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INTRODUCTION

The coronavirus disease-19 (COVID-19) pandemic caused by the Severe Acute Respiratory Syndrome
Coronavirus-2 (SARS-CoV-2) continues to be a global threat (1). Studies have shown that COVID-19
patients also presenting with gastrointestinal symptoms and SARS-CoV-2 RNA has been detected in stool
specimens from patients with severe disease (2–4). One of the pressing scientific questions that remain
unanswered is, why the elderly population and those with underlying conditions are at more risk of
developing severe COVID-19 complications than the younger population. Gastrointestinal manifestations
play a major role in exacerbating proinflammatory cytokines due to disturbance of gut lining by SARS-
CoV-2. Here, we discuss the possible role of the gut microbiota and the dysbiosis leading to exacerbated
COVID-19 severity and cytokine storm.
GUT IMMUNOLOGY AND MICROBIOTA

The human body is inhabited by a cornucopia of microorganisms, with a rough estimate of about 38
trillion bacteria and gut remains the most densely and diversely colonized organ (5). The gut microbiota
play an arterial role in maintaining immune homeostasis. The mucosal immune system, mainly the
mucosa-associated lymphoid tissue such as gut-associated lymphoid tissue (GALT) and bronchial-
associated lymphoid tissue, is very important since it acts as the primary line of defense against infections
(6). GALT includes Peyer’s patches, appendix and isolated lymphoid follicles of the intestinal mucosa.
Crosstalk between immune cells of the GALT and gut microbiota is essential to modulate the immune
system. The role of gut microbial products in maintaining the balance between regulatory T cell and
effector T cell response has been extensively reviewed (7). Furthermore, Short Chain Fatty Acid (SCFA), a
product of commensals’ fermentation offibre-rich diet, is also essential to facilitate the efficient migration
org January 2021 | Volume 11 | Article 6077341

https://www.frontiersin.org/articles/10.3389/fimmu.2020.607734/full
https://www.frontiersin.org/articles/10.3389/fimmu.2020.607734/full
https://www.frontiersin.org/articles/10.3389/fimmu.2020.607734/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:bala@yrgcare.org
https://doi.org/10.3389/fimmu.2020.607734
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2020.607734
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2020.607734&domain=pdf&date_stamp=2021-01-25


Vignesh et al. Gut Microbiota Exacerbate the Severity of COVID-19?
of activated T cells to the intestinal lumen by stimulating the
CD103+ Dendritic Cells (DCs) (8). Interestingly, the immune
factors and cells from the GALT can be transferred to the
bronchial-associated lymphoid tissue through various
mechanisms thereby offering protection against respiratory
infections (9, 10).

When compared to gut microbiota, the understanding of the
microbial community of the lung is relatively less. Evidences from
several studies insinuate a vital cross-talk between the intestinal
microbiota and the lungs, known as the “gut–lung axis”. A
plethora of evidence has supported the connection between gut
microbiota and lung immunity. Depletion of gut microbiota has
also been linked with the functional impairment of the alveolar
macrophages with a reduction in reactive oxygen species-mediated
bacterial killing capacity (11). Furthermore, the association
between antibiotic-induced disturbance of the gut microbiota
and improved survival of Mycobacterium tuberculosis in the
lungs with a high chance of disseminated tuberculosis has also
been reported (12). The gut-lung axis is reportedly bidirectional,
that microbial components like endotoxins and metabolites from
the gut can affect the lung through the bloodstream and in case of
lung inflammation, the gut microbiota could be impacted as well
(13). In one study, after exposure to the influenza virus, lungs-
derived CCR9+CD4+ T cells migrate to the intestine where they
cause gut microbiotadysbiosis, resulting in aberrant Th17 response
with intestinal injury and gasteroenteritis (14).
GUT MICROBIAL METABOLITES IN
MODULATION OF IMMUNE RESPONSES

Microbial metabolites of gut microbial flora, importantly the short
chain fatty acids (SCFAs) such as butyric acid and acetic acid are
pivotal in modulating the immune and inflammatory responses (15,
16). These SCFAs can discourage the growth of pathogenic microbes
by maintaining acidic pH and mucin production in the intestinal
environment (17, 18). They are crucial inmaintaining the integrity of
gut epithelium to contain leakage and translocation. The SCFAs can
also act as inhibitors of histone deacetylase (HDAC) and thereby
efficiently hampering excessive inflammatory responses by
enhancing the numbers and functions of T helper cells, regulatory
T cells and Th17 effector cells (19–22). Also, SCFAs like butyrate
demonstrate diverse anti-inflammatory functions by activating G
protein-coupled receptors (GPCRs), such as GPR43 and by
inhibition of the NF-kB pathway (22–24). Through activation of
GPR41, SCFAs have been reported to augment CD8+ T cell
functions and butyrate can promote differentiation of regulatory T
cells and IL-10/18 producing T cells by activating GPR109A (25, 26).

Interestingly, these SCFAs have been found in minute
quantities in the lung compartment as well, thereby indicating
a possible link between the gut and the respiratory tract (27).
Studies have shown that SCFAs aid formation of progenitors of
macrophages and dendritic cells (DCs) in the bone marrow and
also via augmenting the function of T cells, they offer defense
against airway inflammation and respiratory tract infections (26,
28). In the pathogenesis of chronic obstructive pulmonary
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disease (COPD), the hypothesis of gut-liver-lung axis has also
supported the fascinating role of SCFA. Apart from the SCFAs,
other metabolites of the gut flora such as retinoic acid, niacin,
lactate, tryptophan, pyruvate and desaminotyrosine have also
been reported to have a role in host immunity (25, 29–33).
GUT DYSBIOSIS AND ENHANCED
GUT PERMEABILITY

When there is a change in the composition of gut microbiota,
owing to various factors, the normal flora are replaced by
pathogenic ones and this phenomenon known as gut dysbiosis,
is associated with many diseases (34, 35). Studies have shown
associations between change in composition of gut microbiota and
respiratory infections (36). Several studies have demonstrated the
key role of gut microbiota in the pathogenesis of sepsis and
ARDS (37).

While the intestinal barrier prevents the translocation of
microbes and their harmful products from the gut lumen to
systemic circulation, gut dysbiosis could lead to increased
permeability of gut barrier (leaky gut). Gut dysbiosis has been
observed to correlate with a decrease in the production of the gut
bacteria-derived SCFAs such as butyrate thereby leading to
increased gut permeability. This facilitates the translocation of
microbiota-derived lipopolysaccharides (LPS), particularly from
gram-negative bacteria and inflammatory components to general
circulation leading to immune activation and inflammatory
responses (38). This immune activation primarily happens via
the toll-like receptor 4 (TLR4) and TLR4 activation in immune
cells are known to aggravate the inflammatory processes
associated with exacerbation of several clinical conditions.
Activation of TLR4 by LPS has been shown to worsen the
mortality rates in cases of influenza infections (39).
POSSIBLE ROLE OF GUT DYSBIOSIS IN
PATHOPHYSIOLOGY OF COVID-19
“CYTOKINE STORM”

The composition and diversity of gut microbiota are affected by
various factors, especially ageing. Age-related imbalance of gut
microbiota has been well documented and there are reports on the
reduced proportion of probiotic strains like Bifidobacteria,
Lactobacillus and bacteria producing SCFAs like butyrate needed
for maintaining the integrity of intestinal barrier (40–42). Likewise,
there are several evidences supporting the role of gut dysbiosis in
ageing-related cardiovascular, renal and metabolic disorders (43, 44).

In case of COVID-19 infection, the disease severity and mortality
rates are very high among elderly patients over the age of 65 years,
particularly those with pre-existing comorbid conditions such as
diabetes, cardiovascular, metabolic and renal disorders (4, 45–49).
Immunological aging is reported to be associated with subclinical
inflammatory state known as “inflammaging” wherein the Th1
immune responses play a key role, whereas in children there are
January 2021 | Volume 11 | Article 607734
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more Th2 responses, thereby producing less pro-inflammatory
molecules. Moreover, alterations in the gut microbiota have been
well documented to have an association with respiratory infections
(36), inflammatory bowel disease (50), depression (51), type-2
diabetes (52), cardiovascular disease (53) and hypertension (54).

Thus, the high mortality rates among the elderly people and
people with underlying medical conditions with COVID-19 possibly
point towards the hypothesis that gutmicrobiota perturbations could
influence COVID-19 disease severity and clinical outcome (55, 56).
Several studies suggest that mortality associated with COVID-19 are
mainly due to the enhanced cytokine and chemokine production
contributing to the virally induced hyper-inflammation, referred to
as the “cytokine storm” (57–59).

Based on the findings discussed earlier, during conditions like
COVID-19, healthy gut microbiota is a requisite to balancing of
optimal immune responses preventing an array of excessive
inflammatory reactions that could be detrimental. This balance is
very crucial that the immune response can have different clinical
outcomes and consequences when it is either under reactive or
over-reactive.

Bacterial LPS, the Microbe-Associated Molecular Patterns
(MAMP) of Gram-negative bacteria can strongly activate the cells
of the inflammatory system and the levels of LPS in plasma have
been shown to correlate with the degree of intestinal permeability in
various conditions. Several studies have demonstrated the
association of LPS with T cell activation and elevated pro-
inflammatory responses leading to a “cytokine storm” (60).

The chemokine CXCL10 has been observed to play a key role
in recruiting of inflammatory cells to the site of inflammation
and its role in COVID-19 induced cytokine storm has been
shown in both experimental model and patients. A mice-model
study using K18 hACE2 transgenic mice infected with SARS-
CoV-2revealed significantly pronounced levels of CXCL-10
among those with cytokine storm (61). Studies have
demonstrated elevated levels of CXCL10 in COVID-19 patients
than healthy controls. Among the COVID-19 patients, the CXCL
10 levels were higher among those required admission to
intensive care than those who had less severity (57). This
finding supports the possible role of LPS in the severity of
COVID-19. Studies also reported increased Levels of IL-1B,
IFN-g, CXCL-10 and CCL2 were also demonstrated as a result
Th1 responses (62). Aberrant expressions of a battery of
proinflammatory cytokines and chemokines such as IL-6,
IFN-a, IFN-g, IL-1b, IL-12, IL-7, IL-8, IL-9, IL-10, FGF,
G-CSF, GM-CSF, IP-10, MCP-1, MIP-1A, MIP1-B, PDGF,
IL-18, IL-33, TGF-b, VGEF, CXCL8, CXCL9, CCL2, CCL3,
and CCL5 among infected and severe cases of infected patients
were also documented (63, 64).

High LPS levels were observed in severe and fatal lung injury
cases (65)which signifies that there is indeed a potential implication
of LPS in the pathogenesis of the COVID-19 cytokine storm and
COVID-19 related microvascular complications which must be
investigated. Gut microbiotadysbiosis in some COVID-19 cases
may facilitate the translocation of LPS into the portal circulation,
which will further stimulate the Kupffer cells residing in the
periportal region of the liver, resulting in activation of NF-kB
Frontiers in Immunology | www.frontiersin.org 3
pathway and secretion of TNF-a and IFN-b (66). This effect can
cause the hepatic inflammation as well as systemic inflammation
especially when LPS reaches the systemic circulation (67, 68).
However, in the case of subclinical endotoxemia, that low dose
LPSwill not be sufficient enough to cause hepatitis but it may cause
systemic low-grade inflammation,which can potentiate the effect of
cytokine storm and microvascular complications identified in
COVID-19 cases. Moreover, proinflammatory effect (IL-8, MCP-
1) of low dose LPS on endothelial cells, high sensitivity of vascular
smoothmuscle cells to the stimulatory actionofLPS, the association
of endotoxemia with atherosclerosis, and LPS induced insulin
resistance effect are considerable factors which could serve as
fertile soil for initiating COVID-19 cytokine storm and
microvascular injury in COVID-19 cases (69–71). The trigger
factor of the cytokine storm may be due to LPS induced CXCL10
expression as discussed above or itmay bebecause of the direct viral
effect on the immune system, but the other concept is that low dose
LPS can circulate in the plasma in COVID-19 cases with gut
dysbiosis and that subclinical endotoxemia can act as a cofactor
in facilitating the severe impact of the COVID-19 cytokine storm.

A recent study has reported a significant increase in the
permeability of gut epithelial tight junctions in case of severe
COVID-19, thereby suggesting a leaky gut situation. The study
also noted a steep increase in the level of zonulin, a protein that
acts as the physiological mediator of tight junction permeability
in the digestive tract. Interestingly, the elevated levels of zonulin
were observed to be a marker for increased mortality in severe
COVID-19 cases. Measurement of LPS-binding protein, a
marker of inflammation also revealed a significant increase
among severe COVID-19 cases than milder cases. These
findings support the association between severe COVID-19
and gut permeability and microbial translocation (72).
IMPACT OF SARS-COV-2 INFECTION ON
GUT MICROBIOTA

It is interesting to note that the gut-lung axis crosstalk could imply
the impact of SARS-CoV-2infection on the quality and
composition of gut microbiota as well. Studies have
demonstrated alterations in the abundance and composition of
fecal bacteria in COVID-19 patients compared to healthy controls.
The pattern of the gut microbiota composition was found to be
positively correlating with increased expression of IL-18, the
proinflammatory cytokine (73).

COVID-19 patients have been reported to have lesser beneficial
gut microbiota and harbor more opportunistic pathogens.
Interestingly, the severity of COVID-19 was found to correlate
positively with the abundant presence of opportunistic pathogens
and negatively with an abundance of anti-inflammatory bacterium
Facealibacterium prausnitizii (66).

A study has documented the presence of a few bacteria like
Streptococcus and Bacteroides to correlate negatively with
inflammatory cytokines and positive association with a few
other groups of gut microbiota thereby hinting at the potential
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role of gut microbiota in the predisposition of COVID-19
patients to disease severity. Likewise, in patients with COVID-
19, perturbation of enteric RNA and DNA viral flora has been
reported and the disease severity was found to be associated with
the alternations in gut virome (74).

Interestingly, a recent study that analyzed the levels of 50 gut-
associated plasma metabolites using systems biology approach,
revealed that most of these metabolites were found to be
dysregulated during severe COVID-19 when compared to controls
and those with mild disease. The study reports significantly
decreased levels of citrulline, an amino acid that is an established
marker of gut and enterocyte function. Also, the levels of succinic
acid, a well-known marker of gut microbial dysbiosis were observed
to be increasing during severe COVID-19 (72).

While discussing on the predisposition of only a certain
proportion of COVID-19 patients to develop severe disease, it
is of significance to address the gut microbiota–mitochondria
crosstalk as well (75). Studies have revealed the role of gut
microbiota in influencing various mitochondrial functions
including inflammatory cascades mediated by metabolites like
SCFA and bile acids. Likewise, mitochondrial functions could
alter the gut microflora composition and activity by
immunomodulation leading to inflammatory responses during
viral infections (76, 77).

Various studies have highlighted the role of administering
probiotics and metabolites to retain optimal immune responses
and prevent excessive inflammatory responses (31, 78, 79).
Studies have demonstrated reduced lung damage caused by
viral infection, due to enhanced levels of SCFAs in the blood
caused by the change of proportion of Bacteroidetes and
Firmicutes attained by food with high-fiber content (23, 26, 80).

A meta-analysis of several randomized clinical trials revealed that
people taking probiotics had a 2-fold lower risk of developing upper
respiratory tract infections. The study also reported a significant
reduction in disease severity among the infected population (81). A
study involving 479 adults demonstrated that administration of
probiotic bacteria with vitamins and minerals minimized the
Frontiers in Immunology | www.frontiersin.org 4
duration of episodes of common cold and also lowered the days
with fever (82). Another study involving 1,783 school children
showed a reduction in the incidence of respiratory infection caused
by influenza virus following consumption of Lactobacillus sp. (83).
Probiotic bacteria have also been shown to enhance the responses of
vaccines against respiratory viral infections and recent studies have
pointed in this direction suggesting that maintaining the balance of
intestinal microbiota may be beneficial to COVID-19 patients and
aid in recovery due to improved immune status (10, 84, 85).

Interestingly, another logical reason for altered gut microbiota
could be the extensive antibiotics usage in the management of
COVID-19 (86). Antibiotics result in dysbiosis and increase
susceptibility to new infections and inflammatory disorders.

Thus, understanding the potential mechanisms by which the
gut microbiota regulate host immune and inflammatory
responses might offer insights on understanding of the
pathogenesis of COVID-19 induced cytokine storm and might
throw light on interventions by targeting these microbial florae.
A recent Chinese study demonstrates construction of a blood
proteomic risk score (PRS) for the prediction of COVID-19
progression to a more severe stage. The study findings revealed a
strong association between the gut bacteria, the PRS, and the
severity of COVID-19 only in older age groups. Additionally,
when analyzing a subgroup of about 301 uninfected individuals
over a three-year duration, they observed that the changes in gut
microbiota occurred before the alteration could reflect in the
PRS, indicating that the gut dysbiosis leads to the protein
alterations and not the other way around (56). A study has
reported dysbiosis of gut microbiota among hospitalized
COVID-19 patients wherein there were reduced levels of
probiotic bacteria, a lower proportion of beneficial symbionts
and a relatively higher proportion of opportunistic pathogens
(66, 87). Interestingly, these variations in the composition of gut
microbiota were observed to be correlating with the disease
severity. Figure 1 represents the schematic representation of
the proposed hypothesis of gut microbiota perturbation leading
to severe COVID-19 by cytokine storm.
FIGURE 1 | Schematic representation of the proposed hypothesis of gut microbiota perturbation leading to severe COVID-19 by cytokine storm.
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CONCLUSION

Asdiscussed earlier, the immune-gut interactionbeingwell-balanced
and bidirectional, the increased inflammation can lead to leaky gut
allowing translocation of bacterial toxins and metabolites to the
systemic circulation. This can further worsen the septic state of
COVID-19 patients. Earlier studies have demonstrated the
association between increased intestinal permeability with sepsis
and multiple organ failure (88, 89). Microbial translocation due to
poor intestinal integrity ensues a secondary infection and bacterial
translocation from the gut to lungs can lead to sepsis and acute
respiratory distress syndrome (37). Studies have demonstrated the
link between the gut and the respiratory tract and their concerted
modulation of immune responses and dysbiosis in gut microbiota
impacting the respiratory tract (90). Likewise, through the gut-lung
axis, viruses causing respiratory infections in lungs have been known
to translocate to other organs via systemic circulation. This supports
the hypothesis of a disturbed gut microbiota setting stage for
Frontiers in Immunology | www.frontiersin.org 5
disrupted immune homeostasis leading to exacerbation of cytokine
storm in COVID-19 patients.
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