar indicates the proportion of genetic variation.
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APOBEC3Z3 fused gene (83), highlighting lineage specific
functional adaptations.

Such gene duplications accompanied with gene fusion are
major genetic innovations that functionally diversify the antiviral
arsenal (3, 4, 7). For example, the expansion of the APOBEC3
family has functionally diversified the antiviral activities and
specificity of targeted viruses in primates (20, 62, 84). Given the
antiviral role ofHERC5 and the potential implication ofHERC6 in
antiviral immunity, we hypothesize that the HERC5/6 paralog
provides a functional advantage against pathogenic viruses. This is
supported by both the extremely rapid episodic evolution of
HERC6 in rodents and bats, and the signatures of positive
selection in rodent HERC5/6. The fused HERC5/6 gene may have
evolved combined functional features of HERC5 and HERC6.
Alternatively, it may have retained the functional implication of
the HERC5 RLD domain, but has functionally diverged
from HERC6.

This latter hypothesis is more likely as we found that the RLD
domain of HERC5 and of HERC5/6 are highly similar and
cluster together within species (more than 95% pairwise amino
acid identity). This pattern may reflect ongoing gene conversions
between the RLD domains of HERC5 and HERC5/6, thereby
maintaining a N-terminal similar to the parental HERC5 protein.

Whether the independent fixation of the HERC5/6 paralog in
rodents and bats is a functional/phenotypic convergent
evolutionary event has to be investigated. Moreover, it raises
the question why both lineages have undergone such genetic
innovation. While this duplication could be hazardous, it is
possible that the rodent Hystricognathi infra-order and the bat
Myotis genus share a common selective pressure, such as a viral
pathogen family. Other forces such as ecological and/or
environmental factors may have played a role, such as life-
history traits or biodiversity changes.

Perspectives
Studying the genetic adaptations of host innate immunity can
provide insights into the evolutionary and functional determinants
of host antiviral response. This approach has been a powerful tool
for assessing the functional diversification of virus-host interfaces
in many systems [e.g (59, 62, 85, 86)]. In this present study, we
identified HERC6 and HERC5/6 as potential unrecognized
restriction factors in mammals. Further functional investigations
are now required to (i) decipher the antiviral function of HERC6
and HERC5/6, (ii) determine how the accumulated variability in
the spacer domain may impact their structure, function, and
stability, (iii) unravel HERC6 binding interface with potential
viral antagonists or targeted viral proteins, and (iv) determine on
the other side which pathogens are targeted by those proteins. It
will also be interesting to investigate whether and how the
evolution of HERCs may impact the cellular partners involved in
the ISGylation functions. For example, although we found that
ISG15 is mostly conserved in mammals, it bears important
variations at the C-terminal (data not shown). This could reflect
host protein-protein co-evolutions or indirect viral antagonism of
HERC restriction.Moreover, because theHERCshave beenmostly
studied in primates and rodents, it is possible that other proteins
than ISG15 are involved in the ISGylation function in other
Frontiers in Immunology | www.frontiersin.org 12
mammals. In addition, deciphering whether and how the
HERC5/6 paralogs afford a selective advantage against pathogens
in rodent and bat lineages is of main interest in virology and
immunology fields, as both orders are important reservoirs of
zoonotic pathogens. Finally, studying the functional implications
of HERC6 adaptation in mammals will not only allow to better
understand how pathogens have shaped host immunity, but will
provide important insights into the overlooked role of smallHERC
proteins in mammalian antiviral response.

Altogether, our results represent avenues for future functional
studies of importance in mammalian innate immunity.
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SUPPLEMENTARY FIGURE 1 | Maximum likelihood phylogenetic tree
generated with the whole coding sequences of HERC5, HERC6, and HERC3
nucleotide alignment from artiodactyl, carnivore, rodent, bat, and primate species.
Asterisks indicate bootstrap values greater than 80%. The scale bar represents the
proportion of genetic variation (0.2 for the scale), and is indicated at the bottom.
Sequences are collapsed in each order for better readability.

SUPPLEMENTARY FIGURE 2 | Pseudogenization of cetacean HERC6 (A).
Multiple amino acid alignment of six cetacean HERC6 sequences showing multiple
substitutions, insertions, and deletions (B). Multiple nucleotide alignment with
corresponding amino acids of cetacean, rodent, bat, ruminant, primate, and
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carnivore HERC6, highlighting a conserved stop codon in the cetacean species
(codon 174 in Balaenoptera acutorostrata). Nucleotide and amino acid sequences
are shown using Geneious.

SUPPLEMENTARY FIGURE 3 | Maximum likelihood phylogenetic tree
generated with the whole coding sequences of HERC5, HERC6, HERC5/6, and
HERC3 nucleotide alignment in bats (left) and rodents (right). The chimeric
duplicated HERC5/6 genes are shown in red. Asterisks indicate bootstrap values
greater than 80%. The scale bar at 0.2 is indicated below.

SUPPLEMENTARY FIGURE 4 | Alignment of the protein sequence of HERC5,
HERC5/6, and HERC6 from bats and rodents. The percentages of pairwise amino
acid identities between the N-terminals of HERC5/6 and HERC5 or HERC6, as well
as the C-terminals of HERC5/6 and HERC5 or HERC6 are indicated. The significant
recombination breakpoints (red arrows, p-value <0.05) assigned by GARD program
are shown for bat and rodent HERC5/6 gene. Because the coding sequence of
HERC6 gene from Heterocephalus glaber was incomplete with many missing data,
it was not included in the figure. Likewise, some portions of the N-terminal of
HERC5, as well as the C-terminals, from HERC5/6 and HERC6 are missing in the
protein alignment of the chiropteran species, Myotis brandtii (top).

SUPPLEMENTARY TABLE 1 | Information on publicly available datasets
analyzed in this study. Accession numbers are available in NCBI (https://www.ncbi.
nlm.nih.gov/).
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