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Immune privilege (IP), a term introduced to explain the unpredicted acceptance of
allogeneic grafts by the eye and the brain, is considered a unique property of these
tissues. However, immune responses are modified by the tissue in which they occur, most
of which possess IP to some degree. The eye therefore displays a spectrum of IP because
it comprises several tissues. IP as originally conceived can only apply to the retina as it
contains few tissue-resident bone-marrow derived myeloid cells and is immunologically
shielded by a sophisticated barrier – an inner vascular and an outer epithelial barrier at the
retinal pigment epithelium. The vascular barrier comprises the vascular endothelium and
the glia limitans. Immune cells do not cross the blood-retinal barrier (BRB) despite two-
way transport of interstitial fluid, governed by tissue oncotic pressure. The BRB, and the
blood-brain barrier (BBB) mature in the neonatal period under signals from the expanding
microbiome and by 18 months are fully established. However, the adult eye is susceptible
to intraocular inflammation (uveitis; frequency ~200/100,000 population). Uveitis involving
the retinal parenchyma (posterior uveitis, PU) breaches IP, while IP is essentially irrelevant
in inflammation involving the ocular chambers, uveal tract and ocular coats (anterior/
intermediate uveitis/sclerouveitis, AU). Infections cause ~50% cases of AU and PU but
infection may also underlie the pathogenesis of immune-mediated “non-infectious” uveitis.
Dysbiosis accompanies the commonest form, HLA-B27–associated AU, while latent
infections underlie BRB breakdown in PU. This review considers the pathogenesis of
uveitis in the context of IP, infection, environment, and the microbiome.

Keywords: T regulatory cells, folate, probiotics, blood retinal barrier, adjuvant effect, commensals, nutritionalmetabolites
INTRODUCTION

Immune privilege (IP) was conceived as a protective response to immune challenge by tissues with
limited capacity for renewal such as the eye and the brain [reviewed in (1)].Matzinger andKamala have
suggested that all tissues modulate the immune response including frontline tissues such as skin and
mucosa (2). If this is valid, then the eye (and the brain) which are composites of several types of tissue,
can be considered to express various levels of “privilege.”Thus, the level of IP for each component of the
eye and the brain wouldmatch the level of IP of corresponding tissues: in the case of the eye, composed
org January 2021 | Volume 11 | Article 6083771
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as it is of vascular and avascular connective tissues forming a
barrier-lined case around neural tissue, several levels of IP
probably hold sway,with the retina at the top of the scale (Figure 1).

However, it has been observed in several previous reviews that
despite high levels of IP, ocular tissues are susceptible to
inflammation and infection (1, 4–9). For instance, the long-held
reputation for corneal allograft success only truly applies to specific
conditions such as keratoconus and certain dystrophies. Once
inflamed the cornea loses its IP and becomes “high risk” for
rejection with an allograft success rate possibly less than other
vascularized solid organs (10). Similarly, the uveal tract and
meninges display levels of IP little different from other vascular
tissues [reviewed in (11)], and so it is no surprise that the anterior
segment is susceptible to inflammation and that anterior uveitis
(AU) is the most common brand of uveitis (12). Probably IP in the
eye, if it exists as originally conceived, can be applied only to the
retina (11). This is not to diminish in any way the unique
immunological properties of the retina and the brain parenchyma
which are basedonphysical, cellular,molecular and immunological
features setting them apart from other tissues. Nor does it gainsay
the influence all tissueshaveon the immune response (2).Context is
everything and a review of these aspects is presented here.

A new facet to immune processes has emerged based on our
rapidly evolving appreciation of the influence of the microbiome
Frontiers in Immunology | www.frontiersin.org 2
on development of immunity. The acquisition and maturation of
a healthy microbiome during the post-natal period and early
infancy shapes the development of the blood-central nervous
system (CNS) barrier (13–15) and so the proper establishment of
a healthy microbiome is critically linked to the development of a
mature immune system which determines susceptibility to CNS
infection during this time. This applies not only to the CNS but
also to other systems such as the musculoskeletal system. The
long-recognized relationship between inflammatory bowel
disease (IBD), the spondylo-arthropathies (SpA) and ocular
inflammatory disease is now being re-appraised in terms of a
dysregulated microbiome (dysbiosis) (16) which in the context of
IP raises many questions. This is also discussed.
IMMUNE PRIVILEGE: HOW THE CONCEPT
AROSE AND HOW IT HAS BLURRED OUR
VISION CONCERNING THE REGULATION
OF THE IMMUNE RESPONSE

The concept of IP stems back to the nineteenth century
[reviewed in (17)] but the term was coined and popularized by
Medawar whose experiments showing acceptance of skin
FIGURE 1 | Hierarchy of levels of Immune Privilege (IP). IP may be considered as a property of all tissues with varying degrees of ability to influence the outcome of
immune responses played out within their own microenvironment. Thus, tissues such as the skin and mucosal surfaces generate strong immune reactions to
pathogens, experience extensive tissue damage and have considerable capacity for repair, while at the other extreme neural tissue (brain parenchyma, retina) temper
or even prevent immune responses, induce latency rather than replication in pathogens [reviewed in (3).] but have limited ability for repair if severely damaged.
Between these two extremes, different tissues have different levels of “privilege.” The outcome of pathogen challenge to any tissue depends on the level of privilege
which is determined by the nature, integrity and strength of that tissue’s barrier to pathogen invasion. Barriers are complex entities comprising physical, chemical,
molecular, cellular, and immunological components and are specific to each tissue. The figure illustrates what happens under normal circumstances in the top panel:
here the balance of IP is set toward strong immune and repair processes in the skin at one end of the spectrum but a weak immune response in the CNS at the
other end of the spectrum risks uncontrolled infection. In contrast, when this balance is shifted as shown in the lower panel, outcomes tend to reverse: in the skin, a
weaker immune response might fail to clear infections or fail to promote repair while in the CNS better control of infection might be possible but still does not clear
pathogens, instead promoting latent infections.
January 2021 | Volume 11 | Article 608377
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allografts in the anterior chamber of the eye supported the notion
(18, 19). In essence, IP was considered a special feature of tissues
such as the eye and the brain in which the default immune
rejection of allografts and alloantigens failed to occur unless the
non-rejected tissue developed connecting blood vessels (20). IP
has been attributed to sequestration of tissue self-antigens from
the immune system behind blood-tissue barriers, due to lack of
blood vessels, lack of lymphatic drainage, absence of MHC Class
II antigen presenting cells (APC), high concentrations of
immunosuppressive tissue immunomodulators, and more
recently, the activity of regulatory T cells (Treg) (21). Several
reviews of proposed mechanisms underlying IP have been
published (5, 7–9, 21–26).

A second phenomenon linked to IP has also been described
namely anterior chamber-associated immune deviation (ACAID)
(27–29) as has a similar phenomenon in the brain (brain-
associated immune deviation, BRAID) (30). Immune deviation
is a recognized immunological phenomenon in which antigen-
specific immunity, usually in the form of cell-mediated delayed-
type hypersensitivity (DTH), is suppressed while being “deviated”
toward humoral immunity, usually the generation of IgG2
antibodies. Antigens inoculated into the anterior chamber of
experimental animals generated an ACAID response which
usually took the form of a reduced DTH response, but an intact
complement-fixing IgG2 B cell response, when re-challenged with
the same antigen in the skin. As new discoveries in T cell biology
were made, ACAID was relabeled to show that the immune
deviation was based on a shift from an antigen-specific Th1
response to Th2 (31). However, it was later shown that systemic
Th2 responses were also down-regulated after antigen inoculation
into the anterior chamber of the eye (32).

How ACAID, and immune deviation more broadly, was
induced became a major research focus in the latter half of the
twentieth century. Some form of regulatory cell suppressing DTH
T effector cells (Teff) had been assumed and CD4+ T cells, CD4+

Treg, natural killer (NK) cells and B cells as well as other thymus-
derived cells such as regulatory NK-T cells have all been shown to
be involved [reviewed in (11)]. Perhaps the most detailed
mechanism described has been the induction of alloantigen
specific CD8+ suppressor cells in the spleen through interaction
of invariant NK cells with F4/80+ macrophages (7). This is a
complex process and the details remain obscure. For instance, it is
clear that the spleen is undoubtedly involved since splenectomy
abrogates ACAID (33, 34). However, there is a three day window
before splenectomy becomes ineffective in preventing ACAID and
much has been going on in that interval since signals to immune
and trafficking cells are of the order of minutes to hours (35–37).
In addition, since there are no lymphatics to the spleen but there
are well defined lymphatic channels from the anterior chamber to
the eye-draining lymph node (38), the precise trafficking of signals
and cells between the anterior chamber, the draining lymph node,
the blood circulation, the thymus and eventually the spleen are
not clear.

There is no denying that ACAID occurs. However, its
physiological relevance is less clear. ACAID is an experimental
phenomenon and is often equated with IP, but this is not a safe
Frontiers in Immunology | www.frontiersin.org 3
assumption. IP refers to the reduced or modified immune response
by tissues due to the properties of that tissue and, as detailed above,
is best exhibited by the retina and parenchymal tissue of the brain.
ACAID in contrast is a systemic response involving the induction of
suppressor/regulatory cells in the periphery, which is revealed by
inoculating antigen into the anterior chamber. There is evidence
that this systemic phenomenon may be active during homeostasis.
Although it has been suggested that CNS parenchymal and retinal
antigens are sequestered behind the blood retinal and blood brain
barriers (BRB, BBB) (39), i.e. they are “ignored,” recent studies
have shown that CNS-specific antigens are recognized by T cells in
the periphery but such T cells do not have access to the CNS
unless they are activated and do not cause damage except when
there is recognition of cognate antigen, e.g. in the context of
inflammation with cross-reacting antigens (40, 41). In addition,
the BRB (and the BBB) is not only a physical barrier of contiguous
endothelial cells bound together by tight junctions, but includes the
immunomodulatory pericyte, the resident perivascular macrophage,
and the glia limitans composed of the foot processes of glia/Müller
cells, with contributions from regulatory microglial cells and
neuronal dendrites, all of which comprises the neurovascular unit
(NVU) (Figure 2). However, the NVU and the BRB/BBB are also
presided over by Treg [reviewed in (9, 42)] which theoretically could
be the equivalent of ACAID-inducing T suppressor cells and in
some sense at least should be specific for CNS antigens, i.e. they
should be “educated” by CNS antigen in the way described above.

Whether Treg, which some authors envisage as contributing
to the immunological component of the BRB/BBB (43, 44), are
physiologically equivalent to the T suppressors and Treg of
ACAID may be a question which remains unanswered. More
important perhaps is understanding why the BRB and the BBB
which normally exclude Teff cells, can be breached if the
conditions are right (45). This seems to involve innate immune
cells which act as escorts in assisting passage of T cells and
further activate T cells when they are in situ [reviewed in (46)].

There is considerable evidence that immune protection of the
retina (aka IP) involves regulatory immune cells of which there are
several types. Treg have a prominent place in overall immune
tolerance and are also active in retinal homeostasis. Whether this
amounts to a specialized form of immune protection or “privilege”
or is a variation on the theme of immunological tolerance
(depending on the tissue) may be a fine point. The important
issue is to understand how this protection might be lost,
particularly if the target of attack is self-antigen. These processes
are discussed in the following sections.
IMMUNE DEFENSE, IMMUNE PRIVILEGE,
AND TISSUE BARRIERS: INTERNAL AND
EXTERNAL BARRIERS

Defense against pathogen/antigen invasion is initially about
barriers. Once the barrier is breached defense becomes a
question of how quickly and effectively the pathogen can be
cleared. The strength of the immune response is then the
January 2021 | Volume 11 | Article 608377
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deciding factor and can be insufficient, sufficient, or exaggerated.
In IP-high tissues, the barrier may be effective initially but under
the right conditions, can be broken as in the classic model of
experimental autoimmune uveoretinitis (EAU) (47, 48) (Figures 3
and 4). Damage can then be extensive and, in the case of the brain,
life-threatening. However, many factors modify both the risk of
BRB breakdown and the level of damage, particularly genetic
factors; for instance, only a restricted number of rodent strains are
susceptible to EAU (50, 51). Similar genetic susceptibility to BRB
breakdown, as in uveoretinitis, occurs in humans (52, 53)
(see below).

The skin and mucosal surfaces are probably the strongest
barriers to pathogen invasion. However, these are not simply
physical barriers but contain a wide array of immune cells and
molecules which can kill or disable pathogens (54, 55). These
entities include myeloid cells like Langerhans cells, dendritic cells
(DC) and macrophages, a rich variety of T cells such as
intraepithelial and dermal/stromal Teff and tissue resident
memory (TRM) cells, mucosa-associated invariant T cells
(MAIT), Treg, gdT cells, innate lymphocytes (ILC 1, 2, and 3)
and NKT cells (56). Immune-modulating molecules include those
constitutively present during homeostasis (defensins,
neuropeptides, TGFb, thrombospondin, and connective tissue
activating factor/CTAF) (57) and cell associated ligand/receptor
pairs such as Fas/FasL, Trail/DR5, CD47/SIRP-a, ICOS/ICOSL, and
more (58, 59), as well as inducible molecules such as cytokines and
chemokines. These activate resident immune cells as well as initiate
a systemic immune response with recruitment of bone marrow
derived cells to wall off and insulate against pathogen spread.
Frontiers in Immunology | www.frontiersin.org 4
These external barriers are strong and display a level of IP
whereby they quench potentially damaging immune responses
(60). This is particularly important for the skin and mucosal
surfaces, specifically the gut mucosa, since they are exposed to a
vast panoply (trillions) of commensal microorganisms in the
microbiome. This includes bacteria, viruses, fungi, archaea, and
protozoa. In the gut, the microbiome actively participates in
barrier homeostasis by secreting anti-inflammatory molecules
such as short-chain fatty acids (SCFA), small molecules which
can pass through the gut barrier into the system and influence
immune cell function (61). In this regard, the intestinal and
presumably other mucosal barriers share properties with CNS
barriers which promote T cell tolerance and the generation of
Treg cells (see below) [reviewed in (60)]. The function of the
microbiome is not only to suppress settlement of pathogenic
entities, but also to harvest and generate nutrients/metabolites
(e.g. folate) and energy (e.g. SCFA) from nutritional sources
which the host has to provide (62). SCFA have direct stabilizing
effects on intestinal integrity (63) as well as priming effects on
antigen APC and Treg (64–66) and appear to harness the
protective function of gut ILC3 cells through free fatty acid
receptor 2 (FFAR2) and the production of IL22 (67).

The skin and mucosal barriers to the external world thus have
similarities to the internal barriers between solid organs and the
blood. These barriers are variably complete, being easily
permeated in tissues with “leaky” blood vessels such as liver and
spleen, choroid plexus and uveal tract, and highly restrictive in the
CNS. Here the NVU provides a complex physical, molecular,
cellular and immunological barrier, in which pericytes, glia,
FIGURE 2 | The Retinal Neurovascular Unit. The retinal neurovascular unit (NVU) is the seat of the blood retinal barrier (BRB), situated at the capillary/venous side of
the retinal circulation. Two levels of “barrier” exist: a) at the endothelial tight junctions (1), supported by pericytes and under immunological surveillance by
perivascular macrophages; and b) at the glia limitans (2), constructed by astrocyte glial cell and Müller glial cell foot processes, with contributions to the continuous
membranous structure form microglial cells and neuronal dendritic processes.
January 2021 | Volume 11 | Article 608377
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perivascular macrophages and microglia collaborate (Figure 2).
The microbiome has a significant role to play in the development
of the BBB and perhaps also in the BRB [discussed in (68)]. Mice
reared in germ-free conditions have increased permeability of the
BBB, continuing on into adult life and appear to have reductions
in tight junction proteins including occludin and claudin 5 (13),
indicating a role for the microbiome in maturation of the
Frontiers in Immunology | www.frontiersin.org 5
endothelial tight junctions. Similar control may also be exerted
by the microbiome over the development of the blood-testis
barrier (69). We have mentioned that maturation of CNS
barriers occurs during the first months/year of life under the
control of the developing microbiome and disruption of this
critical process in the neonatal period renders infants susceptible
to infections, particularly common viral infections such as herpes
FIGURE 3 | Experimental Autoimmune Uveoretinitis (EAU): a model for sight-threatening posterior uveitis. Clinical and histological signs of EAU in mice. EAU may be
induced by subcutaneous injection of interphotoreceptor retinol binding protein (IRBP) peptide 161–180 in B10.RIII mice or peptide 1–20 in C57BL/6 mice with
Complete Freund’s Adjuvant (CFA) and pertussis toxin (Ptx). Disease is mediated by a Th1/IL12 and/or a Th17/IL23 mechanism with dominant effect being Th17
mediated disease. The images are from the C57/BL6 mouse model. Clinical images are shown: (A) early focal chorioretinal infiltrate (arrowhead); (B) developing
retinal vasculitis shown as focal perivascular “sheathing” (arrows); (C) extensive retinal vasculitis and large granulomatous infiltrate; (D) severe retinal inflammation,
damage and atrophy; (E) Section of normal mouse retina; (F) EAU showing severe inflammation with large central area of retinal necrosis and loss of photoreceptors.
Modified from (48) under copyright agreement with Elsevier Publishing license number 4887001207791.
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simplex (HSV) and cytomegalovirus (CMV). It is at this time that
lifelong viral latency is frequently established [for review see (11)].
Remarkably, these effects can be modified in utero since stabilizing
the maternal microbiome can have beneficial effects on weanling
BBB tight junction formation promoting reduced permeability
(70). It is clear therefore that the founding of a healthy
microbiome in the early neonatal period is necessary for the
establishment of the IP status of the CNS in adulthood. There
are many factors which influence the establishment of a healthy
microbiome in this critical perinatal period such as the type of
delivery, the use of antibiotics, and breast- vs. bottle feeding, the
significance of which is now being fully appreciated (71).

Interestingly, at the opposite end of the aging spectrum, defects
in the integrity of the NVU of the BBB are considered to underly
neurodegenerative disease (72) and may be linked to conditions
such as diabetes (73). Similar defects in the BRB are linked to age-
related disease in the eye which have an underlying inflammatory
pathogenesis (74, 75). Some of these conditions are proposed to be
driven via a gut-CNS axis such as Alzheimer’s disease (76). The
nature of the CNS immune response (“privilege”) may make it
more susceptible to latent infections (see Figure 1) with pathogens
such as CMV acquired in childhood and prions acquired in
adulthood liable to reactivation as immune defenses weaken in
old age [reviewed in (11)].
UVEITIS, IMMUNE PRIVILEGE,
AND THE BLOOD RETINAL BARRIER

The above considerations allow an interpretation of ocular
inflammation, in particular uveitis, in the context of IP. Uveitis
has been classified anatomically (anterior vs. posterior),
etiologically (infectious vs. non-infections) and pathogenetically
(autoimmune vs. autoinflammatory), most recently as part of the
Frontiers in Immunology | www.frontiersin.org 6
standardizationof uveitis nomenclature (SUN)project (77) andhas
been reviewed elsewhere (68, 77, 78). Since the eye is composed of a
range of discrete tissue types, inflammation may involve one or
more of these tissues individually or together and “uveitis” (i.e.
swelling and leakage of uveal blood vessels) is necessarily part of
these. Thus, inflammation of the parenchyma of the ocular coats
(scleritis, keratitis, iritis, cyclitis, and choroiditis) always involves
inflammation of the uveal tract and its blood vessels. Inflammation
at these sites does not usually involve the retinal vasculature. In
contrast, inflammation of the retina (retinitis, retinal vasculitis)
almost always involves uveal vessels. Acute AU is a self-limiting
disease in which the retina is not usually involved. Anterior and
intermediate uveitis may be complicated by cytokine-mediated
secondary macular edema (swelling of the retina at its thinnest
central region) in a bystander fashion if these conditions persist and
become chronic but the retina is not usually directly under attack.

Thus, one can view AU, and associated conditions such as
keratouveitis and sclerouveitis as ocular inflammatory conditions
which do not break high level-IP since they do not breach the BRB.
In this sense, the level of IP (see above comments on relative IP)
expressed by tissues such as the cornea and sclera is not
significantly different from other tissues which sit behind the
external barriers of the skin and mucosa but outside the highly
developed CNS barriers. Similar considerations apply to the
coverings/surrounding tissues of the brain, i.e. the meninges. A
possible “protective” role for IP can thus be considered specifically
for CNS neural tissue (retina and brain parenchyma) but much
less so for ocular and brain tissues outside the CNS barrier such as
the uvea and meninges, and this is reflected in the much greater
frequency of AU over PU (posterior uveitis) and meningitis over
encephalomyelitis (11).

When IP is lost and the BRB and the BBB are breached, the
outcome is sight-threatening and life-threatening, respectively. The
most dangerous time is during development of the BBB and BRB in
FIGURE 4 | Experimental Autoimmune Uveoretinitis (EAU) in the rat model. EAU was induced in Lewis rats using retinal S antigen as described in (49). The image is a
toluidine blue-stained thin section of the inner retina showing perivascular inflammatory cells (large arrows, black) retained within the glia limitans (arrow heads, red). Cells
which have entered the retinal parenchyma have pyknotic nuclei and appear to be undergoing apoptosis (small arrows, yellow). Image provided by permission of the authors.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Mölzer et al. Rethinking Immune Privilege
the prenatal and neonatal periods and in early infancy/childhood
(see above section). Many infections acquired at this time are
cleared only partially by the developing immune system; where
tissues have lower levels of IP, infections are cleared quite efficiently
and completely e.g. from the gut and its secondary lymphoid
organs. However, from areas with higher levels of IP such as the
CNS, the testes/ovaries and stem cell niches in the bone marrow,
organisms which have made it through both the external and
internal barriers, may further respond to the unfavorable CNS
environment by becoming latent [reviewed in (11)]. Here, the
immunological component of the IP-dependent CNS barrier
comes into play in which Treg sustain latency by suppressing
potential Teff and TRM cells, thereby preventing damaging
immune responses in essential tissues and organs. The strongest
evidence that this mechanism is functioning in immune defense is
the “experiment of nature” brought on by the AIDS epidemic. Only
when the global circulating T cell numbers, which includes Teff,
TRM and Treg cells decline below 200 cells/ml and especially when
they are less than 50 cells/ml, do latent infections, including those
acquired in early life, become active infections and spread through
the tissues (79, 80). This is particularly so for viral infections, such as
CMV, HSV and varicella zoster virus (VZV) but also for infections
acquired in adulthood which were held in check by the immune
system such as Mycobacterium tuberculosis (Mtb) and Toxoplasma
gondii (81–83). Even more convincing is that opportunistic
infections by pathogens which would normally present no threat
to the host, and in many cases would be regarded as “commensals,”
come to the fore, particularly as brain and retinal infections,
when T cell immunity in particular is compromised (e.g.
pneumocystis) (84).

IP, therefore, as it affects the eye, is retina-centric and isprimarily
an immunological device whereby Treg and other immune
regulatory cells, as major components of the BRB, control the
activity of Teff cells. If engaged in clearing infection, Teff would
generate excessive tissue damage. The gut microbiome not only
plays a major role in development andmaintenance of the physical
BRB and its tight junctions but is central to the generation of the all-
important Treg which underpin IP. When retina-centric IP breaks
down retina-damaging sight-threatening uveoretinitis takes place.

In contrast, IP is relatively less important in non-retinal forms
of ocular inflammation including autoimmune anterior uveitis
(AAU) and corneal inflammation. Inflammation of the anterior
segment is managed by the host in much the same way as
inflammation at other sites including joints, muscle, and
connective tissues generally. Indeed, the most common form of
AAU is that associated with SpA and its etiology is similar (16,
56). Many cases of presumed non-infectious uveitis have recently
been shown to be linked to infection and may in fact be due to
persistent/latent infections delivered to the eye and other tissues
via latently infected bone marrow precursors (85–88).
PATHOGENESIS OF UVEITIS

The pathogenesis of uveitis can be considered by defining the
conditions in which the disease occurs. Firstly, uveitis is a blanket
term which applies to all forms of ocular inflammation involving
Frontiers in Immunology | www.frontiersin.org 7
any of the coats of the eye (Table 1). In infectious uveitis, where a
replicating pathogen has been identified, the etiology is quite clear.
In this context, endophthalmitis, including post-surgical
endophthalmitis caused by bacterial or fungal infection is a
particular form of uveitis. HSV stromal keratitis (HSK) is another
characteristic and relatively common form of inflammation in
which significant cell infiltration in the anterior chamber of the
eye can be observed and indeed the entire uveal tract may be
involved as has been observed in mouse models (46, 89). Scleritis
caused by infection, such as Mtb produces a sclero-choroiditis
which similarly involves the uveal tract, preferentially locating in
the choroid (90, 91). As indicated in the section above, infectious
retinitis in immunocompromised individuals invariably involves the
uveal tract but the reverse is much less common, i.e. most forms of
uveitis do not involve the retina. Infectious AU and PU can thus be
defined quite clearly by the BRB.

Terminology of Ocular inflammation (Uveitis)
In the absence of infection, the etiology of ocular inflammation is
less clear. Autoimmunity as amechanismhas been championed for
many decades of the 20th century, initially focusing on the uveal
tract as a source of antigen [reviewed in (92, 93)]. The discovery of
retinal antigens as potent inducers of PU (uveoretintitis, EAU) (94,
95) in animal models, similar in pathogenesis to other models of
autoimmunity (experimental autoimmune encephalomyelitis,
EAE; experimental autoimmune thyroiditis, EAT) (96–98)
opened the door to a rich field of discovery relating to the
pathogenic antigen-specific T cells (Th1, Th17), antigen
presenting DC, effector macrophages and other myeloid cells as
well as pro-inflammatory cytokines (TNFa, IL1, IL12, IL23) all
participating one way or another with the mechanism of uveitis
[reviewed in (99)]. Autoantigens in AU have been much more
difficult to identify: perhaps the best model is the proteoglycan
transgenic mouse in which there is a predominance of T cells
expressing a T cell receptor (TCR) specific for the arthritogenic
epitope of theG1domain of the proteoglycan aggrecan (100).These
mice develop a joint disease resembling spondylo-arthritis. A
proportion of the mice also develop AU but, importantly, the
uveitis does not involve the retina, once more emphasizing the
divide between AU and PU, buttressed by the BRB.

However, evidence for autoimmunity in human uveitis, either
anterior or posterior, is thin. While adaptive immune B and T
cell reactivity to ocular antigens has been amply documented in
patients with uveitis, similar activity has been reported in healthy
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TABLE 1 | Terminology of ocular inflammation in uveitis.

Terminology of ocular inflammation (uveitis)

Type of uveitis Etiology Tissues affected

Anterior Infectious
Non-infectious

Iris, ciliary body, sclera, cornea

Intermediate Infectious
Non-infectious

Ciliary body, vitreous, peripheral retina

Posterior Infectious
Non-infectious

Retina, retinal vessels, optic nerve
Disease classification is based on type, etiology and affected tissues in uveitis.
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individuals without disease [reviewed in (68)], and pathogenicity
has been impossible to prove so far. Probably the best evidence
might come from interventions such as cellular therapies
(antigen-primed DC or Treg cell therapy) to demonstrate
antigen specificity conclusively [reviewed in (101)].

Dysregulated innate immunity, or autoinflammatory disease,
has more recently been proposed as a mechanism for many
forms of uveitis. Endotoxic uveitis is a standard model in which
local or systemic inoculation of endotoxin induces a short-lived
ocular inflammation [reviewed in (102)]. Peptidoglycan and
other pathogen-associated molecular patterns (PAMPs) such as
CpG induce a similar type of inflammation, acting through
pathogen recognition receptors including toll-like receptors
(TLR) and C-type lectins and are mediated by downstream
signaling pathways such as PI3 Kinase/Akt/NFKB, Syk-CARD9,
and the Asc/NLRP3/inflammasome pathways (103–106). Most
of these models resemble AU and do not involve the retina
except in a bystander fashion. Similarly, uveitis associated with
many of the human autoinflammatory syndromes and proposed
autoinflammatory diseases such as SpA, is almost exclusively
restricted to AU [reviewed in (68)]. The main exception to this is
Behçet’s disease (BD), which can include AU, PU or panuveitis
in its manifestations, as well as neuro-Behçet’s symptoms
(cerebral vasculitis) (107–110).

Interestingly, recent studies have linked EAU, a recognized
experimental autoimmune disease induced by specific antigen
(50, 95), with gut microbiota. IRBP-TCR transgenic B10.RIII
mice with a high precursor frequency (~25%) of T cells specific
for peptide IRBP161–180 of the retinal antigen interphotoreceptor
retinol binding protein (IRBP) develop spontaneous uveoretinitis
gradually fromp20 (post-natal day20) and reaching an incidenceof
100%by2months of age (111).However, disease severity is reduced
if the mice are reared in a germ free environment (112). Similarly,
C57BL/6 mice immunized with IRBP peptide IRBP1–20 emulsified
in Complete Freund’s adjuvant (CFA) develop EAU but not in a
germ free environment (113). Furthermore, treatment ofmice with
antibiotics prior to induction of EAU prevents disease but cannot
stop disease once it has been induced (113). These data indicate that
themicrobiome strongly influences the risk of BRB breakdown and
the immunological component of so-called IP depends on the
condition of the microbiome. The question which remains is
whether particular microbiota/commensals which constitute the
microbiome specifically annul the protection of CNS IP. Studies in
humans indicate that certain diseases such as BD and ankylosing
spondylitis (AS) are associated with specific microbiome
composition (16, 109, 110), although, if the above dependence of
IP on the BRB is to hold true, retinal vasculitis in BD but not AU in
AS might expect to be covered by IP.

A case has been made that retinal antigens are sequestered
behind the BRB (114) and are not recognized by the peripheral
immune system (immunological ignorance). In this scenario, a
healthyBRBprevents access by autoreactiveT cells to the retina and
so, retinal inflammation is prevented. However, in the presence of
dysbiosis commensal antigen-specific T cells are activated and
circulate systemically. It is suggested that such T cells are cross-
reactivewith retinal antigens andhave thepotential to cross theBRB
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and initiate inflammation. How activated T cells cross the BRB is
not clear, but it is well established that non-activated, naϊve T cells
do not enter the tissues. The question is whether all activated T cells
can enter the tissue. Prevailing dogmata support a pathogenesis
which depends on precursor frequency and antigen dosage/
availability, both of which determine whether, stochastically, such
cells will become pathogenic (115–118). Most recently, in a
neoantigen transgenic model of spontaneous uveo-retinitis, an
absolute requirement for antigen-specific T cell activation has
been demonstrated while non-specifically TCR-activated T cells
fail to induce disease (119). These questions have exercised
researchers over many years and the concept that cross-reactive T
cells, activated by a dysbioticmicrobiome,might be the guilty party
adds significantly to pathogenetic possibilities. Candidate
mechanisms include bystander damage, molecular mimicry, dual
TCR expression andTCRpromiscuity due to variable TCR-peptide
MHC affinity. In addition, a possible innate immune, microbiome-
basedadjuvant effecthas beenproposed. In the caseof the retinaand
EAU some of these questions have been addressed. In a transgenic
model in which the foreign antigen Hen Egg Lysozyme (HEL) has
been expressed in the retina under control of the promoter for IRBP
(single transgenic IRBP-HEL, sTg : IRBP-HEL mice), adoptive
transfer of HEL-TCR specific (3A9) T cells failed to induce EAU,
evenwhen themicewere co-infectedwith cytomegalovirus (MCMV)
to induce a proinflammatory background microenvironment.
However, when the mice were co-infected with MCMV which had
been genetically modified to express the pathogenic HEL41–60
peptide, EAU developed within 7 days of adoptive transfer of 3A9
cells and the severity of uveitis depended on the level of HEL
expression in the retina (41). T cell cross reactivity/molecular
mimicry between retinal and viral antigen therefore appeared to be
the dominant mechanism generating pathogenicity, while bystander
activation was essentially discounted. These data indicate that T cell
activation by specific antigen underpins their pathogenicity in this
model of autoimmune disease. Interestingly, a recent study has
shown that chimeric human-viral proteins can be generated during
viral infection inhumanswhichmayoffer a furthernovel explanation
for how infection and autoimmunity may overlap (120).

The other side of the microbiome coin is the abundant
evidence that a healthy microbiome maintains a proportionate
peripheral Treg population through mediators such as SCFA and
folate (see below), and Treg are known to be central to the
maintenance of immune tolerance and the prevention of
autoimmunity (121) (see below). In addition, there is accruing
data from human studies that autoimmune/autoinflammatory
uveitis syndromes such as Vogt-Koyanagi-Harada disease
(VKH) and BD are associated with unsuspected dysbiosis (109,
122) and the failure/lack of Treg cells.

The concept that the gutmight drive autoimmune disease in the
eye, as has been shown for gut-associated segmented filamentous
bacteria in the joint (123), deserves careful examination in relation
to IP. Disturbed microbiota has been linked to numerous non
ocular as well as ocular inflammatory conditions [reviewed in (54)]
and a direct relationship to gut-derived T cells, cross reactive
with tissue antigens has not been reported in other models. In
addition, a link between a dysregulated microbiome and systemic
January 2021 | Volume 11 | Article 608377
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autoimmune/autoinflammatory disease is not restricted to
conditions associated with disrupted IP. Thus, if the microbiome
is implicated in the pathogenesis of uveitis, this would appear to be
irrespective of IP status, thus relegating IP to a lesser, if any, role.
Whilemicrobiome-based antigens are currently being evaluated for
a role in ocular inflammatory disease, the precise relationship is
likely to be complex.
ROLE OF TREG AND THE MICROBIOME
IN IMMUNE REGULATION/PREVENTION
OF UVEITIS

The gastrointestinal tract is now recognized as a major immune
organ, containing an abundance of innate and adaptive immune cells
which influence immune responses locally and at distant sites (124).
Themicrobiomewith its superabundanceofmicro-organismsdirects
the development of T cell populations particularly Th17 cells and
Treg, responsive in an antigen-specificmanner tomicrobial antigens.
The innate immune system responds in an antigen non-specific
manner to produce anti-microbial peptides such as a- and b-
defensins in response to cytokines such as IL22, IL18, and INFg
(125). From the moment of birth and even prenatally, microbial
colonization shapes the developing immune system and reciprocal
interactions benefit (or otherwise) the development of a healthy
immune system. The influence of the microbiome on IP therefore
relates to several of the components of the blood-CNS barrier: in
addition to guiding maturation of tight junctions between BBB
endothelial cells (13), the microbiome induces the generation of
commensal antigen-specific Treg (126–128), which not only act
locally but have a specific gut phenotype combining RORgt and
FoxP3 transcription factors (129, 130), and are central to the
prevention of intestinal inflammation and IBD (131, 132). In
addition, they may have an extra-intestinal effect in the regulation
of systemic autoimmune disease such as collagen-induced
arthritis (133).

Treg are antigen-specific in their generation but not so in their
effector function where they have broader regulatory properties
(134). Importantly, the plasticity of Treg both in their generation
and their activity is relevant to the above concepts of how
commensal antigens might cross-react with tissue-specific
antigens through molecular mimicry and induce uveitis (114).
Peripheral Treg (pTreg) develop in the secondary lymphoid
tissues, including the gut, from naїve T cells under the
influence of their cytokine environment which includes both
proinflammatory cytokines such as IL6 and regulatory cytokines
such as TGFb and IL22. Generation of Treg in the gut has been
linked to the process of T cell education in the thymus although
clearly there are differences (135). In the presence of antigen (here
we are considering commensal antigen rather than self-antigen as
in thymus) T cells may develop along a Teff pathway to generate
Th17 cells and then undergo antigen-induced cell death (AICD).
Alternatively, in the presence of folate such Teff either convert to
homeostatic Th17 cells which generate IL22 (135), or they may
become anergic (Tan) and continue on to convert to FoxP3+ Treg
(136–138). Both thymus-like Helios+, neuropilin+ (natural, n)
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Treg and “peripheral,” induced (i) Helios- Treg occur in the gut
but iTreg are induced by the microbiome while nTreg are present
from a pre-weaning stage (139–141). In addition, there are
intraepithelial FoxP3- Treg and CD4+ CD8aa+ Treg which have
an important regulatory role to play (142, 143). However, if the
milieu is not conducive, commensal antigen-generated Teff (Th17)
cells may clonally expand and enter the circulation as activated
cells, with the risk of causing disease if they meet cognate antigen
(similar to thymic autoreactive T cells which have escaped
deletion). Disease may then ensue where access to tissue antigen
is possible and co-stimulation is available. However, for tissues
behind “heavy duty” barriers such as the BRB and the BBB, where
access may be dependent on a sufficient precursor frequency of
activated Teff, released from the constraints of Treg, additional
factors to antigen specificity are required. These may be delivered
through upregulated innate immune responses (41) and in the
case of dysbiotic commensal antigens, through an “adjuvant”
effect (114).

In homeostasis, Treg induced by the microbiome promote
tolerance rather than immunity. The beneficial/tolerance-inducing
role of the microbiome and secreted bacterial products in this
scenario is becoming better understood. Mention has already been
made of the range of SCFA (propionate, acetate, and butyrate) and
other bacterial products which apart from promoting epithelial
integrity, promote Treg homeostasis [reviewed in (135)]. In
addition, the labile, plastic Th17 cell which can develop into a
Treg in the colon is induced by resident DC and other myeloid cells
in the small intestine (144, 145). This, however, is a double-edged
sword since some intestinal T cells possess dual TCR reactivity and
under certain circumstances, can induce autoimmune disease in
distant organs such as the lung (146). Dual TCR-expressing T cells
are a recognized hazard for the development of autoimmunity by
limiting the generation of self-reactive Treg, as has been shown in
the non-obese diabetes-prone mouse (NOD) (147). This possible
mechanism may also apply to autoimmune uveitis induced by
commensal antigen-activated retina-specific T cells although the
evidence currenlty appears to be against this notion (114).
GENETIC SUSCEPTIBILITY TO UVEITIS IN
THE CONTEXT OF THE MICROBIOME
AND TREG: ASSOCIATION BETWEEN
DYSBIOSIS AND UVEITIS

The genetics of uveitis also raises questions about the role of IP in
conditions in which uveitis features. IP as a phenomenon was
hypothesized during the time when MHC antigens were being
discovered and was based on failure of the host to react to
alloantigens transplanted to the anterior chamber of the eye. Since
then the importance of MHC antigen has been revealed particularly
in corneal graft rejection (148–150) suggesting that MHC antigens
themselves were not the IP-responsive antigens but that the host
responded to some tissue allografts through alternative limited
polymorphisms. This undermines the original notion of IP as it
was conceived but supports the concept of tissues modulating the
host response to foreign antigens including alloantigens. To extend
January 2021 | Volume 11 | Article 608377
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Matzinger and Kamala’s concept of tissues in control of the immune
response (2), not only do different tissues such as the skin, gut,
adrenal gland and retina modify the immune response in different
ways, but each individual minor polymorphism in each tissue’s
proteins will have an influence on the host response. This is borne
out by the variable pattern of disease found in different individuals
and contributes to the overall variability, exemplified by the current
Corona virus (Sars-CoV-2) pandemic in which the upper
respiratory tract and the lungs are the main target of attack but
the individual outcome varies from fatal Covid-19 disease to severe
cases with long-lasting effects [individuals referred to as “long-
haulers” (151)] to no symptoms depending on the severity of the
associated host immune response (152, 153). Large scale “big data
studies” performed through consortia such as The Infection and
Immunity Immunophenotyping (3i) consortium have revealed the
influence of a large number of immunoregulatory genes (>140) on
the properties of different tissues underpinning immune variation
which resonate with a much broader interpretation of how different
cells and tissues influence the outcomes of immune challenge (154),
and the future invites further similar study to reveal how CNS
tissues including the eye fit with these paradigms.

Both human uveitis and experimental models of uveitis have
quite specific and wide-ranging genetic susceptibilities. Caspi’s
initial studies in mice confirmed the importance of minor
antigens in murine susceptibility to induction of EAU (51).
Further studies defined the roles of a range of innate immune
genes such as TLR, C-type lectins, and genes regulating the
inflammasome and IL1 production (103, 155–158). Indeed, an
essential role for IL1 in EAU induction has been shown (159).

In human uveitis, strong genetic links have been established
with certain types of uveitis. The long known association of the
MHC antigen HLA-B27 with AU has been extended with more
recent information on susceptibility links to antigen processing
genes such as endoplasmic reticulum peptidase 1 (ERAP1) but
also to genes more closely associated with innate immunity such as
nitric oxide synthase 2 (NOS2) as well as less strong links to a
number of other proteins such as Mer Proto-oncogene tyrosine
kinase (MERTK), kinesin-associated protein 3 (KAP3) and acetyl-
Coenzyme A acyltransferase 2 (ACAA2) (160) The strongest
association of MHC antigens and any human disease is that
between HLA-A29 and the rare uveitis condition birdshot
chorioretinopathy (BCR) (161). Further linkages with BCR have
been found with functionally distinct ERAP-1 and -2 genes in a
large population of BCR patients (162). BD has linkage with HLA-
B51 while sympathetic ophthalmia and VKH disease have
common associations with HLA-DR0405 and, interestingly, T
cells from patients with VKH show cross-reactivity with
peptides from CMV and the melanocyte protein tyrosinase
(163), once more implicating infection in a well-defined
autoimmune disease.

In many of these conditions, shared linkages with innate
immune response (IR) genes, such as the IL23 receptor (164)
and cytokine genes of myeloid cells (52, 165–167) have been
observed. However, most of the associations are particular to
specific disease entities and no clear pattern emerges for adaptive
or IR genes for ocular inflammation as a whole, whether it be
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retina-centric, i.e. behind the BRB or not. No MHC or non-MHC
association has been described for IP per se. IP was originally
attributed to a lack of MHC expression in the relevant tissues
(cornea, brain parenchyma, retina, hair follicle, testis etc.) which,
in terms of MHC Class I and II still has some relevance due to the
paucity of overall expression in these tissues. However, an analysis
of CD11c expression on myeloid cells in brain vs. other tissues
revealed a significant down regulation in CNS myeloid cells,
indicating that while such cells were present in the tissues, the
microenvironment of the tissue had the greater influence on
whether IR genes were likely to be activated (168).

In contrast to genetic associations with IP, clear connections
with some types of uveitis and a disturbed microbiome have been
described. For instance, VKH (122), HLA-B27-associated AU
[reviewed in (169)], and uveitis in BD (110) have all been linked
to dysregulated microbiota with Prevotella sp. being identified as a
consensus bacterial community in which further stratification
linked Clostridiales sp. to neuro-BD and Bacteroides with
multiple sclerosis (170). Importantly, Treg which are considered
to play a role in maintaining IP in the retina (43, 44, 171, 172) and
brain (173–175) have demonstrated clear tissue adaptation at the
barrier sites of the skin and the intestine (176) and it is likely that
they do so at sites of the BRB and BBB. Thus, in terms of uveitis
there is no clear pattern of disease susceptibility. Indeed, the range
of genetic susceptibilities based on MHC Class I and II, and
minor/tissue antigen polymorphisms do not support the concept
of a unique property of IP for any particular tissue. Tissues’
abilities to deal with pathogen invasion and foreign antigens
depend on the tissue as well as the genetic make-up of the
individual, but probably more importantly it depends on the
tissue/cell tropism and virulence of the pathogen.
RESTORING MICROBIOME-ASSOCIATED
GUT IMMUNE PRIVILEGE TO PREVENT
AND TREAT UVEITIS

As indicated above, IP, when considered as a process whereby
tissues modulate immune responses, is by definition a property of
most if not all tissues and the gut is no exception (60, 177).
Commensal microbial and dietary antigens are “tolerated” in a
privileged manner in the gut, mediated by a unique set of Treg
(130, 139) which exert control over potential Teff cells. In this, they
are assisted by a range of innate immune lymphocytes (124),
“tolerant” DC and specialized T cells such as gdT cells and
CD8aa+ mucosal epithelial T cells [reviewed in (178)]. As
discussed above, disturbance of the gut microbiota (i.e.
dysbiosis) is linked to disease, particularly IBD but is also
implicated in various autoimmune diseases such as rheumatoid
arthritis, type 1 diabetes mellitus, multiple sclerosis and
autoimmune liver disease [reviewed in (179)]. Caspi’s group has
shown that spontaneous EAU in IRBP-TCR transgenic mice can
be prevented and/or suppressed in microbiota-deficient mice, as
well as inmice treated with an antibiotic cocktail and has proposed
that retina-specific T cells are activated by microbiome-derived
antigens which escape through a “leaky gut” epithelium and are
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Mölzer et al. Rethinking Immune Privilege
presented to T cells by gut or mesenteric lymph node DC (112).
The activated T cells then enter the circulation and cross the BRB
where they connect with cognate antigen (IRBP) and become
pathogenic. Precisely why retina-specific T cells should become
activated by microbiota-associated antigen is not clear, but several
mechanisms have been proposed. Bystander activation is unlikely
but molecular mimicry/antigen cross-reactivity are genuine
possibilities (41), while dual TCR expression discussed above is
also an interesting option (147) although unlikely as argued by
Horai and Caspi (114). Hybrid self-foreign antigen is a novel
paradigm (120). Similar studies in the IRBP-inducible model of
uveitis have also been reported, showing that EAU can be
suppressed in antibiotic-treated mice (180) while IRBP-induced
EAU is completely suppressed in germ-free mice (113). In this
model, the effect of antibiotic administration is essentially
preventive and not therapeutic, i.e. once the disease is active,
antibiotic treatment is ineffective (113). These studies, in both the
spontaneous and inducible models of EAU, implicate an
underlying dysbiosis which permits translocation of bacterial
antigen across the lining epithelium, and indeed this is the case.
In CFA/IRBP-induced EAU where an antigenic peptide (IRBP)
and CFA-mixed emulsion is inoculated subcutaneously, defects in
the gut epithelium have been demonstrated with inflammatory cell
infiltration in the gut wall (181). Interestingly, these effects on the
bowel did not seem to be IRBP-specific since similar findings were
observed with CFA-mycobacterial antigen alone. In addition, the
numbers of circulating IRBP-specific T cells (Teff or Treg) when
CFA/IRBP was inoculated were vanishingly low while the
numbers of microbial antigen-specific cells were significantly
higher, as might be expected. However, an associated dysbiosis
may not be required for microbiota-antigen reactive/activated cells
to be present in the circulation. Hegazy et al (182). have shown
that in healthy humans, microbiota-specific activated CD4 T cells
are present in the blood, and are responsive to a range of
commensal bacteria. In patients with IBD, the frequency and
specificity of these T cells is increased (182).
WHAT DOES THE GUT–CENTRAL
NERVOUS SYSTEM AXIS IMPLY FOR
THERAPEUTIC INTERVENTION?

Several groups suggest that there are significant opportunities to
intervene, particularly by promoting Treg induction in the gut to
eliminate dysbiosis and restore a healthy microbiome.
Commensal bacteria provide many mediators of immune and
metabolic homeostasis including SCFA. Attempts to ameliorate
autoimmune disease by administration of SCFA have been quite
successful experimentally in models of multiple sclerosis,
hepatitis and diabetes (109, 183–187) as well as uveitis (188).
The mechanism of action appears to be through induction of
Treg which act locally in the gut as well as at a distance on barrier
structures such as the BRB (189–191).

Bacteria produce othermetabolites and nutrients. These include
bacterial metabolites derived from bile acids, tryptophan, indole
and activators of the aryl hydrocarbon receptor (AhR) and folic acid
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(FA).The latter is ofparticular interest since ithasadirect impacton
the survival of intestinal Treg (65) predominantlymediated via one
of the folate receptors (FR4). FAdeficiency is intrinsicallydamaging
to the eye andhas been linked to amblyopia (192), optic neuropathy
(193), senile cataracts (194), and retinal hyper-homocysteinemia
(195) along with its secondary complications (196–198). Hyper-
homocysteinemia is connected to specific polymorphisms in FA
metabolism-associated genes (199) and has been reported to occur
in autoinflammatory BD patients (200). A role for FA in
autoimmune uveitis is therefore recognized [for review see (201)].

The direct effects of FA on the eye are delivered via several
routes including folate receptors (FR; folate-binding proteins)
(202), the reduced folate carrier, and the proton-coupled folate
transporter (203). FA transport proteins are ubiquitously
expressed, and are abundant in retinal pigment epithelium
(RPE) and retina (204), suggesting a potential direct immune-
modulating role for folate at these sites, particularly as the
immunoregulatory BRB cell (the RPE) has the potential to
convert naïve T cells to Treg. In humans, there are four known
FR isoforms (a, b, g, and d) with tissue-specific expression
patterns (202, 205). Most recently the human receptor
homolog for murine FRd (also known as FR4 or folate binding
protein 3) has been found most abundantly expressed on Treg
cells (206). In mice (and possibly in humans), FR4 is expressed
under the control of the transcription factor FoxP3 (206), whose
sustained expression is a key factor in Treg functional stability
(206–210). FoxP3+ Treg populations in the colon are sustained
by oral FA supplementation; in contrast, a diet deficient in folate
leads to a marked reduction of FoxP3+ Treg selectively in the
colon and increased autoimmune bowel inflammation.

The induction of Treg in the periphery, including the gut, is a
major control mechanism in the resolving stages of inflammation.
Peripheral Treg are generated from naїve T cells but may also be
derived from anergic T effector cells (Tan) through a reciprocal
induction process (211). T cell anergy is a major contributor to
peripheral tolerance mechanisms, wherein CD4+ T cells lose the
capacity to produce autocrine growth factor and proliferate in
response to antigen (212, 213). A subset of FoxP3- CD44hi

CD73hi FR4hi anergic CD4+ T cells has been identified (214)
which upon adoptive transfer, gave rise to Treg cells in an
autoimmune arthritis model (211), thereby functioning as
progenitors for Treg cell differentiation following TCR-mediated
anergy reversal. It has been hypothesized that upon recurrent
antigen encounter, anergic CD4+ FoxP3- FR4+ CD73+ Nrp1+ T
cells are prone topartial de-methylation in a specific signature gene,
generating ideal progenitors for the peripheral differentiation of
stable FoxP3+ Treg (211, 215). These anergy-derived Treg suppress
immunopathology and reinforce anergy induction (215). In this
context, we have recently shown, in a transgenic model of
spontaneous uveitis due to failure of Treg induction, that Tan
convert to Treg cells as the inflammation resolves (119).
Furthermore, adoptive transfer of antigen-experienced Treg
completely prevented development of this spontaneous disease,
showing the importance of Treg in the control of uveoretinitis. In
the development of cell therapies, such as Treg, for autoimmune
disease it would seem there should be a role for FA.
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Alternatively, FA may be included in the proposed use of
probiotics for control of autoimmune disease (216). Probiotics are
preparations which deliver bacteria beneficial to the host through
mechanisms such as improving gut epithelial integrity and
promoting a balanced immune system. In contrast, prebiotics
such as dietary fiber feed the gut microbiome. Probiotics act by
becoming part of the commensal community of the microbiome
and thus may promote intestinal Treg generation. Some probiotics
such as those containing Lactobacillus (L.) reuteri WH1689 (217)
and Streptococcus gallolyticus subsp. macedonicus (S. macedonicus)
CRL415 (218), have genes conferring specific beneficial properties
affecting metabolism and FA biosynthesis. Recently, probiotic L.
reuteri has been shown to convert CD4 T cells into CD4+ CD8aa+

double positive intraepithelial cells, which as indicated above are
immunoregulatory cells, by decreasing the transcription factor
THPOK through activation of the AhR (219). Probiotics have
been shown to be effective in certain autoimmune conditions
[reviewed in (220)] and are part of what has been termed “the
global preclinical pipeline” which includes small molecules such as
SCFA as well as engineered probiotics and phages (221). Both
probiotics and prebiotics (such as glucans and fructans) are under
intense investigation as regulators of general health and
homeostasis (222).

Despite the avalanche of studies and projects evaluating
probiotics, there is still continuing uncertainty about their overall
effectiveness in the context of active autoimmune disease. For this
reason, preclinical studies are important. Heat-killed L. reuteri
GMNL-263 was found to be effective in preventing cardiac
damage in a model of systemic lupus erythematosus (223); in a
second study, a commercially prepared probiotic, Lactibiane Iki,
controlled active EAE by promoting tolerogenic DC (224); and the
combined administration of two Bifidobacteria and Lactobacilli
probiotic strains prevented experimental myasthenia gravis (225).
Preclinical studies of probiotics are in progress but to date no
randomized controlled trials of probiotics in patients with uveitis
have been reported.However, the opportunities for such studies are
becoming clearer (226).
CONCLUSION

The concept of IP in the context of uveitis is difficult to sustain. The
pathogenesis of uveitis (whether it be infectious or “non-
infectious”) (68, 78, 114, 227) is different depending on whether
the inflammation occurs in front of or behind the BRB. Even if the
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site of inflammation is in a tissue which presents a greater
immunomodulatory microenvironment, as in the retina
compared to the iris, the classical IP properties of the tissue (such
as immunosuppressive mediators and lack of resident MHC Class
II+ DC) are not overly effective in preventing inflammatory disease
(uveoretinitis). Perhaps a fresh look atwhat IP as an immunological
concept entails is required, specifically asking the question: is IP
intrinsically different from mainstream mechanisms which deliver
immunological tolerance? Relative degrees of IP can be applied
essentially to all tissues and are very highly developed in healthy
tissues such as the skin and the gut where a multitude of
immunoregulatory mechanisms and cell types are positioned to
control the immunostimulatory potential of vast colonies of
commensal bacteria. Breakdown of these protective shields is the
initial stage of development of systemic and organ-specific
inflammatory diseases. This is dependent on the cross reactivity
(or other mechanisms as discussed above) of microbiome/
commensal pathogenic antigens to activate and sufficiently
expand tissue-specific T cells which can cross internal barriers
and cause disease on encountering cognate antigen. Therapies
directed toward generation of regulatory cells (Treg or other)
which will restore immune homeostasis, particularly in the bowel,
may be the way forward to restoring the IP status of all tissues,
including those of the CNS.
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The gut microbiota influences blood-brain barrier permeability in mice. Sci
Trans Med (2014) 6(263):263ra158–263ra158. doi: 10.1126/scitranslmed.
3009759

14. Bhattarai Y. Microbiota-gut-brain axis: Interaction of gut microbes and their
metabolites with host epithelial barriers. Neurogastroenterol Motil (2018) 30
(6):e13366. doi: 10.1111/nmo.13366

15. Michel L, Prat A. One more role for the gut: microbiota and blood brain
barrier. Ann Trans Med (2016) 4(1):15–5. doi: 10.3978/j.issn.2305-
5839.2015.10.16

16. Rosenbaum JT, Asquith M. The microbiome and HLA-B27-associated acute
anterior uveitis. Nat Rev Rheumatol (2018) 14(12):704–13. doi: 10.1038/
s41584-018-0097-2

17. Niederkorn JY. Immune privilege of corneal allografts, in Cornea and
External Eye Disease. Berlin, Heidelberg: Springer (2010) p.1–12. doi:
10.1097/00007890-199906270-00001

18. Medawar PB. The immunology of transplantation. Harvey Lectures (1956)
(Series 52):144–76.

19. Medawar PB. Immunological tolerance. Science (1961) 133(3449):303–6.
doi: 10.1126/science.133.3449.303

20. Medawar PB. Immunity to homologous grafted skin; the fate of skin
homografts transplanted to the brain, to subcutaneous tissue, and to the
anterior chamber of the eye. Br J Exp Pathol (1948) 29(1):58–69.

21. Gregerson DS, Torseth JW, McPherson SW, Roberts JP, Shinohara T, Zack
DJ. Retinal expression of a neo-self antigen, beta-galactosidase, is not
tolerogenic and creates a target for autoimmune uveoretinitis. J Immunol
(1999) 163(2):1073–80.

22. Carson MJ, Doose JM, Melchior B, Schmid CD, Ploix CC. CNS immune
privilege: hiding in plain sight. Immunol Rev (2006) 213(1):48–65. doi:
10.1111/j.1600-065X.2006.00441.x

23. Cobbold SP. Regulatory T cells and transplantation tolerance. J Nephrol
(2008) 21(4):485–96.

24. Niederkorn JY. Corneal transplantation and immune privilege. Int Rev
Immunol (2013) 32(1):57–67. doi: 10.3109/08830185.2012.737877

25. Louveau A, Harris TH, Kipnis J. Revisiting the mechanisms of CNS immune
privilege. Trends Immunol (2015) 36(10):569–77. doi: 10.1016/
j.it.2015.08.006

26. Engelhardt B, Vajkoczy P, Weller RO. The movers and shapers in immune
privilege of the CNS. Nat Immunol (2017) 18(2):123. doi: 10.1038/ni.3666

27. Wildner G, Diedrichs-Möhring M. Resolution of uveitis. Semin
Immunopathol (2019) 41(6):727–36. doi: 10.1007/s00281-019-00758-z

28. Ferguson TA, Herndon JM. The immune response and the eye: the ACAID
inducing signal is dependent on the nature of the antigen. Invest Ophthalmol
Visual Sci (1994) 35(7):3085–93.

29. Stein-Streilein J, Streilein JW. Anterior chamber associated immune
deviation (ACAID): regulation, biological relevance, and implications for
therapy. Int Rev Immunol (2002) 21(2-3):123–52. doi: 10.1080/
08830180212066

30. Wenkel H, Streilein JW, YoungMJ. Systemic Immune Deviation in the Brain
That Does Not Depend on the Integrity of the Blood-Brain Barrier.
J Immunol (2000) 164(10):5125. doi: 10.4049/jimmunol.164.10.5125

31. Li XY, D’orazio T, Niederkorn J. Role of Th1 and Th2 cells in anterior
chamber-associated immune deviation. Immunology (1996) 89(1):34–40.
doi: 10.1046/j.1365-2567.1996.d01-714.x
Frontiers in Immunology | www.frontiersin.org 13
32. Zhang-Hoover J, Stein-Streilein J. Therapies based on principles of ocular
immune privilege. Immune Response Eye (2007) 92:317–27. doi: 10.1159/
000099281

33. Streilein JW, Niederkorn JY. Induction of anterior chamber-associated
immune deviation requires an intact, functional spleen. J Exp Med (1981)
153(5):1058–67. doi: 10.1084/jem.153.5.1058

34. Niederkorn JY, Streilein JW, Kripke ML. Promotion of Syngeneic
Intraocular Tumor Growth in Mice by Anterior Chamber-Associated
Immune Deviation. JNCI: J Natl Cancer Institute (1983) 71(1):193–9. doi:
10.1093/jnci/71.1.193

35. Dang Z, Kuffova L, Liu L, Forrester JV. Soluble antigen traffics rapidly and
selectively from the corneal surface to the eye draining lymph node and
activates T cells when codelivered with CpG oligonucleotides. J Leukocyte
Biol (2014) 95(3):431–40. doi: 10.1189/jlb.0612294
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et al. The Living Eye “Disarms” Uncommitted Autoreactive T Cells by
Converting Them to Foxp3&lt;sup<+&lt;/sup< Regulatory Cells following
Local Antigen Recognition. J Immunol (2012) 188(4):1742. doi: 10.4049/
jimmunol.1102415

173. Ito M, Komai K, Nakamura T, Srirat T, Yoshimura A. Tissue regulatory T
cells and neural repair. Int Immunol (2019) 31(6):361–9. doi: 10.1093/
intimm/dxz031
January 2021 | Volume 11 | Article 608377

https://doi.org/10.1016/j.it.2014.08.003
https://doi.org/10.1111/imm.12896
https://doi.org/10.1007/978-1-4939-6548-9_2
https://doi.org/10.1038/nature14452
https://doi.org/10.1038/nature10772
https://doi.org/10.1146/annurev-immunol-032712-095948
https://doi.org/10.1136/gutjnl-2018-317855
https://doi.org/10.1016/j.immuni.2019.02.014
https://doi.org/10.1073/pnas.0831037100
https://doi.org/10.1007/s10620-015-4016-y
https://doi.org/10.1016/j.immuni.2014.03.005
https://doi.org/10.1016/j.cell.2015.08.058
https://doi.org/10.1016/j.chom.2017.10.007
https://doi.org/10.4049/jimmunol.1700406
https://doi.org/10.1016/S0966-3274(96)80035-9
https://doi.org/10.1097/01.TP.0000063708.26443.3B
https://doi.org/10.1097/01.TP.0000063708.26443.3B
https://doi.org/10.1111/tri.12055
https://doi.org/10.1136/bmj.m3392
https://doi.org/10.1136/bmj.m3392
https://doi.org/10.1007/5584_2020_549
https://doi.org/10.1007/5584_2020_549
https://doi.org/10.1016/j.mehy.2020.110030
https://doi.org/10.1038/s41590-019-0549-0
https://doi.org/10.1016/j.molimm.2015.07.002
https://doi.org/10.1111/cei.13021
https://doi.org/10.1111/cei.13021
https://doi.org/10.4049/jimmunol.1502355
https://doi.org/10.1016/j.jaut.2019.02.006
https://doi.org/10.4049/jimmunol.1502080
https://doi.org/10.1167/iovs.61.6.3
https://doi.org/10.1016/0002-9394(82)90069-1
https://doi.org/10.1101/338228
https://doi.org/10.1101/338228
https://doi.org/10.1007/s10792-006-9020-y
https://doi.org/10.1016/bs.pmbts.2015.04.009
https://doi.org/10.1167/iovs.05-0126
https://doi.org/10.1167/iovs.09-4583
https://doi.org/10.1167/iovs.10-6743
https://doi.org/10.1002/glia.22771
https://doi.org/10.1007/s10384-015-0416-y
https://doi.org/10.4049/jimmunol.1402650
https://doi.org/10.4049/jimmunol.1102415
https://doi.org/10.4049/jimmunol.1102415
https://doi.org/10.1093/intimm/dxz031
https://doi.org/10.1093/intimm/dxz031
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Mölzer et al. Rethinking Immune Privilege
174. Malviya M, Saoudi A, Bauer J, Fillatreau S, Liblau R. Treatment of
experimental autoimmune encephalomyelitis with engineered bi-specific
Foxp3+ regulatory CD4+ T cells. J Autoimmun (2020) 108:102401. doi:
10.1016/j.jaut.2020.102401

175. O’Brien CA, Harris TH. ICOS-deficient and ICOS YF mutant mice fail to
control Toxoplasma gondii infection of the brain. PloS One (2020) 15(1):
e0228251. doi: 10.1371/journal.pone.0228251

176. Whibley N, Tucci A, Powrie F. Regulatory T cell adaptation in the intestine and
skin. Nat Immunol (2019) 20(4):386–96. doi: 10.1038/s41590-019-0351-z

177. Iweala OII, Nagler CR. Immune privilege in the gut: the establishment and
maintenance of non-responsiveness to dietary antigens and commensal flora.
Immunol Rev (2006) 213(1):82–100. doi: 10.1111/j.1600-065X.2006.00431.x

178. Kurashima Y, Kiyono H. Mucosal ecological network of epithelium and
immune cells for gut homeostasis and tissue healing. Annu Rev Immunol
(2017) 35:119–47. doi: 10.1146/annurev-immunol-051116-052424

179. Li B, Selmi C, Tang R, Gershwin ME, Ma X. The microbiome and
autoimmunity: a paradigm from the gut–liver axis. Cell Mol Immunol
(2018) 15(6):595–609. doi: 10.1038/cmi.2018.7

180. Nakamura YK, Metea C, Karstens L, Asquith M, Gruner H, Moscibrocki C,
et al. Gut Microbial Alterations Associated With Protection From
Autoimmune Uveitis. Invest Ophthalmol Visusal Sci (2016) 57(8):3747–58.
doi: 10.1167/iovs.16-19733

181. Janowitz C, Nakamura YK, Metea C, Gligor A, Yu W, Karstens L, et al.
Disruption of Intestinal Homeostasis and Intestinal Microbiota During
Experimental Autoimmune Uveitis. Invest Ophthalmol Visual Sci (2019)
60(1):420–9. doi: 10.1167/iovs.18-24813

182. Hegazy AN, West NR, Stubbington MJ, Wendt E, Suijker KII, Datsi A, et al.
Circulating and tissue-resident CD4+ T cells with reactivity to intestinal
microbiota are abundant in healthy individuals and function is altered
during inflammation. Gastroenterology (2017) 153(5):1320–37.e16. doi:
10.1053/j.gastro.2017.07.047

183. Mariño E, Richards JL, McLeod KH, Stanley D, Yap YA, Knight J, et al. Gut
microbial metabolites limit the frequency of autoimmune T cells and protect
against type 1 diabetes. Nat Immunol (2017) 18(5):552–62. doi: 10.1038/
ni.3713

184. Wu J-L, Zou J-Y, Hu E-D, Chen D-Z, Chen L, Lu F-B, et al. Sodium butyrate
ameliorates S100/FCA-induced autoimmune hepatitis through regulation of
intestinal tight junction and toll-like receptor 4 signaling pathway. Immunol
Lett (2017) 190:169–76. doi: 10.1016/j.imlet.2017.08.005

185. Gill P, Van Zelm M, Muir J, Gibson P. Short chain fatty acids as potential
therapeutic agents in human gastrointestinal and inflammatory disorders.
Aliment Pharmacol Ther (2018) 48(1):15–34. doi: 10.1111/apt.14689

186. Hu E-D, Chen D-Z, Wu J-L, Lu F-B, Chen L, Zheng M-H, et al. High fiber
dietary and sodium butyrate attenuate experimental autoimmune hepatitis
through regulation of immune regulatory cells and intestinal barrier. Cell
Immunol (2018) 328:24–32. doi: 10.1016/j.cellimm.2018.03.003

187. Melbye P, Olsson A, Hansen TH, Søndergaard HB, Bang Oturai A. Short-
chain fatty acids and gut microbiota in multiple sclerosis. Acta Neurologica
Scand (2019) 139(3):208–19. doi: 10.1111/ane.13045

188. Nakamura YK, Janowitz C, Metea C, Asquith M, Karstens L, Rosenbaum JT,
et al. Short chain fatty acids ameliorate immune-mediated uveitis partially by
altering migration of lymphocytes from the intestine. Sci Rep (2017) 7
(1):11745. doi: 10.1038/s41598-017-12163-3
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