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Recherche Médicale (INSERM),
France

*Correspondence:
Adrian James Thrasher

a.thrasher@ucl.ac.uk

Specialty section:
This article was submitted to
Primary Immunodeficiencies,

a section of the journal
Frontiers in Immunology

Received: 21 September 2020
Accepted: 02 November 2020
Published: 27 November 2020

Citation:
Blanco E, Izotova N, Booth C and

Thrasher AJ (2020) Immune
Reconstitution After Gene

Therapy Approaches in Patients
With X-Linked Severe Combined

Immunodeficiency Disease.
Front. Immunol. 11:608653.

doi: 10.3389/fimmu.2020.608653

REVIEW
published: 27 November 2020

doi: 10.3389/fimmu.2020.608653
Immune Reconstitution After Gene
Therapy Approaches in Patients
With X-Linked Severe Combined
Immunodeficiency Disease
Elena Blanco1, Natalia Izotova1, Claire Booth1,2 and Adrian James Thrasher1,2*

1 Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London,
United Kingdom, 2 Department of Paediatric Immunology, Great Ormond Street Hospital NHS Trust, London, United Kingdom

X-linked severe immunodeficiency disease (SCID-X1) is an inherited, rare, and life-
threating disease. The genetic origin is a defect in the interleukin 2 receptor g chain
(IL2RG) gene and patients are classically characterized by absence of T and NK cells, as
well as presence of partially-functional B cells. Without any treatment the disease is usually
lethal during the first year of life. The treatment of choice for these patients is
hematopoietic stem cell transplantation, with an excellent survival rate (>90%) if an
HLA-matched sibling donor is available. However, when alternative donors are used,
the success and survival rates are often lower. Gene therapy has been developed as an
alternative treatment initially using g-retroviral vectors to correct the defective g chain in the
absence of pre-conditioning treatment. The results were highly promising in SCID-X1
infants, showing long-term T-cell recovery and clinical benefit, although NK and B cell
recovery was less robust. However, some infants developed T-cell acute lymphoblastic
leukemia after the gene therapy, due to vector-mediated insertional mutagenesis.
Consequently, considerable efforts have been made to develop safer vectors. The most
recent clinical trials using lentiviral vectors together with a low-dose pre-conditioning
regimen have demonstrated excellent sustained T cell recovery, but also B and NK cells, in
both children and adults. This review provides an overview about the different gene
therapy approaches used over the last 20 years to treat SCID-X1 patients, particularly
focusing on lymphoid immune reconstitution, as well as the developments that have
improved the process and outcomes.

Keywords: X-linked severe immunodeficiency disease, gene therapy, immune reconstitution, clinical trial, T cells,
B cells, NK cells, conditioning
INTRODUCTION

Severe combined immunodeficiency diseases (SCIDs) are a group of life-threatening and rare
primary immunodeficiencies, with an overall estimated incidence of ≈1:50,000 live births. SCID
patients are characterized by a profound defect in the number or function of T-cells, which are
associated to a variable extent with abnormalities in B and NK cell populations. These immune
org November 2020 | Volume 11 | Article 6086531
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alterations are caused by a monogenic defect, with up to eighteen
different genes identified so far (1). The most common form of
SCID in Western geographies is X-linked SCID (SCID-X1),
which accounts for ≈25–40% of all diagnosed SCIDs (2, 3).
Due to severe immune defects and the ensuing occurrence of life-
threatening infections, SCID-X1 is usually lethal in the first year
of life unless definitive immune reconstitution is achieved.
Nowadays there are two possible therapeutic approaches for
the restoration of the immune system in SCID-X1 patients:
1) hematopoietic stem cell transplantation (HSCT); and
2) autologous gene therapy (4).

Gene therapy employs the introduction of DNA or RNA into
target cells by adding a correct version of the gene (additive gene
therapy) or more precisely correcting the defective gene or
targeting the transgene to desirable genomic sites (gene
editing) (5). Gene therapy used for SCID-X1 clinical trials so
far has been based on the use of retroviral vectors to transfer a
corrective copy of the defective gene to autologous hematopoietic
stem and progenitor cells (HSPCs), and was successfully
performed for the first time more than 20 years ago (6).
However, the outstanding results observed regarding the
clinical benefit and the T-cell reconstitution were tempered by
the occurrence of leukemogenesis in some patients (7). With the
development of safer vectors as well as the introduction of low-
dose conditioning regimens, new clinical trials are currently
being performed to confirm the safety and effectiveness of
these therapeutic approaches. Here, we review the main
characteristics of SCID-X1 and the available treatments,
especially focusing on the technical aspects of gene therapy
approaches used over time, and the resultant immunological
reconstitution of T, B, and NK cells.
PHYSIOPATHOLOGY OF SCID-X1

The genetic origin of SCID-X1 was identified in 1993 due to the
presence of mutations in the interleukin 2 receptor g chain
(IL2RG) gene (8, 9). This gene is located on Xq13.1 locus thus
has an X-linked inherited pattern and all patients are males (10).
The IL2RG gene contains eight exons and more than 200 unique
mutations have been identified so far (11). Around one half of
mutations are missense and nonsense, while the remaining half
are insertion/deletions or splicing mutations (11).

The IL2RG encodes the common cytokine receptor g chain
(gc), which is part of the receptor for a number of cytokines,
including IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21 (12). Due to the
critical role of IL-7 and IL-15 in T-cell and NK-cell maturation,
respectively (13), SCID-X1 patients are typically characterized by
the absence of T cells and NK cells. In addition, despite the
normal or even elevated number of B cells observed in SCID-X1
patients, these are only partially functional, most likely due to the
defective signaling of IL-4 and especially IL-21 (14). Accordingly,
these patients classically present with defects in both humoral
and cellular compartments of the immune system, and a T-B
+NK- phenotype (15). Without a curative treatment, patients
usually succumb early in life to viral and opportunistic infections
Frontiers in Immunology | www.frontiersin.org 2
(4, 10). Nonetheless, some forms of atypical SCID-X1 with
milder phenotypes have been identified, most of them caused
by hypomorphic mutations (11, 16) and others as a result of
partially corrective somatic reversions (17–21).

The early treatment of patients, achieved through earlier
diagnosis, is associated with a better outcome (2). Thus,
neonatal screening for SCID based on the T cell receptor
excision circle (TREC) assay is being applied in many
countries worldwide either as pilot studies or incorporated into
routine healthcare (2, 22). The identification of reduced or absent
TRECs can also be caused by non-SCID diseases (2), so this
finding must be followed by lymphocyte immunophenotyping
and further diagnostic investigations (23, 24) to help orientate
the genetic studies (15). Due to the presence of maternal T-cells
or leaky production of oligoclonal cells, total T-cell numbers
might initially be significant, so the analysis of subpopulations
including naïve T-cells and recent thymic emigrants (RTE) is
crucial (23, 25). The final diagnosis of SCID-X1 is established by
the identification of pathogenic variants in the IL2RG gene,
although sometimes this requires confirmation by other
studies, such as functional assays, especially in atypical SCID-
X1 (26). The expression of gc is not conclusive, as it can be
normal (but nonfunctional) in some patients (10).
TREATMENT APPROACHES

Following a diagnosis of SCID-X1, therapeutic measures must be
applied as soon as possible, including transfer to a specialized
center, establishment of immunoglobulin replacement therapy
(IgRT) and appropriate antimicrobial prophylaxis (15, 27–30).
HSCT or gene therapy should be performed as soon as possible
to restore immunity, for instance adhering to the consensus
guidelines proposed by the European Society for Blood and
Marrow Transplantation and the European Society for
Immunodeficiencies (EBMT/ESID) (31) or USIDnet advice.

Hematopoietic Stem Cell Transplantation
Since the first SCID-X1 patient was successfully treated with
HSCT in 1968 (32), this approach has been the treatment of
choice for many forms of PID (33). Despite a relatively high
number of reports showing the results obtained after HSCT in
SCID patients, and differences in the survival and immune
recovery according to the SCID subtype (34, 35), very few
studies focused specifically on SCID-X1 (36, 37). Overall
survival of SCID patients after HSCT is >70% (34, 35, 38),
although several factors may have an impact, such as donor
matching, older age, presence of infection, SCID phenotype/
genotype and ethnicity (34, 35, 38, 39). Use of geno-identical
matched sibling donors (MSDs) results in the highest survival
rates (>90%) (34, 35, 38, 40, 41). However, because MSDs are
available for less than 20% of SCID patients, alternative donors
including mismatched related donors, matched unrelated donors
or umbilical-cord blood donors are often used, with lower overall
survival rates (≈60-75%) (34, 35, 38, 41). Overall survival rates
using these alternative donors have however increased
November 2020 | Volume 11 | Article 608653
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considerably over the years, most likely due to the improvement
in HLA-typing techniques as well as the use of treatments to
abrogate complications such as graft versus host disease (GvHD)
(42, 43). Accordingly, T-cell and B-cell reconstitution is usually
superior in patients treated with MSDs vs. other donors (38).
Independent of the type of donor used, HSCT performed in
patients with age <3.5 months is associated with a higher survival
and reduced rate of clinical problems (38, 39). On the other
hand, the presence of active infection is associated with reduced
survival (38). Other complications that affect post-HSCT
outcomes include acute and chronic GvHD, graft failure
requiring a second transplant, and late effects of conditioning
regimens (34, 38).

Immune reconstitution after HSCT is usually achieved in the
T cell compartment after 3–4 months, normalizing after 9–12
months (43). The numbers of CD4+ and CD4+ CD45RA+ naïve
T cells early after HSCT are predictive of long-term
reconstitution and overall survival (34, 44). In contrast, B-cell
immune recovery is more variable, with 43%–66% of SCID-X1
being dependent on IgRT (36, 39, 41, 45), which has been
recently associated with a poorer quality of life in these
patients (36). The lack of B-cell functional recovery observed
in SCID-X1 patients despite successful T-cell reconstitution is
likely due to a failure in the signaling through IL-21 in B-cells
(14) and is associated with a reduced donor B-cell engraftment
particularly in unconditioned procedures (38, 45–48).
Nevertheless, a recent study reported an ongoing B-cell
response with intact host B-cell signaling through IL-21 in a
SCID-X1 patient 47 years after the HSCT, although this is most
likely due to a hypomorphic gc variant (49).

Reduced B-cell engraftment and reconstitution in SCID-X1
patients might be explained by the occupation of niches by host
B-cell precursors, as in these patients the B-cell maturation in
bone marrow (BM) is unaffected (50). Therefore, the use of pre-
transplantation conditioning (typically alkylating agents such as
busulfan) has been applied in several centers (46). On the one
hand, it is clear that pre-conditioning treatment is associated
with a lower risk of treatment failure and more reliable B-cell
reconstitution, which is associated with a better outcome (34,
38). However, some authors claim that this approach is not a
guarantee for recovery of B-cell function, since there are cases
without conditioning that maintain B-cell chimerism, as well as
patients with pre-conditioning that still need IgRT after HSCT
(46, 51). In addition, some studies suggested a relationship
between the use of conditioning and reduced survival (51),
even though this has not been universally observed in
other multicenter studies (34, 35), as well as a potential risk of
GvHD (34). Similarly to B cell recovery, successful NK cell
reconstitution has been associated with pre-conditioning
treatment (52).

In conclusion, pre-conditioning seems to improve B-cell
chimerism and immune reconstitution in SCID-X1 patients
after HSCT (34, 36, 37, 53), although more studies are needed
to determine the ideal regimen balancing efficacy with toxicity,
particularly in young infants (54). In line with this, the possible
use of targeted biologic agents for stem cell depletion (e.g.
Frontiers in Immunology | www.frontiersin.org 3
monoclonal antibodies such as anti-CD117 or anti-CD45) is
very promising (55–57).
Gene Therapy
Despite the undoubted benefit of HSCT in the treatment of SCID-
X1, the difficulties to find a suitable donor, lower survival rates in the
absence of MSD, lifelong use of IgRT in a relatively high number of
cases, as well as the occurrence of adverse effects like GvHD and
graft failure/rejection have driven the development of autologous
gene therapy as an alternative curative treatment. In SCID-X1
patients, all the procedures clinically used so far consist of ex vivo
introduction of a corrective copy of the IL2RG gene using viral
vectors in autologous HSPCs (6, 58–64). In brief, CD34+ HSPCs are
obtained from BM or mobilized peripheral blood stem cells and
cultured and transduced under conditions that enhance
permissiveness to gene transfer. Finally, the corrected cells are re-
introduced in the patients, either with (in latter studies) or without
any kind of prior conditioning. A schematic representation of gene
therapy protocol used in SCID-X1 patients is shown in Figure 1.

Gene therapy is particularly attractive in the case of SCID-X1,
due to the powerful survival and growth advantage of gc
corrected precursors (65). This is in line with the partial but
sustained immune reconstitution of T-cells observed in SCID-X1
patients with spontaneous revertant mutations in their precursor
cells (18–21, 66, 67). In general, these reversions are limited to the
T-cell compartment (18, 19, 21), despite some exceptions that
have been recently described (20, 66, 67). Hsu et al. reported a
patient with a reversion observed in T cells and also in B cells,
although only ≈1% of B cells expressed gc and this was not
enough to correct the antibody deficiency (20). This reduced
percentage might be the result of the lack of (or reduced)
advantage for corrected B-cell precursors due to the redundant
role of gc in antigen-independent B-cell maturation, though this
is indispensable for its function (14, 68). Furthermore, Okuno
et al. reported another patient with a probable reversion, detected
in several lymphoid subsets, showing the highest percentages of
reversion in CD8+ T-cells (19%) and NK cells (31%). Thus,
authors suggest that the correction might have occurred in a
common T/NK precursor and these cytotoxic cells would have a
growth advantage (66).

Gene therapy was first implemented in SCID-X1 patients
because of the encouraging results obtained in in vitro studies
(69–71) and animal models (72) by IL2RG gene transfer using
gammaretroviral vectors (gRV). The first gene therapy clinical
trial in patients with SCID-X1 began at Necker Hospital (Paris,
France) in 1999 (6, 58), followed soon after by another clinical
trial carried out at Great Ormond Street Hospital (GOSH,
London, UK) (59). The inclusion criteria for these trials
included confirmed mutation in IL2RG gene and the absence
of an HLA-identical donor (58, 59). Patients age ranged between
1 and 46 months (73, 74). Both studies used a first-generation
Moloney murine leukemia virus vector expressing the gc
complementary DNA, and the transgene expression was
regulated by endogenous viral long terminal repeat (LTR)
sequences. A schematic representation of vectors is shown in
November 2020 | Volume 11 | Article 608653
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Figure 2A. gRVs were chosen because these were the first
retroviruses applied to hematopoietic cell gene transfer, and a
random integration pattern was expected (75). Both studies
followed the same protocol, with some differences in vector
pseudotyping and culture conditions (59). Corrected cells were
introduced in the patients without any kind of previous
conditioning (6, 58, 59).

The results were exceptional, with most patients showing
good long-term immune reconstitution (discussed below) and an
Frontiers in Immunology | www.frontiersin.org 4
overall survival of 90% (18/20) (taking both clinical trials
together) (73, 74). However, unexpectedly six patients
developed T-cell acute lymphoblastic leukemia (T-ALL) 2–14
years after the treatment (five in Paris and one in London), being
fatal for one patient (7, 76–78). All the other patients responded
well to the chemotherapy treatment. Interestingly, T-cell
reconstitution substantially recovered after chemotherapy
without the immediate need for a further autologous or
allogeneic graft (73, 74). The origin of this effect was
insertional mutagenesis, due to the integration of the vector
near proto-oncogenes (mainly LMO-2) and their transcriptional
activation by the viral LTR enhancer sequences (76, 77, 79). In
addition, the presence of other multiple genetic aberrations
suggests that the insertional mutagenesis was the first event
and was followed by other hits that contributed to the
malignant transformation (76, 77). At first, aberrant gc
signaling was thought to contribute to leukemogenesis (79),
which would be in line with the absence of clonal proliferation
in adenosine deaminase (ADA) deficiency SCID (ADA-SCID)
patients (80, 81), despite similar integration pattern near LMO2
and other proto-oncogenes in these patients (82). However,
neither gc overexpression nor constitutive activation of JAK3
was observed in the leukemic cells of SCID-X1 patients (76, 79).
Despite these results, the correction of IL2RG was suggested as a
contributor itself to cancer development, based on murine
models (83, 84). However, this hypothesis is controversial and
several papers have strongly argued against this concept (85–87)
[Pike-Overzet et al. (65) reviewed exhaustively the main findings
regarding this issue], and it is now commonly accepted that
IL2RG does not have an inherent oncogenic role although it is
clearly permissive to T cell development. Accordingly, a recent
study using transgenic mice showed that IL2RG was not directly
FIGURE 1 | Schematic representation of gene therapy protocol used in
SCID-X1 clinical trials. CD34+ HSPCs are sorted from bone marrow (BM) or
mobilized peripheral blood stem cells (PBSCs) using magnetic separation and
cultured with cytokines. Thereafter, cells are transduced with the specific
vector containing the corrective human interleukin-2 receptor g gene (IL2RG)
and after a period of culture, the cells are re-infused in the patients. In most
recent clinical trials, the cells are infused after a low-dose conditioning
treatment. Subsequently, the immune reconstitution starts, and the patient is
theoretically cured for life.
A

B

C

FIGURE 2 | Schematic representation of viral vectors used in the different
clinical trials for the treatment of SCID-X1 patients. In 1st generation g
retroviral vectors (gRVs), the gene expression is controlled by viral long
terminal repeat (LTR) sequences (A). In 2nd generation self-inactivating (SIN)
gRV and lentiviral vectors (LVs), the U3 region of LTR is deleted and the
human interleukin-2 receptor g gene (IL2RG) expression is driven by an
internal mammalian promotor (B). Moreover, the LVs contain a codon
optimized (co) IL2RG complementary DNA to further improve the transgene
expression, and U3 region is replaced with a chromatin insulator element (Ins)
(C). MoLV, Moloney murine leukemia virus; EFS, eukaryotic human elongation
factor 1a (EF1a) short promoter.
November 2020 | Volume 11 | Article 608653
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oncogenic, although an accelerated leukemogenesis was observed
in the thymus due to the functional cooperation between LMO2
and IL2RG (88), indicating that IL2RG might have a cooperative
role. Self-renewal of thymocytes induced by the limiting thymic
precursor supply from BM has been also suggested as another
contributor to T-ALL in these patients (89, 90), as in these
subjects T-cell production is maintained in the absence of
corrected precursors in BM (73). However, these studies are
based on murine models and do not appear to be supported by
clinical experience in unconditioned allogeneic HSCT where
leukemogenesis has not been observed (91). In conclusion, the
leukemogenesis observed in some SCID-X1 patients treated with
gene therapy predominantly originates from insertional
mutagenesis associated with the gRVs, which (contrary to the
previous belief) do not have a random integration pattern (92).
Detailed insertion site analysis has demonstrated a preferential
integration in transcriptionally active gene regulatory regions.
This favored target site profile has its origin in the interaction
between the virus integrase and the bromodomain and
extraterminal domain proteins (BET), which also interact with
histone acetyl modifications in active enhancers and promotors
(93–95). Therefore, these vectors preferentially target active
genes, and can cause gene expression dysregulation induced by
endogenous proviral promotor and enhancer sequences located
in the proviral LTRs. Subsequently, leukemogenesis has also been
observed in patients with Wiskott-Aldrich syndrome (96) and
chronic granulomatous disease (97) treated with similar vector
configurations. In contrast, despite the use of gRVs for gene
therapy of ADA-SCID and the similar vector integration profile
observed (98), no malignant transformation has been reported in
any of these patients so far (80, 82, 99, 100). A possible
explanation for this phenomenon is that a more detoxified
environment, as a consequence of the recovery of ADA
function, would facilitate the maturation of non-corrected
thymocytes, which might compete with transduced cells
containing the deleterious mutations (90). On the other hand,
the improved engraftment achieved by conditioning treatment
used in ADA-SCID patients could lead to increased thymus
precursor seeding from bone marrow HSPC, reducing the
thymocyte replicative stress and consequently the oncogenic
risk (90). Conditioning may, therefore, play an important role,
not only in the efficacy of the therapy (discussed below) but also
in safety.

Consequently, extensive efforts were made to develop safer
vectors, reducing the insertional activation of endogenous genes
but maintaining efficacy. The first approach was the design and
evaluation of self-inactivating (SIN)-gRVs, in which the LTR U3
regions (containing the viral promoter and enhancer sequences)
were deleted, and transgene expression was controlled by
internal regulatory elements (101, 102). Thus, a SIN-gRV with
IL2RG expression driven by the eukaryotic human elongation
factor 1a (EF1a) short promoter (EFS) (Figure 2B) was used in a
multicenter clinical study performed in Europe and USA (63).
Enrolled patients were infants with SCID-X1 and inclusion
criteria included confirmed mutation in IL2RG gene and the
absence of an HLA-identical donor or the presence of therapy-
Frontiers in Immunology | www.frontiersin.org 5
resistant infection (this last criterion was mandatory for patients
from France) (63). As well as in previous SCID-X1 clinical trials,
corrected cells were infused in the absence of conditioning (63)
(except for the final unreported patient treated who received low
dose busulfan) (103). Data published in a preliminary report in
2014 (63) included nine patients <1 year old and the results
demonstrated a similar immune recovery compared with the first
clinical trials using 1st generation gRVs and an encouraging
survival rate of 89% (8/9). Importantly, the integration profile
analysis showed a lower frequency of integration sites near
cancer-associated genes in this second clinical trial vs. previous
studies. As expected, similar integration patterns were observed
for 1st generation gRVs and SIN-gRVs (63, 104), in line with the
described preferential integration patterns mediated by the viral
integrase (93–95). Differences in overall profile therefore most
likely result from in vivo selection of clones containing insertions
near growth-promoting genes mediated by the enhancer
sequences located in the LTR (63). Accordingly, after a median
follow-up of 7.9 years (2.7–9.3 years), none of the SCID-X1
patients treated with SIN-gRVs have to date developed cancer
(103), so the improved safety of these vectors observed in pre-
clinical studies (101, 102) is encouraging.

More recently, SIN-lentiviral vectors (SIN-LVs) have been
developed, in which codon-optimized gc expression is driven by
an internal EFS promoter element (105, 106) (Figure 2C),
together with the use of low level conditioning (60, 62). LVs
have advantages because they exhibit a safer integration pattern
(107) and more efficient transduction of quiescent HSPCs (108).
Furthermore, SIN-LVs have shown promising results regarding
efficacy and safety in the treatment of other diseases (109, 110),
as well as in SCID-X1 pre-clinical studies (106, 111, 112). Similar
to SIN- gRVs, the absence of viral promoters/enhancers likely
play a major role in the increased safety. The use of low-dose pre-
conditioning to improve engraftment and immune recovery in
SCID-X1 patients was encouraged by previous gene therapy
clinical trials (80, 113). Currently, several clinical trials using
SIN-LVs together with the use of busulfan as a non-
myeloablative conditioning are being conducted (Table 1) and
the preliminary results reported in both children and adults have
showed very promising results with respect to immune
reconstitution (see below) and safety (60, 62), even though
longer follow-up is needed. The absence of leukemia
development so far in those patients treated with SIN-gRVs
and SIN-LVs also supports the idea of IL2RG correction did not
have an oncogenic role in SCID-X1 patients treated in the first
clinical trials.
IMMUNE RECONSTITUTION IN
SCID-X1 PATIENTS AFTER GENE
THERAPY TREATMENT

In general, immune reconstitution achieved in SCID-X1 patients
treated with gene therapy has been encouraging, although some
variability has been observed among the different clinical trials
November 2020 | Volume 11 | Article 608653
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performed so far, as well as among the patients included. In the
next sections we discuss the main results obtained regarding the
immune system recovery after gene therapy and the possible
factors affecting, as well as the differences observed vs. HSCT.

T Cells
In SCID-X1 children treated with gene therapy, T-cell recovery
has been observed in the majority, independent of the vector
employed (6, 58, 63, 73, 74). Thus, in those patients treated with
1st generation gRVs, T-cell recovery was observed for 19/20
patients around 2–5 months, with 13/20 achieving levels of T-
cells comparable to age-matched healthy donors at 6 months (58,
59). However, two patients received a subsequent HCST at 7 and
26 months after gene therapy, due to sub-optimal immune
reconstitution and clinical deterioration (58, 114). One of these
patients (114) as well as one of those that developed T-ALL died
(74). The remaining 17 patients continue to be followed-up: 15/
17 patients showed normal or near normal T-cell numbers,
including CD4+ T-cells (10/17) and CD8+ T-cells (16/17),
according to the last published report (GOSH cohort: 4.5–8.9
years; Necker cohort: 7.3–10.7 years) (73, 74). Strikingly, most
patients from both studies showed a reduced CD4:CD8 ratio
(ranging from 0.19 to 1.0) at the last follow-up (73, 74), which
has been also reported in patients with IL2RG spontaneous
reverse mutations (18–21). It has been hypothesized that this
might be result of a skewed selection of CD8 cells in the thymus
or a consequence of antigen-driven response, although the
reason of this phenomenon remains elusive.

Similar results were obtained for the patients treated with 2nd

generation gRVs, without significant differences vs. previous
clinical trials (63). From nine patients included in this study,
seven were followed-up over 1–3.2 years (one patient died
because of a pre-existing infection and the other was removed
from the trial and underwent a cord blood transplant, due to the
absence of marked T-cells). From these seven infants, six
achieved a sustained CD3+, CD4+, and CD8+ T cell recovery.
Regarding the SCID-X1 infants treated with LVs and low-
Frontiers in Immunology | www.frontiersin.org 6
intensity conditioning treatment, preliminary reports have
shown very promising results, with rapid recovery of T-cells
(including CD4+ and CD8+), reaching stable and normal values
around 6 months in 7/8 cases (60).

Interestingly, the presence of naïve T-cells in SCID-X1 patients
years after the gene therapy (with normal or slightly reduced
percentages in most of the cases), which correlated with the
number of TRECS (63, 73, 74), suggest ongoing T-cell production
in these patients. These naïve T-cells were detected despite the lack
of transduced B and myeloid cell, which indicates the absence of
transduced common progenitors in BM and a persistence of long-
termT-cell progenitors instead (74), in linewith the results recently
reported by Izotova et al. (discussed below) (115).

Polyclonality was demonstrated in most children treated,
independently of the vector employed, in both the TCRvb
family distribution and the CDR3 lengths (60, 63, 73, 74).
Some patients showed a more restricted repertoire, which
mirrors suboptimal immune reconstitution, especially in terms
of total T-cells and naïve T-cells (60, 73). With regard to the
functional capacity of T-cells, proliferative response to PHA,
anti-CD3 or specific antigens (after immunization or infection)
was recovered and maintained over time in most patients,
although subnormal values were observed in some (63, 73, 74).

Despite the overall good T-cell immune reconstitution
achieved in SCID-X1 children treated with gene therapy, some
variability between patients has been observed. Numbers of gc+

CD34+ cells infused seems to be an important factor that affects
the immune recovery (75), since some of the patients treated
with 1st generation gRVs who received lower dose of corrected
cells had the poorest T-cell recovery with two of them needed
subsequent HSCT (73, 74, 114). In fact, taking the data from
these two cohorts (73, 74), significant correlations between the
number of CD34+ gc+ cells infused/Kg and the percentage of
naïve T-cells CD8+ (P=0.03) and the number of T-cells CD4+

(P=0.001) were observed at the last follow-up (Figure 3).
Cavazzana et al. established an approximated minimum of
3x106 CD34+ gc+ cells/Kg to achieve successful immune
TABLE 1 | Gene therapy clinical trials recruiting patients for the treatment of SCID-X1 registered in https://clinicaltrials.gov/.

Number Estimated number of patients Locations Start date Treatment Age Refs

NCT01306019 30 Bethesda 2012 Vector: Lentivirus
Conditioning: Busulfan
Other drugs: Palifermin (to prevent side effects of busulfan)

2–40 y (62)

NCT03315078 13 Bethesda 2012 Vector: Lentivirus
Conditioning: Busulfan
Other drugs: Palifermin (to prevent side effects of busulfan)

2–40 y

NCT01512888 28 San Francisco
Memphis,
Seattle

2016 Vector: Lentivirus
Conditioning: Busulfan

<24 m (60)

NCT03217617 10 Beijing
Shenzhen

2017 Vector: Lentivirus 1 m–10 y

NCT03601286 5 London 2018 Vector: Lentivirus
Conditioning: Busulfan

2 m–5 y

NCT03311503 10 Los Angeles
Boston
London

2018 Vector: Lentivirus
Conditioning: Busulfan

<5 y

NCT04286815 10 Chongqing 2020* Vector: Lentivirus <18 y
November 2020 | Volume 1
1 | Article 60
*Estimated start date. m, months; y, years.
8653

https://clinicaltrials.gov/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Blanco et al. Immune Reconstitution SCID-X1 Gene Therapy
reconstitution (116). Vector copy number (VCN) in the graft was
also been demonstrated to be important. In the cohort of patients
treated with 2nd generation gRVs vectors, patients with a VCN
>0.7 in the graft showed more reliable cell recovery (63). CD34
expression in the graft might also play a role in T-cell
reconstitution. In a recent report of SCID-X1 infants treated
using LVs, two patients showed reduced expression (mean
fluorescence intensity) of CD34+ in the graft prior to
transduction, which was related to relatively low yields in both
cases (reduced VCN and CD34+ doses). However, only one of
them showed poor T-cell recovery (60).

Clinical complications at the time of gene therapy, such as
hemorrhagic events (73) or viral infections (114), have been also
suggested to have a role in the immune recovery. However, normal
reconstitution has been observed in other SCID-X1 cases with
infections at the time of gene therapy (114). The presence of active
infection at the time ofHSCT in SCIDpatients has been also related
to poor T-cell recovery in some studies (38), but not in others (34).
Frontiers in Immunology | www.frontiersin.org 7
On the other hand, in one of the treated infants in whom gene
therapy failed, authors suggested that an atypical T-B+NK+
phenotype could have hampered the selective growth advantage
of corrected T-cell progenitors inBM, hindering the T-cell recovery
(114). Interestingly, a NK+ SCID phenotype has been suggested to
be related with a poorer long-term T-cell recovery after HSCT vs.
NK- (and NKlow) phenotypes (38, 117). However, the presence of
NK cells before the gene therapy did not seem to be an impediment
for theT-cell recovery inother cases (60, 63), indicating theneed for
more systematic evaluation of this phenomenon.

Older age at the time of gene therapy is clearly associated with
diminished capacity for T-cell recovery. Among SCID-X1 children
treated with gene therapy, modest T-cell reconstitution was
observed in the oldest patient (3.8 years old) (59, 73), in line with
results observed in other gene therapy clinical trials performed in
adolescents and adults (61, 62, 64). Thus, the results obtained infive
patients with attenuated forms of SCID-X1 or previous long-term
failed HSCT, and ages ranging from 10 to 20 years old treated with
FIGURE 3 | Correlation between the number of gc+ CD34+ cells infused and T-cell subsets in the last follow-up reported. Data were obtained from patients treated
with the 1st generation g retroviral vectors (gRVs) (73, 74). When it was possible (same variables were reported or it was possible to calculate them with the
information provided in the original publications), both cohorts (Necker and GOSH) were analyzed together. Correlations were determined by (squared) Pearson
correlation coefficient using SPSS v18 software (IBM SPSS Statistics, IBM, Armonk, NY).
November 2020 | Volume 11 | Article 608653
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BM CD34+ or GCSF-mobilized PB CD34+ transduced with 1st

generation gRVs in the absenceof conditioning,were relativelypoor
(61, 64). Limited if any T-cell reconstitution was observed in 4/5
cases (without naïve T-cells and extremely low values of TRECS)
(61, 64). In the other case (10 years old at the time of gene
therapy), a discrete increase of T-cells was observed, with
presence of TRECs and recovery of proliferation capacity, but
without reaching normal values for any T-cell subset (61).
Strikingly, this case had showed a transient T-cell recovery after
BMtransplantation.Consequently, authors suggestnotonlyanage-
dependent effect, but also previous (thought temporal)
thymopoiesis as an important factor for the success of gene
therapy in these older patients (61). More recently, results from a
clinical trial performed in five SCID-X1 patients treated with LVs
and low-doseof conditioningagedbetween10and23yearsoldwere
reported. Interestingly, those patients followedover time showedan
increase in the number of marked T-cells and TRECS (62), so the
combination of LVs and reduced-intensity conditioning treatment
seems to achieve some T-cell reconstitution even in older patients.
However, T-cell recovery was slower vs. infants treated with a
similar approach (60), emphasizing the importance of more
preserved thymic function.

Finally, recent reports tracking T-cells through the evaluation
of vector insertional sites and TCR rearrangements in SCID-X1
patients after gene therapy has provided valuable information
about immune reconstitution from gene-modified progenitors
(115, 118). Clarke et al. estimated a minimum population of 144-
6,018 active progenitors in patients treated with gRVs (follow-up:
4–180 months), with those cases who had suffered T-ALL
showing smaller population sizes. Authors suggest that the
occurrence of T-ALL and chemotherapy treatment might have
diminished the pool size (118), which is in line with the lower
number of naïve T-cells detected in one SCID-X1 patient treated
with gene therapy that had suffered T-ALL (115). T-cell diversity,
usage of V and J gene segments in TCR-beta and the number of
unique TCR-beta CDR3 sequences were similar in healthy
donors and almost all patients, despite authors suggested that a
slow but gradual loss of diversity might be occurring in those
patients with longer follow-up (118). Furthermore, the minimum
number of divisions to generate the observed TCR-beta cell
population from the precursors was estimated ≈9 (118). Most
recently, Izotova et al. analyzed the clonal diversity and
insertional site sharing of T-cell subpopulations over the time
in SCID-X1 patients treated with 1st generation gRVs. De novo
production of true (functionally and phenotypically) naïve T
cells from long-term lymphoid progenitors (LtLP) was
demonstrated up to 15 years after the loss of gene-modified
HSPCs, as well as an ongoing differentiation of naïve T cells into
memory/effector T-cells. T-cell production was estimated to be
sustained by 2,092–6,056 individual engineered LtLP clones, as
previously predicted by Scala et al. (115, 119).

B Cells
In contrast to the outstanding T-cell recovery achieved across gene
therapy clinical trials performed in SCID-X1 patients, B-cell
reconstitution has been, in general, much more variable. Thus,
Frontiers in Immunology | www.frontiersin.org 8
in those SCID-X1 children treated with gRVs (1st and 2nd

generation) in the absence of conditioning, only a partial and
non-sustained recovery of B-cell function was achieved, which was
in line with the absence or extremely reduced numbers of
transgene marked B-cells (58, 59, 63, 73). Reduced levels of IgM
and IgA were reported in ≈15%–70% and ≈30%–60% of patients,
respectively, IgG evaluation being difficult to interpret because of
IgRT, which is usually administrated to these patients. In addition,
successful IgRT withdrawal is typically considered in itself as a
marker of B-cell function correction, and 7/17 patients treated
with 1st generation gRVs and all treated with 2nd generation gRVs
remained on IgRT in the last reported follow-up (63, 73, 74). It is
noteworthy that the parameters used to inform discontinuation of
IgRT were not always the same, and included the T-cell numbers
(74), IgA and IgM levels (59, 73), or clinical parameters (74).

Despite the widely used and undeniable utility of serum
antibodies to evaluate the B-cell response, these might not reflect
accurately the ongoing B-cell response (120), as antibodies are
principally produced by long-living plasma cells, which are located
mainly in BMniches for years or even decades (121–123). In which
case, the detection of serum Ig levels over time observed in some
SCID-X1 infants after gene therapy may reflect an early but
temporal recovery of B-cell function. This would be in line with
the initial response to vaccination observed in some patients, but
generally suboptimal and non-sustained over time, and most likely
linked to the decrease in the percentage of transduced B-cells (from
1% during the first 2 years to <0.1% 6–10 years after therapy) (74).
Accordingly, normal serum IgM levels is not a good predictor of B-
cell response in SCID-X1/JAK3 SCID patients after HSCT, despite
it being a widely parameter used to decide the withdraw of IgRT
(37). Consequently, alternative parameters should be also
considered to evaluate recovery of B-cell function. Vaccination
response is a more reliable and predictive indicator, and has been
extensively measured in SCID-X1 patients after treatment, using a
wide number of polysaccharide and protein antigens (37, 73, 74).
However, despite its utility (124), this approach is impeded by the
use of IgRT and cannot be performed in all patients. One possible
solutionmight be the immunizationwith neoantigens, as the T-cell
dependent FX174 bacteriophage, which has already been used in
SCID-X1 treated with HSCT (45). On the other hand, other
measures such as presence of class switched memory B-cells or in
vitro stimulationwith IL-21,havedemonstrated tobeveryuseful for
the evaluation of B-cell function recovery, showing a good
correlation with vaccination response (37). This might help to
inform clinical decisions, such as the initiation of immunization as
well as the withdrawal of IgRT (14, 125). In line with the
disappointing vaccination results obtained in SCID-X1 children
treated with 1st and 2nd generation gRVs without conditioning (63,
73, 74), memory B-cells were reduced in the last follow-up in
virtually all the patients. Accordingly, no response to IL-21 was
observed, despite some proliferation was detected after stimulation
withCD40L and IL-4 (74), probably through the activation of IL-13
receptor (without gc) (45, 126).

In summary, gene therapy based on gRVs in the absence of
conditioning failed to deliver a sustained and optimal B-cell
recovery, despite successful T-cell reconstitution and therefore
November 2020 | Volume 11 | Article 608653
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restoration of T cell help (Figures 4A, B). The reason for these
results is most likely the absence (or extremely low) percentages
of corrected B-cell years after the treatment, due to the reduced
engraftment of corrected progenitors (Figure 4B), and hence a
maintained defect in IL-21 signaling in B-cells (14, 74, 125). This
effect is also observed in those SCID-X1 patients with reduced B-
cell chimerism after HSCT (37). Because of the problems linked
to a defective B-cell recovery, such as higher risk of pulmonary
infections and chronic lung disease, as well as the reduced quality
of life associated with the dependence to IgRT (36),
improvement in the B-cell reconstitution is an important
consideration in SCID-X1 treatments. Therefore, according to
the good results obtained using reduced-intensity conditioning
Frontiers in Immunology | www.frontiersin.org 9
in gene therapy treatment for ADA-SCID patients (81, 113), as
well as in pre-clinical models of SCID-X1 (112), low-dose
conditioning regimens have now been applied to gene therapy
clinical trials for SCID-X1 (Table 1) (Figure 4C).

Preliminary results of trials using LVs and conditioning in
SCID-X1 patients show promising results regarding B-cell
function recovery. In the first clinical trial performed in five
patients between 7 and 22 years old in which previous HSCT
failed, marked B-cells appeared early after the infusion of
corrected cells, and B-cell recovery was demonstrated by the
increase of IgM from 3 months after therapy (62). Moreover, in
two patients followed-up for more time (24–36 months),
reconstitution of B-cell function was confirmed by the
A

B

C

FIGURE 4 | Schematic representation of immune reconstitution in SCID-X1 patients after gene therapy. Characteristic phenotype of SCID-X1 patients, with absence
of T and NK cells and only presence of naïve B-cells, but without differentiation capacity (T-B+NK- phenotype) (A). Immune reconstitution accomplished after the
gene therapy using gRVs in the absence of conditioning treatment. Corrected progenitors seed the thymus and a sufficient reconstitution of T-cells is achieved.
However, due to the loss of corrected hematopoietic stem cells in bone marrow, only a partial and non-sustained recovery of NK cells and B cells is observed.
Interestingly, few marked NK cells are detected years after the therapy, most likely produced from a common long-term lymphoid progenitor, which might be in
thymus or bone marrow (B). Immune recovery of SCID-X1 patients after gene therapy using LVs and conditioning treatment, which favor the engraftment of
corrected hematopoietic stem cells (C). HSPCs, hematopoietic stem and progenitor cells; PCs, plasma cells; LLPCs, long-living plasma cells.
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vaccination response, in vitro stimulation by IL-21, normal IgG
after IgRT withdrawal and the presence of IgG+ memory B-cells.
Interestingly, the humoral reconstitution corresponded with the
eradication of chronic norovirus infection (62). Regarding the
recovery of B-cell function in SCID-X1 infants treated with this
approach, preliminary results reported by Mamcarz et al. show a
normalization of IgM in 7/8 patients 3–6 months after the gene
therapy, protective vaccination response in most cases evaluated
and independence of IgRT in 4/8 cases (60). Vector-marked B-
cells were detected at 2–3 months and VCN in B-cells remained
relatively high and stable (as well as in other lineages) throughout
the follow-up time (up to 18 months) (60). Interestingly, as de
Ravin et al. pointed out, LVs and their capacity to target HSPCs
more efficiently also might have an important role to improve the
engraftment in these patients (62). In conclusion, preliminary
reports of the use of LVs and low-dose conditioning treatment
show very promising results with regard to B-cell reconstitution,
although longer follow-up will be necessary to confirm
these findings.

NK Cells
Despite the early increase observed in NK cells 2–4 weeks after
gRV-based gene therapy in absence of conditioning treatment
(58, 59), this was not sustained. Thus, absolute numbers were
below normal levels compared to age-matched healthy donors at
last follow-up, and levels of marked NK cells also decreased over
time (63, 73, 74). There is scarce information available about the
phenotype or functional capacities of these corrected NK cells.
Although efficient capacity to kill target cells (K562) (6, 58), other
studies have reported a defective expression of NK-cell receptors
such as NKp46 and NKG2D (127). Strikingly, a transient
increase was also observed in patients who developed T-ALL,
most likely as a secondary response to the clonal proliferation
(74). Recently, Izotova et al. demonstrated the presence of a
reduced number of NK cells up to 19 years after the treatment,
and 15 years after the loss of corrected HSPCs (115). These NK
cells showed a normal expression of several markers (Granzyme
B, perforin, CD94), but a decreased percentage of CD56dim

CD16+ (which is the major subset in healthy donors), in line
with previous results (127). Interestingly, due to the high levels of
shared integration sites with naïve T-cells, an intriguing
possibility is that these NK cells are most produced by a long-
lived common LtLP (Figure 4B) (115). However, gRV gene
therapy in the absence of conditioning did not favor the
development and survival of NK cells as efficiently as T-cells (74).

As for B-cells, the introduction of pre-conditioning might
improve NK cell reconstitution (73) due to the increase in
numbers of engrafted HSPCs (Figure 4C). Accordingly,
preliminary reports from trials using LVs and low-dose
conditioning showed a relatively high and stable VCN in NK
cells over time, showing age-matched comparable values in most
cases (60, 62) and normal expression of natural cytotoxic
receptors (62). Interestingly, in one patient with HPV related
severe warts, a clear improvement was coincident with an
increase in NK cells (62). Of note, the high prevalence of warts
related to HPV infection observed in patients with SCID-X1 after
HSCT and gene therapy (128) has been suggested to be
Frontiers in Immunology | www.frontiersin.org 10
associated with persistent NK defects (52). However, the
clinical consequences of NK cell deficiency has been a matter
of debate (44, 129–131), and alternative hypotheses to explain
the prevalence of these infections in SCID-X1 patients have been
put forward, including defective gc signaling in keratinocytes
(128). In conclusion, promising results have been reported with
the use of LVs and conditioning treatment regarding the NK-cell
reconstitution, although long-term follow-up and results from
other clinical trials, hopefully including more phenotypic and
functional studies, are needed to confirm them.
Immune Reconstitution Differences
After Gene Therapy vs. HSCT in
SCID-X1 Patients
To date, only one published paper has directly compared
immune recovery in SCID-X1 patients treated with gene
therapy and HSCT (127), most likely due to the relatively low
number of SCID-X1 patients treated with gene therapy so far.
This was a retrospective study conducted in one center, which
compared 13 patients treated with HLA-mismatched HSCT
(receiving two doses of rabbit anti-thymoglobulin on days -2
and -1) and 14 patients treated with gene therapy (using 1st

generation gRVs or 2nd generation SIN-gRVs in the absence of
pre-conditioning, except one patient receiving fludarabine on
days -3 and -2 to reduce the number of maternally engrafted T-
cells). Overall, results showed faster T-cell reconstitution in
patients treated with gene therapy vs. HSCT, with a high
number of total T-cells, T CD4+ and T CD8+, as well as RTE
cells (CD4+, CD45RA+, CD31+) at 6 and 12 months after
treatment. However, the use of ATG prior to HSCT could also
play a role in slower immune reconstitution in these patients.
These differences continued being observed 5 years after the
treatment for RTE cells, but disappeared for the other T-cell
subsets (127). Rapid T-cell recovery during the first months after
engraftment is essential to prevent accumulation of dangerous
infections, which are one of the main causes of death in patients
treated with HSCT (38).

On the other hand, no differences were observed in the
distribution of B-cell subpopulations or IgA levels between
both groups of patients, although IgM levels were higher 24
months after treatment in gene therapy group. Most likely due to
the absence of conditioning, B-cell function remained defective
in all patients, although in 4/12 patients treated with gene
therapy it was possible to stop IgRT (all of them treated with
1st generation gRVs) vs. in none of those treated with HSCT
(127). Similarly, NK-cell reconstitution was not achieved in any
of the patients evaluated from both groups, despite a higher
number of cells was observed in those patients treated with gene
therapy. The subset of CD56dim CD16+ cells as well as the
expression of NKp46 and NKG2D were reduced in both
groups of patients. In contrast, CD56 expression was reduced
in HSCT patients vs. healthy donors and patients treated with
gene therapy (127).

In conclusion, this informative study demonstrated faster
immune reconstitution in SCID-X1 patients treated with gene
therapy vs. HSCT, especially of T-cells, leading to more rapid
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resolution of some infections and a shorter duration of infection-
related hospitalization (127). One explanation for this superior
immune reconstitution during the first month might be the absence
of GvHD or the use of younger autologous stem cells (132).
Nevertheless, larger multicenter studies including more patients,
as well as different therapeutic approaches used in both HSCT and
gene therapy should be carried out to confirm these results.
CONCLUSIONS AND FUTURE
PERSPECTIVES

Gene therapy treatments for patients with SCID-X1 have
improved considerably in the last 20 years. The promising
results of the first clinical trials (6, 58, 59) were overshadowed
by the occurrence of T-ALL in several patients (7, 79).
However, the development of new safer gRVs and application
in new clinical trials have showed encouraging results, with
s imilar efficacy vs . previous tr ia ls and absence of
leukemogenesis so far (63). Most recently, the use of LVs and
the introduction of low-intensity conditioning have also
improved the safety and immune reconstitution (60), even in
older patients (62). The introduction of conditioning has
played a particularly important role in improved multilineage
immune recovery in SCID-X1 and other PIDs, regardless of the
vector used (60, 62, 103, 109, 113).

CD4+ and naïve CD4+ T-cell counts at 6 and 12 months after
HSCT have now been identified as predictive biomarkers for the
long-term T-cell reconstitution and overall survival in SCID
patients (34). The discovery of these kind of markers in SCID-
X1 patients after gene therapy might facilitate the identification of
those cases in which the treatment is failing, and would allow rapid
additional intervention through a new infusion of gene corrected
cells or progression to conditioned allogeneic HSCT, preventing
organ damage and other complications arising from insufficient
immune reconstitution. On the other hand, T-cell reconstitution
has been reported to be faster after gene therapy vs. HSCT in
patients with SCID-X1 (127). If these results are confirmed with
larger series, this might change the current place of gene therapy in
treatment protocols for SCID-X1 (31). However, these studies are
sometimes hampered by the lack of standardized guidelines for the
evaluation of immune reconstitution. A possible solution could be
the use of international recommendations, such as those recently
published by the Pediatric Blood and Marrow Transplant
Consortium for the screening and management of SCID
patients after HSCT (124).

Huge efforts are being put into the development of superior
viral vectors for clinical use. Thus, improvements in LV design
and production, as well as the culture and transduction protocols
have been developed (111, 133–135), which might help to
achieve a more efficient and cheaper manufacturing (133, 134),
as well as better immune reconstitution (135). Furthermore, the
application of conditioning treatment based on biologic agents
for stem cell depletion (e.g. monoclonal antibodies), with the
objective to avoid the toxic effects of classical treatments, is very
promising (55–57).
Frontiers in Immunology | www.frontiersin.org 11
Finally, despite the encouraging results using vector-based
gene therapy in SCID-X1 patients and the absence of
leukemogenesis with the SIN-gRVs and SIN-LVs so far,
concerns surrounding insertional mutagenesis as well as the
goal to obtain physiological expression patterns, have driven
the search of new alternatives. Accordingly, gene editing tools are
being explored for the treatment of several monogenic diseases,
including PIDs. Despite the absence of clinical trials using these
approaches for SCID-X1 treatment so far, recent in vitro and in
vivo pre-clinical studies using zinc-finger nucleases (ZFNs) (136,
137), transcription activator-like effector nucleases (TALENs)
(138), RNA-guided nucleases (CRISPR/Cas) (139) and adeno-
associated viruses (140) have shown very promising results.
[Booth et al. (141), Zhang et al. (142), and Rai et al. (143)
recently reviewed the state-of-the-art of gene editing tools in
primary immunodeficiencies]. However, the reduced efficiency
of homologous recombination in HSPCs is a potential hurdle to
be overcome before successful clinical application can be
contemplated, even where a powerful selective growth
advantage exists for corrected lineages (136, 137, 142).
Widespread application of ex vivo gene therapy treatments
remains complex because of the need for HSPC manipulation
using elaborate protocols and sophisticated facilities (144, 145).
The use of in vivo gene therapy through the direct delivery of the
viral vector has also been proposed as a possible alternative, with
encouraging results obtained in SCID-X1 canine models
(144–146).

In conclusion, gene therapy approaches for the treatment of
SCID-X1 have advanced considerably since the first clinical trials
were performed. Safer vectors have been developed and the
introduction of conditioning treatments have produced very
promising clinical outcomes with limited toxicities. Longer
follow-up and study of a larger numbers of patients is
necessary to fully evaluate the place of gene therapy alongside
conventional HSCT. Furthermore, the reduction of costs and the
worldwide accessibility are important practicalities to consider.
Finally, the application of new tools such as gene editing have the
potential to revolutionize the gene therapy field for the treatment
of SCID-X1 and other devastating monogenic diseases.
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