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Autoimmune-polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), a
monogenic disorder caused by biallelic mutations in the AIRE gene, has historically
been defined by the development of chronic mucocutaneous candidiasis together with
autoimmune endocrinopathies, primarily hypoparathyroidism and adrenal insufficiency.
Recent work has drawn attention to the development of life-threatening non-endocrine
manifestations such as autoimmune pneumonitis, which has previously been poorly
recognized and under-reported. In this review, we present the clinical, radiographic,
autoantibody, and pulmonary function abnormalities associated with APECED
pneumonitis, we highlight the cellular and molecular basis of the autoimmune attack in
the AIRE-deficient lung, and we provide a diagnostic and a therapeutic roadmap for
patients with APECED pneumonitis. Beyond APECED, we discuss the relevance and
potential broader applicability of these findings to other interstitial lung diseases seen in
secondary AIRE deficiency states such as thymoma and RAG deficiency or in common
polygenic autoimmune disorders such as idiopathic Sjégren’s syndrome.

Keywords: Autoimmune-polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), autoimmune polyglandular
syndrome type-1 (APS-1), autoimmune regulator (AIRE), pneumonitis, interstitial lung disease, bronchiectasis

INTRODUCTION

Autoimmune-polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), also known as
autoimmune polyglandular syndrome type-1 (APS-1), is a rare disorder resulting from biallelic
mutations in the autoimmune regulator (AIRE) gene. AIRE is a thymus-enriched transcription
regulator integral for enforcing central immune tolerance. AIRE-deficiency leads to multiorgan
system autoimmunity and susceptibility to chronic mucocutaneous candidiasis (CMC). Diagnosis
relies on developing two (“diagnostic dyad”) out of any three “classic triad” manifestations of CMC,
hypoparathyroidism, and adrenal insufficiency. Development of a diagnostic dyad raises suspicion
for APECED, which is then confirmed by AIRE gene sequencing. Detection of type I interferon
(IFN-o/IFN-m) autoantibodies is sensitive and specific for APECED and is useful for diagnosis (1).
While the classic triad is quite characteristic for APECED, exclusive reliance on the classic triad
manifestations results in delayed clinical diagnosis as a variety of non-triad non-endocrine
manifestations develop often before reaching a classic diagnostic dyad (2). To that end, we have
proposed inclusion of an adjunct triad of early-onset manifestations, namely APECED rash,
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intestinal dysfunction, and enamel hypoplasia, into expanded
diagnostic criteria which would reduce the time to clinical
diagnosis by half (3). Establishing an earlier diagnosis is
important as it can enable screening for life-threatening
endocrinopathies and prompt recognition and treatment of
non-endocrine autoimmune manifestations such as hepatitis
(4) or pneumonitis (5).

With regard to pneumonitis, prior studies had suggested it to
be an uncommon manifestation of APECED (prevalence in all
previously-published work, ~2%). A small number of affected
patients (2.7-4.5%) had been described among Turkish, Russian,
and Indian APECED cohorts. Importantly, the foundational
APECED cohort descriptions in Finns, Sardinians, or Iranian
Jews do not highlight pneumonitis nor is it a prominent feature
in the literature among APECED patients from the British Isles
(6-25). In contrast, in a prospective observational natural history
study at the NIH, we diagnosed >40% of consecutively-enrolled
APECED patients with autoimmune pneumonitis; notably,
pneumonitis symptoms presented early in life, often before
developing a classic diagnostic dyad (5).

DEFINITION AND CLINICAL
PRESENTATION OF AUTOIMMUNE-
POLYENDOCRINOPATHY-CANDIDIASIS-
ECTODERMAL DYSTROPHY
PNEUMONITIS

APECED pneumonitis presents clinically with chronic
respiratory symptoms lasting >4 weeks with accompanying
radiographic abnormalities of interstitial lung disease (ILD)
and/or bronchiectasis. Affected patients most commonly
present with daily cough with or without sputum production,
and frequently report nocturnal bouts of cough (60%) awakening
them from sleep. Less frequently, dyspnea on exertion (57%),
pleuritic chest pain (48%), wheezing (43%), and fevers (29%)
occur (5). Importantly, a small proportion of patients (<5-10%)
is asymptomatic early in the course of pneumonitis (5).

Non-contrast computed tomography (CT) of the chest
reveals abnormalities consistent with ILD and/or bronchiectasis.
Specifically, ground-glass opacities (GGO) or mosaicism and
bronchiectasis are the most common abnormalities; they are
seen, either alone or in combination, in all patients with
APECED pneumonitis, including those without respiratory
symptoms and negative lung-targeted autoantibodies (see below)
(5). Additional less common radiographic findings include a tree-
in-bud pattern, nodular opacities, and mucus plugging. Taken
together, non-contrast chest CT imaging is the most sensitive
screening tool for APECED pneumonitis.

In keeping with these chronic symptoms and radiographic
abnormalities, APECED pneumonitis leads to abnormal
pulmonary function (5, 26, 27). Indeed, affected patients
display decreased diffusing capacity of the lungs for carbon
monoxide with or without a ventilatory defect by spirometry
presenting as obstructive, restrictive, or a mixed pattern of both.

A 6 min walk test typically shows decreased walk distance and
oxygen desaturation (5).

Progression of Untreated Pneumonitis
Causes Morbidity and Mortality

Through the course of our study, we encountered patients
across the spectrum of pneumonitis severity which allowed
us to characterize the temporal progression of clinical and
radiographic features of APECED pneumonitis. Early-stage
disease manifests with dry cough associated with GGO and/or
a tree-in-bud pattern without bronchiectasis (Figure 1). Without
immunosuppression, pneumonitis progresses to bronchiectasis-
associated structural lung disease presenting with productive
cough and bacterial airway colonization. Late-stage untreated
pneumonitis features progressively worsening bronchiectasis-
associated structural lung disease with development of
recurrent infections by Gram-negative bacteria, Gram-positive
bacteria, or nontuberculous mycobacteria (NTM) leading to
hypoxemia requiring home oxygen therapy (5).

The few clinical cases previously described in the literature
corroborate our study observations. DeLuca et al. and
Alimohammadi et al. reported a Sicilian child who first developed
productive cough and recurrent lower respiratory tract infections at
the age of 5 years. The patient’s pneumonitis progressed over time
with development of a severe obstructive defect, bronchiectasis,
chronic airway colonization with Burkholderia, and hypoxemia
requiring daily oxygen supplementation at the age of 14 years. The
patient succumbed to pneumonitis complications when 18 years-
old (26, 27). Alimohammadi and colleagues described three
additional patients who developed chronic cough in childhood
and progressed clinically with recurrent lower respiratory tract
infections, an obstructive ventilatory defect, and radiographic
evidence of bronchiectasis and/or GGO. One of the patients was
oxygen-dependent by 19 years and another died at 37 years from
respiratory failure (27).

Therefore, disease progression from symptom onset to end-
stage lung disease is highly variable as demonstrated by the
aforementioned cases. Similarly, in our recent study we reported
a 54-year-old man who developed chronic cough when 5 years-old
and progressed over 40 years to eventually develop cavitary
pulmonary NTM infection complicated by bronchopulmonary
fistula and empyema, chronic hypoxemia requiring daily
supplemental oxygen, and death at 56 years. His case stands in
contrast to a 14-year-old boy who rapidly progressed from cough
onset at 7 years to home oxygen therapy at 11 years and death at 14
years (5).

Therefore, timely diagnosis is necessary to ensure early
initiation of immunomodulation in order to arrest progression
to bronchiectasis-associated structural lung disease. However,
this can be challenging to achieve as symptoms frequently begin
in early life and often before the patient develops a classic
diagnostic dyad that would raise suspicion for APECED. Even
patients with confirmed APECED typically experience delays in
pneumonitis diagnosis due to the poor characterization of the
entity in the previously-published literature. Consequently,
patients are often misdiagnosed with asthma or bronchitis
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FIGURE 1 | Stages of temporal progression of APECED-associated pneumonitis. Flow chart summarizing the temporal progression of symptoms, radiographic and
pulmonary function test abnormalities, and microbiological findings in patients with APECED pneumonitis. CT, computed tomography; PFT, pulmonary function tests;

resulting in treatment delays thereby increasing the risk of
developing structural lung disease and associated morbidity
and mortality. For this reason, we recommend that all
APECED patients, regardless of symptoms, undergo periodic
screening with chest CT to achieve early diagnosis of APECED
pneumonitis (5). Moreover, a high index of suspicion for
APECED is required by pediatricians and pulmonologists in
children who develop chronic respiratory symptoms in the
setting of CMC and/or autoimmune manifestations within the
classic and/or adjunct diagnostic criteria of APECED.

Pathogenesis of Autoimmune-
Polyendocrinopathy-Candidiasis-
Ectodermal Dystrophy Pneumonitis

AIRE Genetics and Non-AIRE Modifiers may Impact
Pneumonitis Prevalence

APECED is caused by biallelic AIRE mutations (28, 29). In our
genotype-phenotype analysis, we found an association between
carrying the ¢.967_979dell3 mutation in homozygosity with
decreased time to development of pneumonitis (5). Autosomal
dominant (AD) AIRE mutations in the first plant homeodomain
(PHD1) zinc finger domain and in the SAND domain have been
described to cause organ-specific autoimmune disease resulting in
milder phenotypes with reduced penetrance (30-32). While CMC,
endocrinopathies and non-endocrine manifestations such as
pernicious anemia, nail dystrophy, vitiligo and alopecia have been
reported, autoimmune pneumonitis has thus far not been reported
in those carrying AD mutations in AIRE. The enrichment of the
€.967_979del13 mutation in American and British cohorts may
explain the differences in prevalence among Americans and British.
Alternatively, or in parallel, non-AIRE genetic modifiers (33),

differential pulmonary microbiome, environmental factors, and/or
our unbiased enrollment coupled with a uniform prospective
evaluation in all patients regardless of symptoms may contribute
to the increased prevalence of pneumonitis among Americans.
Future enrollment and uniform multidisciplinary evaluation of
European and additional American patients in our and other
institutions will be essential to validate our findings.

Thymic Escape of Autoreactive Lymphocytes

AIRE is expressed in thymic medullary epithelial cells (nTECs)
where it facilitates the negative selection of self-reactive T-
lymphocytes. As a transcription regulator, AIRE promotes the
expression of peripheral tissue-restricted antigens on mTECs
and the clonal deletion of self-reactive T-lymphocytes; in the
AIRE-deficient state, these cells escape in the periphery and are
both necessary and sufficient to cause tissue-specific
autoimmunity as shown by lymphocyte depletion and adoptive
transfer experiments in mice (2, 34-38).

AIRE-deficiency also impairs B-lymphocyte tolerance (39),
which contributes to the development of autoimmunity in some,
but not all, tissues (40). AIRE-deficient humans and mice
produce a broad repertoire of high-affinity autoantibodies (1,
41-44), although these autoantibodies have not demonstrated
direct pathogenicity via serum transfer studies in mice (37, 40).
Instead, B-lymphocytes appear to contribute to autoimmune
inflammation through priming effector T-lymphocytes (40).

Several tissue-specific autoantibodies correlate with the
development of organ-specific disease in APECED (38, 45-47).
Among these, autoantibodies against bactericidal/permeability-
increasing fold-containing family B member 1 (BPIFB1) and the
potassium channel regulator KCNRG have been associated with
development of APECED pneumonitis (3, 21, 27, 48). We
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corroborated this finding in our cohort where both autoantibodies
were highly specific for pneumonitis and significantly associated
with the time to development of pneumonitis (5). Autoantibodies
against BPIFB1 were more sensitive compared to those against
KCNRG (5). Although the majority (76%) of affected patients
carried at least one of these lung-targeted autoantibodies in serum
and/or bronchoalveolar lavage (BAL), a quarter of patients with
pneumonitis were negative for both autoantibodies. Therefore,
while identification of autoantibodies in patient serum may aid
as a screening modality of pneumonitis, such testing alone does not
suffice to rule out pneumonitis in all individuals, further
underscoring the importance of universal screening via chest CT
imaging. Importantly, these data also underscore the need
for future research aimed to identify the lung autoantigens
that might be the target of autoimmune attack in patients
with APECED pneumonitis who do not carry BPIFBI or
KCNRG autoantibodies.

Autoimmune-Polyendocrinopathy-Candidiasis-

Ectodermal Dystrophy Pneumonitis Features a

Characteristic Compartmentalized Immunopathology
We performed bronchoscopies in APECED patients with untreated
pneumonitis and obtained BAL fluid and endobronchial and
transbronchial tissue biopsies for immunological and histological
analyses in comparison to healthy volunteer specimens obtained in

bronchoscopy. A characteristic compartmentalized immune
response was noted, which carries significant diagnostic value. In
the airways, an enrichment of neutrophils was seen in the absence
of bacterial or other lung infection. In agreement, we observed a
significant increase of neutrophil-targeted CXC chemokines in the
BAL (CXCLI1, CXCL2, IL-8), although the cellular source of these
chemokines remains unknown (Figure 2). BAL neutrophils
exhibited an activated phenotype evidenced by increased
expression of the extracellular epitope of the NADPH
oxidase b558, of primary, secondary, and tertiary granule
contents (CD18, CD63, CD66b), and of CD45, and
decreased CD16 expression. Both myeloperoxidase (MPO) and
matrix metallopeptidase-9 (MMP-9), products of activated
neutrophils, and lactate dehydrogenase (LDH), a surrogate
marker of tissue injury, were markedly increased in the BAL fluid
of patients with pneumonitis (5). Thus, activated neutrophils
appear to contribute to airway tissue injury and may instigate
bronchiectasis as postulated in patients with cystic fibrosis and non-
cystic fibrosis bronchiectasis (49, 50).

In contrast to the neutrophilic response in the airways,
histological examination of endobronchial and deeper lung tissue
biopsies demonstrated a chronic inflammatory infiltrate consistent
with prior literature describing lymphocytic peribronchiolar
inflammation in few patients (Figure 2) (5, 26, 27, 51).
Endobronchial biopsies from patients with APECED pneumonitis

CXCL1, C-X-C chemokine ligand 1; CXCL2, C-X-C chemokine ligand 2.
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FIGURE 2 | Pathogenesis of APECED-associated pneumonitis. Schematic representation of the abnormalities in the airway, respiratory epithelium, and submucosal
tissue in the setting of APECED pneumonitis. T- and B-lymphocytes infiltrate the respiratory tissue. CD4" T-lymphocytes predominate in the submucosal tissue and
peribronchiolar/bronchiolar areas (not depicted), while CD8" T-lymphocytes display a predominantly intraepithelial distribution. Neutrophils predominate in the airways
where they accumulate through the release of CXC chemokines such as CXCL1, CXCL2, and IL-8. Recruited neutrophils acquire an activated phenotype and
release MPO and MMP-9 into the airway, which further exacerbates tissue injury, as seen with release of LDH within the airways. Chronic epithelial irritation results in
a thickened basement membrane. KCNRG and the BPIFB1 have been identified as bronchial autoantigens targeted by autoimmunity in APECED pneumonitis, and
autoantibodies against these targets can be detected in the bronchoalveolar lavage and serum (not depicted) of patients with APECED pneumonitis. BPIFB1,
bactericidal/permeability-increasing fold containing family B member 1; LDH, lactate dehydrogenase; MPO, myeloperoxidase; MMP-9, matrix metallopeptidase 9;
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displayed a thickened basement membrane with submucosal and
intraepithelial lymphocytosis composed predominately of T-
lymphocytes with fewer B-lymphocytes. CD4" T-lymphocytes
predominated in the submucosa whereas CD8" T-lymphocytes
were enriched within the intraepithelial compartment (Figure 2)
(5). No eosinophils or neutrophils were observed infiltrating the
tissue. Deeper lung biopsies unveiled lymphocytic or
lymphoplasmacytic bronchiolitis and/or peribronchiolar
inflammation dominated by CD4" and CD8" T-lymphocytes,
with mild-to-moderate fibrosis noted in some patients. As with
endobronchial biopsy specimens, CD8" T-lymphocytes
predominated within the bronchiolar epithelium while CD4" T-
lymphocytes were prominent in the submucosal bronchiolar tissue.
Notably, whereas infiltration of B-lymphocytes was less prominent
on endobronchial biopsy specimens, deep peribronchial tissue
examination demonstrated marked B-lymphocyte infiltration with
development of lymphoid nodules and primary follicles, some of
which showed germinal center formation (5).

The mouse model of Aire-deficiency recapitulated the
immunological characteristics of autoimmune pneumonitis of
patients. Specifically, Aire”” mice exhibited airway neutrophilia
with increased neutrophil-targeted CXC chemokines in the
absence of an infectious challenge. Moreover, the lung
parenchyma of Aire”’” mice featured similar histological
abnormalities consisting of intraepithelial, submucosal,
peribronchiolar and interstitial infiltration composed of T- and
B-lymphocytes with B-lymphocyte aggregates observed deeper in
the lung tissue (5).

Collectively, APECED pneumonitis features a characteristic
pattern of compartmentalized immunopathology consisting of
activated neutrophils in the airways with lymphocytic
inflammation within the lung parenchyma. This information has
important diagnostic value. For example, the presence of
neutrophils in the BAL or even in induced sputum examination
in an APECED patient with pulmonary symptoms and
radiographic abnormalities should raise suspicion for pneumonitis
in the absence of pneumonia. Endobronchial biopsies, which we
favor as the preferred modality for making a histological diagnosis
of pneumonitis, allow for demonstration of intraepithelial and
submucosal lymphocytosis, which together with the airway
neutrophil expansion provide a high degree of probability for the
diagnosis of APECED pneumonitis, especially when combined with
BPIFB1- and/or KCNRG-targeted autoantibody positivity.

COMBINATION LYMPHOCYTE-DIRECTED
IMMUNOMODULATION REMITS
PNEUMONITIS

Previous reports of various immunomodulatory treatments had
demonstrated mixed results with one patient responding to T-
lymphocyte immunomodulation with azathioprine (27) while
other patients required multiple different T-lymphocyte
therapies with mixed results (21, 27). Data in the Aire-deficient
mouse from our group and others would suggest that a T-
lymphocyte depletion approach such as with the CD52-

targeting alemtuzumab would remit APECED pneumonitis (5,
37); however, the risk of opportunistic infections makes such T-
cell depleting strategies difficult to implement for the lifelong
management of pneumonitis (52, 53). Thus, we elected a
combination of T-lymphocyte modulation with azathioprine
[or mycophenolate mofetil in patients with thiopurine
methyltransferase (TPMT) mutations] together with B cell-
targeting rituximab to capitalize on the beneficial effects of
B-lymphocyte deficiency observed in mice (5). This regimen is
used successfully to treat granulomatous and lymphocytic
interstitial lung disease (GLILD) seen in combined variable
immunodeficiency (CVID) (54).

Combination T and B lymphocyte-directed therapy resulted
in resolution of respiratory symptoms in all symptomatic
patients within 1 month. Those who had recurrent pulmonary
infections secondary to their bronchiectasis before onset of
immunomodulatory treatment did not develop infection
recurrences after therapy initiation, indicating that the hyper-
inflammatory milieu within the untreated airways is permissive
for pathogen overgrowth. Immunomodulatory treatment was
accompanied by marked improvement of radiographic
abnormalities of GGO, tree-in-bud pattern, nodular opacities,
and mucus plugging. Improvement was also noted in pulmonary
function abnormalities with increased 6 min walk distance
and resolution of oxygen desaturation (5). Lymphocyte
immunophenotyping showed no changes in CD3", CD4", and
CD8" T-lymphocyte numbers in blood and an expected decline
in CD19" B-lymphocytes. Titers of BPIFBl and KCNRG
autoantibodies did not decline despite clinical and radiographic
remission of pneumonitis, further suggesting that the pathogenic
role of B-cells might be conferred via priming of T-cells in the
lung tissue, rather than through autoantibody production. This
early treatment study of five consecutive patients (5) with
pneumonitis and treatment of 6 additional patients with
similar results (manuscript in preparation) indicate that
combination T and B lymphocyte-directed therapy can remit
clinical symptoms and radiographic and functional
abnormalities in APECED pneumonitis. Importantly, early
initiation of treatment, preferably before the establishment of
irreversible bronchiectatic abnormalities, is desirable to avoid the
long-term pulmonary complications and morbidity and
mortality associated with untreated pneumonitis.

AUTOIMMUNE-POLYENDOCRINOPATHY-
CANDIDIASIS-ECTODERMAL
DYSTROPHY PNEUMONITIS SHARES
IMMUNOLOGICAL FEATURES WITH
INTERSTITIAL LUNG DISEASES
ASSOCIATED WITH SECONDARY
AUTOIMMUNE REGULATOR-DEFICIENCY
STATES

Conditions associated with documented secondary AIRE-
deficiency in the thymus such as thymoma (55) and inherited
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RAG deficiency due to hypomorphic RAG mutations that cause
delayed onset combined immunodeficiency with granulomas
and/or autoimmunity (CID-G/AI) feature autoimmunity and
display broad-spectrum autoantibodies against cytokines and
tissue autoantigens (56-58) similar to APECED patients. A
subset of these patients develops lung disease, which had
previously been poorly-characterized (59, 60). We
hypothesized that the lung disease seen in patients with
thymoma or hypomorphic RAG mutations share similar
features with APECED pneumonitis. Indeed, thymoma-
associated autoimmune lung disease exhibits a similar
compartmentalized immunopathology with airway neutrophil
expansion and intraepithelial, submucosal, and peri-bronchiolar
lymphocytic inflammation as seen in APECED pneumonitis (5).
A smaller proportion of these patients carry autoantibodies
against BPIFB1 and KCNRG compared to patients with
APECED pneumonitis (5), pointing to additional yet-
unidentified lung autoantigens in these diseases. Notably, the
similarities between autoimmune lung disease seen in the setting
of these secondary AIRE-deficiency states and APECED suggest
common pathogenetic mechanisms and imply that the
lymphocyte-targeted immunomodulatory regimen that is
effective in APECED pneumonitis might also remit ILD in
patients with thymoma (manuscript in preparation) and may
serve as a bridge to hematopoietic stem cell transplantation in
patients with ILD in the setting of hypomorphic RAG mutations
with CID-G/AL

Beyond primary and secondary AIRE-deficiency states, ILD
with a similar compartmentalized immunopathology consisting
of airway neutrophil expansion and lymphocytic bronchiolitis
develops among a subset of patients with certain polygenic
autoimmune diseases such as Sjogren’s syndrome (SS),
ulcerative colitis (UC), systemic lupus erythematosus (SLE),
and dermatomyositis (DM) (61-64). Future research is
required to determine whether, based on the shared pathologic
features of these ILDs with APECED pneumonitis, these ILDs
may also be responsive to the lymphocyte-directed therapy that
is effective in APECED pneumonitis and GLILD. In addition,
whether other primary immune dysregulatory disorders that
manifest with ILD such as STAT3 gain-of-function (GOF),
CTLA4 haploinsufficiency, and LRBA deficiency share
common immunopathological mechanisms with APECED
pneumonitis merits future investigation (65-68).
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