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The inability of patients with CVID to mount specific antibody responses to pathogens has
raised concerns on the risk and severity of SARS-CoV-2 infection, but theremight be a role for
protective T cells in these patients. SARS-CoV-2 reactive T cells have been reported for
SARS-CoV-2 unexposed healthy individuals. Until now, there is no data on T cell immunity to
SARS-CoV-2 infection in CVID. This study aimed to evaluate reactive T cells to human
endemic corona viruses (HCoV) and to study pre-existing SARS-CoV-2 reactive T cells in
unexposed CVID patients. We evaluated SARS-CoV-2- and HCoV-229E and –OC43 reactive
T cells in response to seven peptide pools, including spike and nucleocapsid (NCAP) proteins,
in 11 unexposed CVID, 12 unexposed and 11 post COVID-19 healthy controls (HC). We
further characterized reactive T cells by IFNg, TNFa and IL-2 profiles. SARS-CoV-2 spike-
reactive CD4+ T cells were detected in 7 of 11 unexposed CVID patients, albeit with fewer
multifunctional (IFNg/TNFa/IL-2) cells than unexposed HC. CVID patients had no SARS-CoV-
2 NCAP reactive CD4+ T cells and less reactive CD8+ cells compared to unexposed HC. We
observed a correlation between T cell reactivity against spike of SARS-CoV-2 and HCoVs in
unexposed, but not post COVID-19 HC, suggesting cross-reactivity. T cell responses in post
COVID-19 HC could be distinguished from unexposed HC by higher frequencies of triple-
positive NCAP reactive CD4+ T cells. Taken together, SARS-CoV-2 reactive T cells are
detectable in unexposed CVID patients albeit with lower recognition frequencies and
polyfunctional potential. Frequencies of triple-functional reactive CD4+ cells might provide a
marker to distinguish HCoV cross-reactive from SARS-CoV-2 specific T cell responses. Our
data provides evidence, that anti-viral T cell immunity is not relevantly impaired in most
CVID patients.

Keywords: common variable immunodeficiency disorder (CVID), coronavirus disease 2019 (COVID-19), T cell
response, primary immunodeficiency (PID), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
human endemic coronavirus 229E (HCoV-229E), human endemic coronavirus OC-43 (HCoV-OC43)
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INTRODUCTION

Clinical presentations of coronavirus disease 2019 (COVID-19) are
highly variable, ranging from asymptomatic to severe acute
respiratory syndrome (SARS). A number of clinical factors with a
more than 2-fold increased risk for mortality have been identified
and include advanced age, pre-existing respiratory, cardio- and
cerebrovascular diseases, hypertension, diabetes and malignancy
(1). Ethnicity has also been described as a risk factor for COVID-19
with increased infection rates and worse clinical outcome in Black,
Asian andMinority Ethnic individuals (2). According to European
Society for Immunodeficiencies (ESID) criteria, patients with
common variable immunodeficiency disorder (CVID) have a
relevant IgG and IgA +/- IgM deficiency together with reduced
class switchedmemory B cells and/or an impaired specific antibody
response to pathogens or vaccination. Due to the inability tomount
specific antibody responses to pathogens, patients with CVID are
likely at increased risk for severe COVID-19, however clinical data
is still very limited (3, 4).

Standard treatment forCVIDis IgG replacement therapy,which
is effective in infection prevention (5). Because of the novelty of
COVID-19, IgG preparations do not contain severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) IgG yet.

Dataon the clinical courseofCOVID-19 inCVIDpatients are still
very limited. Recently, a fatal outcomewas reported and a first report
described a moderate to severe course of COVID-19 in 5 CVID
patients (4). Authors discussed that CVID patients may be more
prone to severe COVID-19 due to preexisting lung inflammatory
diseases present in 10%ofCVIDpatients. Data onT cell responses in
CVID patients with COVID-19 are currently missing.

Cross-reactivities ofT cells against humanendemic coronaviruses
(HCoV) to SARS-CoV-2 have been proposed and are currently
under extensive investigations (6–10). Population studies estimate
that approximately 90% express IgG seropositivity to the worldwide
circulating endemic HCoV strains, which usually cause milder
“common cold” respiratory infections (11). The emerging evidence
of pre-existing SARS-CoV-2 reactive T cells shaping the immune
response (12), remains to be elucidated in immunodeficient patients.
Previous studies provide evidence for normal T cell responses to
Frontiers in Immunology | www.frontiersin.org 2
influenza (vaccine) in CVID patients (13) and to hepatitis B vaccine
in X-linked agammaglobulinemia (XLA) patients (14). Here, we aim
tocharacterize theTcell responses toSARS-CoV-2and twocommon
HCoV strains (229E andOC43) in SARS-CoV-2 unexposed patients
withCVIDandcompare it toTcell responses inunexposedandpost-
COVID-19 HC.
METHODS

Human Blood Samples
11 patients with confirmed diagnosis of CVID according to
ESID criteria were recruited from the outpatient clinic for
immunodeficiencies at the Institute for Medical Immunology at the
Charité Universitätsmedizin Berlin (Table 1A). Recovered healthy
controls (HC)with past COVID-19 had beendiagnosed byRT-PCR.
The clinical course is described inTable 1B. HCwithout a history of
COVID-19 were recruited from laboratory staff and had a negative
SARS-CoV-2 antibody test. Blood was drawn from patients and HC
in June and July 2020. During the time of our study, the weekly
incidence rate of SARS-CoV-2 infections in Berlin was at a level of
0.3–2.0/100 000 inhabitants. The study was approved by the Ethics
Committee ofCharitéUniversitätsmedizinBerlin in accordancewith
the1964DeclarationofHelsinki and its later amendments (EA2/092/
20 from June 4th, 2020). All patients and controls gave
informed consent.

Quantification of SARS-CoV-2 IgG
Serum IgG against the N-terminal domain of the spike protein
including the immunologically relevant receptor binding domain
(RBD) of SARS-CoV-2was determined by ELISA (EUROIMMUN
AG). Neutralizing IgG antibodies were determined by plaque
reduction similar as described before (15).

Flow Cytometric Analysis of
Antigen-Reactive T Cells
Peripheral blood mononuclear cells (PBMCs) were isolated from
heparin blood samples by density gradient centrifugation, frozen at
TABLE 1A | Characteristics of patients and controls.

(A) CVID patients.

ID age sex IgG [g/l](before RT) IgA[g/l] IgM[g/l] CD4[/nl] CD8[/nl] CD19[/nl] NK[/nl] EUROClass

CVID-1 56 m 0.30 0.06 0.10 0.60 0.90 0.14 0.08 smB-21low
CVID-2 60 m 1.66 0.06 0.15 0.32 0.33 0.19 0.10 smB-21norm
CVID-3 43 m 3.59 0.06 0.18 0.41 0.36 0.72 0.11 smB-21low
CVID-4 29 f 0.00 0.00 2.10 1.02 0.58 0.38 0.11 smB-21low
CVID-5 46 f 3.70 0.59 0.40 0.69 0.34 0.24 0.07 smB-21norm
CVID-6 56 f 3.12 0.06 0.20 0.45 0.36 0.13 0.14 smB-21low
CVID-7 58 m 2.00 0.06 0.05 0.40 0.26 0.12 0.23 smB-21low
CVID-8 51 f 3.60 0.25 0.18 0.43 0.23 0.06 0.02 smB-21norm
CVID-9 46 m 0.33 0.06 0.05 0.90 0.69 0.16 0.26 smB-21norm
CVID-10 74 m 1.30 0.00 0.09 0.50 1.30 0.32 0.26 smB-21low
CVID-11 31 m 0.00 0.00 0.00 1.06 0.60 0.00 0.28 B-
Median 51 1.66 0.06 0.15 0.5 0.36 0.16 0.11
De
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CVID, Common Variable Immunodeficiency; NK, natural killer cells; smB, switched memory B cells; norm, normal; B-, patients with equal or less than 1% B cells; f, female; m, male.
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−80°C and later transferred to liquid nitrogen. Samples from post
COVID-19, unexposed HC and CVID patients were
simultaneously analyzed. Thawed PBMCs were either incubated
with DMSO (background control) or stimulated with 3µg/ml
superantigen Staphylococcal enterotoxin B (SEB) (positive
control) or 1 µg/ml of peptide pools SARS-CoV-2 Spike
Glycoprotein (two vials with N-term and C-Term, PM-WCPV-S-
1), SARS-CoV-2 NCAP (PM-WCPV-NCAP-1), HCoV-229E
Spike Glycoprotein (two vials with N-term and C-term, PM-
229E-S-1) and HCoV-OC43 Spike Glycoprotein S1 (two vials
with N-term and C-Term, JPT Peptide Technologies GmbH,
Berlin), respectively, for 16h at 37°C and 5% CO2. After 2h of
stimulation, brefeldin A (BFA) was added as secretion inhibitor.
Cells were then stained extracellularly with LIVE/DEAD Fixable
Blue Dead Cell Stain Kit (Thermo Fisher Scientific) and lyzed and
permeabilized using FoxP3 transcription factor staining buffer set
(eBioscience). Afterwards, intracellular staining was performed for
CD3 BV650, CD4 PerCp-Cy5.5, CD8 BV510, CD137 PE, CD154
BV421, IL-2APC, IFNgBV605, andTNFaAF700 (Biolegend). The
stainedcellsweremeasuredat aCytoflexLX (BeckmanCoulter) and
analyzed using FlowJo software version 10.6.2 (BD). Reactive
CD154+CD137+CD4+ or CD137+CD8+ T cells > 0.005% within
total CD4+ or CD8+ T cells and with a ≥ 1.2-fold response of the
background control were considered as positive. This threshold
corresponds to the range in which 95% of all negative samples are.
Unspecific stimulationwas excludedby subtracting the background
signal of the DMSO sample from the peptide stimulated samples.
Single, double (dp) or triple (tp) cytokine producing T cell subsets
were analyzed using Boolean combination gates.

Statistical Analysis
Statistical data analyses were done using GraphPad Prism 6
software. Nonparametric statistical methods were used.
Continuous variables were expressed as median and interquartile
range (IQR). Univariate comparisons of T cell responses in two
independent groups were done using the Mann-Whitney-U test.
Distribution of T cell response between the three cohorts was
analyzed using a 2 × 2 contingency table. Significance was tested
by c2-square test. Correlation between the T cell responses toward
Frontiers in Immunology | www.frontiersin.org 3
the different peptides was analyzed by Spearman’s rank correlation
coefficient and linear regression.

A two-tailed p-value of <0.05 was considered statistically significant.
Due to multiple testing p-values are considered descriptive.
RESULTS

Patient Characteristics and IgG
Responses to SARS-CoV-2
11 CVID patients, 11 post COVID-19, and 12 unexposed HC
participated in this study. The characteristics of CVID patients are
shown inTable 1A. The median age for CVIDwas 51 years (range
29–74), for unexposed HC 35 years (range 25–65) and for post
COVID-19 HC 44 years (range 22–75). All CVID patients and 11/
12unexposedand10/11PostCOVID-19HCareCaucasian, twoare
Asian. All CVID patients were under continuous IgG replacement
therapy for aminimumof2years (median7, range 2–30years). Post
COVID-19 HC had previous mild COVID-19 (WHO) and a
median of 73 days (range 48–95) after diagnosis before T cell
analysis (Table 1B). PatientswithCVIDandunexposedHChadno
history of COVID-19. All post COVID-19 HC had specific IgG
against SARS-CoV-2, while all unexposed HC and CVID patients
were seronegative (Supplementary Figure 1). In addition, 10 Post
COVID-19 HC had neutralizing IgG against SARS-CoV-2.

Further, CD3+, CD4+ and CD8+ T cell frequencies of the three
groups are shown in Supplementary Figure 2. CVID patients have
higher frequencies of CD3+ and CD8+ T cells compared to
unexposed HC and post COVID-19 HC, which is already
described for CVID patients (16, 17). Frequencies of CD4+ T
cells were comparable between the three groups.

Groups Analysis of SARS-CoV-2
and HCoV-Reactive T Cells
In order to study the T cell response to SARS-CoV-2 and two
commonHCoV strains we analyzed the frequency of SARS-CoV-2
spike and NCAP, HCoV-229E and –OC43 spike peptide-reactive
CD154+CD137+CD4+andCD137+CD8+T cell responses in vitro
TABLE 1B | Characteristics of patients and controls.

(B) post COVID-19 HC.

ID Age Sex pos. PCR Time of analysis after first
diagnosis by positive PCR [d]

Duration of symptoms [d] WHO R&D Blueprint
ordinal scale

IgG-ELISA
[OR ratio]

IgA-ELISA
[OR ratio]

PRNT50

Case-1 36 w 25.03.2020 51 19 2 1.10 0.42 1:20
Case-2 74 m 02.04.2020 60 4 2 1.83 5.03 1:160
Case-3 25 w 22.03.2020 70 5 2 1.80 1.66 1:80
Case-4 45 w 26.03.2020 75 25 2 7.96 5.02 1:80
Case-5 50 w 16.04.2020 48 14 2 2.09 1.56 <1:20
Case-6 28 m 28.03.2020 73 n.a. 2 2.48 2.40 1:20
Case-7 55 w 09.03.2020 85 13 3 6.23 5.08 1:320
Case-8 44 m 26.03.2020 75 8 2 1.31 1.20 <1:20
Case-9 22 m 24.03.2020 78 10 2 1.90 3 1:20
Case-10 43 m 12.03.2020 95 6 1 2.70 2.43 1:80
Case-11 75 m 20.03.2020 19 no symptoms 1 3.43 – n.a.
Median 44 73 10 2.09 2.42 80
Decembe
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PCR, polymerase chain reaction; f, female; m, male; n.a., not applicable; WHO, World Health Organization; PRNT50, the dilution of serum to reduce the number of plaques, of the plaque
reduction neutralization test, by 50% compared to the serum free virus.
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byflowcytometry.OnlyT cell responses above the threshold of20%
above background activation were included in this study
(Supplementary Table 1). Cytokine producing capacity of the
reactive T cells was assessed by percentages of virus peptide-
reactive IFNg, TNFa and IL-2-producing T cells. Figure 1 shows
the gating strategy in a representative convalescent patient in
response to SARS-CoV-2 C-terminal spike peptide pool who had
a mild COVID-19 infection.

CD154+CD137+CD4+ and CD137+CD8+
Activated T Cell Responses to SARS-CoV-2,
HCoV-229E and –OC43 and SEB
In 7 of 11 CVID patients, reactive CD4+ T cells against at least one
spike peptide pool of SARS-CoV-2 were detectable and in 4 of
these 7 also against HCoV-229 and/or –OC43, but none against
NCAP (Figure 2A). Altogether, there were fewer CD4+ and CD8+
T cells reactive to the 7 spike and NCAP peptide pools in
comparison to unexposed HC (p<0.0005 for 1, p<0.005 for 6,
p<0.05 for two of 14 peptide responses, Table 2). Activated CD4+
T cells reactive against at least one of the spike peptide pools of
SARS-CoV-2 were found in 75% of unexposed HC, 81% of post
COVID-19 and in 75%and 63%of theHCoVs, respectively (Figures
2A, B, Table 2, and Supplementary Tables 1, 2). No CVID patient
showed a CD4+ T cell response and fewer patients a CD8+ T cell
response against SARS-CoV-2 NCAP compared to HC.

InCVIDpatients andHCwithpositiveTcell responses, peptide-
reactiveCD4+andCD8+T cells were found in all three cohorts in a
Frontiers in Immunology | www.frontiersin.org 4
similar frequency (Figures 2A, B). Further, activated CD4+ and
CD8+ T cells in response to SEB had comparable frequencies in all
individuals in the three cohorts (Figures 2C, D).

As themedian ageof the threegroupsdiffers,weanalyzed if there
is an association between age and SARS-CoV-2 spike peptide
response. We observed no significant differences in age and
response to peptides in all three cohorts (Supplementary Figure 3).

Next, we correlated the frequencies of T cells reactive with
corresponding peptide pools from SARS-CoV-2 and HCoV. In
CVID patients, no correlation analysis could be performed due to
too few individualswith reactiveT cells.However, allCVIDpatients
with HCoV-reactive T cells had also SARS-CoV-2-reactive T cells.
In unexposed HC we found significant correlations for most
CD4+ and CD8+ responses against spike peptide pools of N- and
C-terminal from all three coronaviruses, suggesting cross-reactive
SARS-CoV-2T cells (Tables 3A,B). In contrast, in post COVID-19
HC only a correlation of the CD4+ responses against spike of
HCoV -OC43, but not with SARS-CoV-2 was found (Table 3A).
No correlation of frequencies of spike reactive CD4+ T cells with
spike specific IgG was found (data not shown).

CD4+ and CD8+ Cytokine Responses
in Activated T Cells
The percentage of cytokine producing T cell responses in
CD154+CD137+CD4+ and CD137+CD8+ was analyzed by
intracellular staining. Using Boolean combination gating, seven
subsets of IFNg, TNFa and IL-2 single positive, IFNg/TNFa,
A B D

E F G

I

H

J K L

C

FIGURE 1 | Gating strategy for flow cytometry analysis of activated CD4+ and CD8+ T cells and their cytokine expression profile. Example of a gating strategy in a
post coronavirus disease 2019 (COVID-19) healthy control (HC) in response to stimulation with the SARS-CoV-2 C-terminal spike peptide pool. Shown are
(A) lymphocytes, (B) single cells, (C) living CD3+ T cells, (D) CD4+ and CD8+ T cells, (E) activated CD154+CD137+CD4+ T cells, (F–H) production of IFNg
(F), TNFa (G) and IL-2 (H) in CD154+CD137+ activated CD4+ T cells (I) and in CD137+CD8+ activated T cells (H–J) production of IFNg (J), TNFa (K) and IL-2
(L) in activated CD8+ T cells. Single, double (dp) or triple (tp) cytokine producing activated T cell subsets were analyzed using Boolean combination gates.
December 2020 | Volume 11 | Article 607918
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A

B

DC

FIGURE 2 | CD154+CD137+CD4+ and CD137+CD8+ T cell response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and human endemic corona
viruses (HCoV) peptides (A, B) and Staphylococcal enterotoxin B (SEB). (C, D) Peripheral blood mononuclear cells (PBMCs) of CVID (n=11. triangle), HC (n=12. empty black
dots) and post-COVID-19 (n=11. filled black dots) were stimulated with 1 µg/ml CoV peptides or 3 µg/ml SEB for 16 h. Frequencies of activated CD154+CD137+CD4+
(A) and CD137+CD8+ (B) T cells after stimulation with the different CoV peptides. Frequencies of activated CD154+CD137+CD4+ (C) CD137+CD8+ (D) after stimulation
with SEB. Only T cell responses above the threshold of 20% above background activation are shown. CVID patients lacked a response to SARS-CoV-2 NCAP peptide pool
in activated CD4+ T cells and are hence not shown (A). Median and interquartile range (IQR) are indicated. Statistical analysis was performed by non-parametric two-tailed
Mann–Whitney-U test for comparison of control and patient groups. A p-value ≤ 0.05 was considered as statistically significant.
TABLE 2 | T cell response to peptides of SARS-CoV-2 and HCoV in common variable immunodeficiency disorder (CVID), unexposed and post coronavirus disease
2019 (COVID-19) healthy control (HC).

Peptides CVID (n=11) unexposed HC (n=12) post COVID-19 HC (n=11)

n of individuals with activated CD4+ T cells

SARS-CoV-2 N-term 4 (p=0.06) 9 8
SARS-CoV-2 C-term 4 (p=0.06) 9 7
SARS-CoV-2 NCAP 0 (**) 6 5
HCoV-229E N-term 3 7 4
HCoV-229E C-term 2 (*) 8 7
HCoV-OC43 N-term 1 (*) 7 3
HCoV-OC43 C-term 3 (p=0.06) 8 6

n of individuals with activated CD8+ T cells

SARS-CoV-2 N-term 5 (**) 12 7
SARS-CoV-2 C-term 4 (p=0.06) 9 5
SARS-CoV-2 NCAP 2 (**) 9 5
HCoV-229E N-term 2 (**) 10 5
HCoV-229E C-term 2 (**) 9 6
HCoV-OC43 N-term 0 (***) 9 6
HCoV-OC43 C-term 1 (**) 9 6
Frontiers in Immunology | www.frontiersin.org
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For statistical analysis of CVID vs unexposed HC a 2 × 2 contingency table was used and tested for significance by c2-square test (two-tailed). A two-tailed p-value of p<0.05=*
(p<0.005=**; p<0.0005=***) was considered statistically significant. Significant values are bolded.
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TABLE 3A | Correlation of the frequency of CD4+ T cells activated by N- or C-terminal spike peptides of SARS-CoV-2 or the endemic corona viruses HCoV-229E and -OC43.

HCoV-229E N-term HCoV-229E C-term HCoV-OC43 N-term HCoV-OC43 C-term

healthy controls

SARS-CoV-2 N-term
r=0.8649
p=0.0159

n=7

r=0.7714
p=0.1028

n=6

SARS-CoV-2 C-term
r=0.9429
p=0.0167

n=6

r=0.8214
p=0.0341

n=7

HCoV-229E N-term
r=0.7827
p=0.0722

n=6

HCoV-229E C-term
r=0.8214
p=0.0341

n=7

post COVID-19

SARS-CoV-2 N-term
r=−0.316
p>0.9999

n=4

r=0.5
p>0.9999

n=3

SARS-CoV-2 C-term
r=−0.403
p=0.4333

n=6

r=0.6156
p=0.3
n=5

HCoV-229E N-term
n.d.
n=2

HCoV-229E C-term
r=0.8827
p=0.0444

n=6
Frontiers in Immunology | www.front
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Non-parametric spearman correlation was performed. A two-tailed p-value of p<0.05 was considered statistically significant. Significant values are bolded. [r, correlation coefficient; n,
number of tested pairs].
TABLE 3B | Correlation of the frequency of CD8+ T cells activated by N- or C-terminal spike peptides of SARS-CoV-2 or the endemic corona viruses HCoV-229E and -OC43.

HCoV-229E N-term HCoV-229E C-term HCoV-OC43 N-term HCoV-OC43 C-term

healthy controls

SARS-CoV-2 N-term
r=0.8842
p=0.0013

n=10

r=0.7167
p=0.0369

n=9

SARS-CoV-2 C-term
r=0.9461
p=0.0013

n=8

r=0.8929
p=0.0123

n=7

HCoV-229E N-term
r=0.7699
p=0.0193

n=9

HCoV-229E C-term
r=0.7904
p=0.0251

n=8

post COVID-19

SARS-CoV-2 N-term
r=0.6669
p=0.2667

n=5

r=0.7714
p=0.1028

n=6

SARS-CoV-2 C-term
r=0.6
p=0.35
n=5

r=0
p>0.9999

n=4

HCoV-229E N-term
r=0.7182
p=0.1667

n=5

HCoV-229E C-term
r=0.1
p=0.95
n=5
Non-parametric spearman correlation was performed. A two-tailed p-value of p<0.05 was considered statistically significant. Significant values are bolded. [r, correlation coefficient; n,
number of tested pairs].
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IFNg/IL-2 and IL-2/TNFa double positive (dp) and IFNg/TNFa/
IL-2 triple positive (tp) cells were depicted (Figure 1 for gating
strategy). In the entire cohort, the most frequent CD4+ peptide
reactive cytokine subsets were IL-2/TNFa dp and tp T cells
(Figures 3A, C). CVID patients had significantly lower tp T cells
against the spike peptides of SARS-CoV-2 and HCoV-OC43 vs
unexposed HC (SARS-CoV-2: N-terminal p=0.0020, C-terminal
p=0.036; HCoV-OC43 C-terminal p=0.05; Figure 3A), while
there were no differences among the post COVID-19 and
unexposed HC cohorts. Interestingly, post COVID-19 patients
had significantly higher frequencies of tp SARS-CoV-2 NCAP-
reactive CD4+ T cells clearly distinguishing them from
unexposed HC (p=0.0043, Figure 3A). In CVID patients, no
CD154+CD137+CD4+ T cell response to SARS-CoV-2 NCAP
were found (Figure 2B and Table 2). The other cytokine subsets
are shown in Supplements (Supplementary Figure 4). Strongest
cytokine responses in CD8+ activated T cells were observed in
IFNg/TNFa dp and tp subsets, but no significant differences
among the cohorts were found (Figures 3B, D).

Of note, comparable frequencies of SEB-reactive CD154+CD137
+CD4+ and CD137+CD8+ cytokine producing activated T cell
subsets were observed in all three cohorts, implicating that there is
not a general impaired T cell cytokine production in CVID patients
(Figures 3E, F).
DISCUSSION

In this study, we provide first evidence of endemic HCoV- and
SARS-CoV-2-cross-reactive T cells in CVID patients. However,
fewer reactive CD4+ and CD8+ T cells to spike peptide pools and
fewer multifunctional CD4+ compared to HC and no NCAP-
reactive CD4+ cells were detected.

Our finding of normal frequencies of HCoV and SARS-CoV-2-
reactive T cells in a subset of CVID patients is in line with previous
studies showing that anti-viral T cell immunity is not relevantly
impaired inmostCVIDpatients (13, 18, 19).CVIDpatientshad less
frequent T cells reactive against spike peptides of the common cold
corona viruses HCoV-229E and -OC43. Possible reasons for this
could be that IgG replacement therapymay protect from infections
with common cold HCoVs or that patients with CVID avoid
contacts with acutely infected persons. Normal T cell reactivity in
CVID patients was demonstrated by responses to SEB stimulation,
arguing against an obvious underlying T cell defect in non-
responders, although an impaired T cell response due to CVID-
related immune dysfunction cannot be excluded.

There is increasingevidence, that themajority ofHChaveT cells
reactive to human endemic corona viruses. Our data also provides
further evidence for frequent pre-existing T cells reactive against
SARS-CoV-2 in unexposed healthy individuals. The presence of
cross-reactive T cells to peptide pools of SARS-CoV-2 in unexposed
healthy individuals was already reported by different groups
ranging from 35% to 90% (7–10, 20, 21). These differences likely
depend on the sensitivity of different assays used, and the type of
peptide pools. We observed a high correlation of T cells reactive
against spikeN-orC-terminus of the twoHCoVs andSARS-CoV-2
Frontiers in Immunology | www.frontiersin.org 7
in unexposed but not post COVID-19 HC suggesting cross-
reactivity of pre-existing T cells. This finding is in accordance
with recent studies from Mateus and Nelde (9, 10). While the
RBD is poorly conserved, they provide evidence for homology of
many MHC epitopes of the spike protein between HCoV and
SARS-CoV-2.We foundmost unexposed and post COVID-19HC
to have SARS-CoV-2 reactive CD4+ and CD8+ T cells in similar
frequencies. In contrast tomost other studies, T cell analyses in our
convalescentHCwas performedmedian 2.5months after infection.
This could explain why in our study the frequency of SARS-CoV-2
reactiveT cells didnot differ betweenCOVID-19 recoveredpatients
and unexposed HC.

Virus-specific memory T cells have been shown to persist for
many years after infection with SARS-CoV-1 (21–23). In line
with these observations, we found that SARS-CoV-2-reactive T
cells in convalescent patients acquired a multifunctional (triple
positive for INFg, IL-2 and TNFa) phenotype, which is
considered as correlate of protective immunity (24). We found
much higher frequencies of tp NCAP reactive CD4+ T cells in
post COVID-19 compared to unexposed HC, while high tp spike
reactive CD4+ T cells were found in both groups. In CVID
patients, no NCAP reactive CD4+ T cells could be detected and
spike reactive CD4+ T cells showed little to no tp. A possible
explanation for the different cytokine profile is that these CVID
patients had contact with HCoV longer time ago. This
hypothesis would be supported by comparable frequencies of
TNFa single and TNFa/IL-2 dp spike reactive T cells in
unexposed CVID and HC belonging to less differentiated and
longer lasting memory T cells (16). An alternate explanation
would be an impaired ability to mount tp T cells. This is,
however, less likely, as we found similar frequencies of tp SEB
T cells and tp influenza-specific T cells in CVID vs HC after
vaccination (13).

Our cross-sectional study is limitedwith regards to lownumbers
of donors and amedian higher age in CVID thanHC.However, we
observed no influence of age on T cell responses. Taken into
consideration, that approximately 10 % of patients with mild or
asymptomatic SARS-CoV-2 infections fail to mount a detectable
antibody response, we cannot exclude that one of our HC had an
unrecognized infection with SARS-CoV-2 although it is rather
unlikely due to the low number of documented infections in our
area in spring 2020. Furthermore, it is of critical importance to
evaluate SARS-CoV-2 T cell responses in post COVID-19 CVID
patients, too. One limitation of our study is that we could not
analyze the T cell response in CVID patients post COVID-19, as
until now none of our CVID patients at Charité had COVID-19.
Unfortunately, given the continuing spreadof the pandemic, SARS-
CoV-2 infections in our cohort are very likely to occur and might
contribute in evaluating the potential role of the here detected pre-
existing SARS-CoV-2 T cells in this patient group. It further
remains to be clarified, if SARS-CoV-2 reactive T cells after
infection or after vaccination are able to protect or ameliorate the
infection in the absence of a humoral immune response as it was
reported fromprevious studies ofMERS andSARS-CoV-1 (25–28).
Thebiological relevanceofapre-existing immunity toSARS-CoV-2
remains unclear and could be beneficial or even detrimental. In
December 2020 | Volume 11 | Article 607918
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pandemic influenzaH1N1, pre-existing T cell immunitywas found
to be beneficial (29, 30), so it is tempting to speculate that (cross-)
reactive SARS-CoV-2 T cells may provide at least partial protection
against COVID-19 disease.

Taken together, our data provides evidence for cross-reactive
SARS-CoV-2 cells in a subset of CVID patients as well as a
rationale for SARS-CoV-2 vaccination and has implications for
the monitoring of vaccine-induced T cell responses.
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