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Université Sorbonne Paris Cité, France
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We present a brief history of the immune response and show that Metchnikoff’s theory of
inflammation and phagocytotic defense was largely ignored in the 20th century. For
decades, the immune response was believed to be triggered centrally, until Lafferty and
Cunningham proposed the initiating signal came from the tissues. This shift opened the
way for Janeway’s pattern recognition receptor theory, and Matzinger’s danger model. All
models failed to appreciate that without inflammation, there can be no immune response.
The situation changed in the 1990s when cytokine biology was rapidly advancing, and the
immune system’s role expanded from host defense, to the maintenance of host health. An
inflammatory environment, produced by immune cells themselves, was now recognized
as mandatory for their attack, removal and repair functions after an infection or injury. We
explore the cellular programs of the immune response, and the role played by cytokines
and other mediators to tailor the right response, at the right time. Normally, the immune
response is robust, self-limiting and restorative. However, when the antigen load or
trauma exceeds the body’s internal tolerances, as witnessed in some COVID-19 patients,
excessive inflammation can lead to increased sympathetic outflows, cardiac dysfunction,
coagulopathy, endothelial and metabolic dysfunction, multiple organ failure and death.
Currently, there are few drug therapies to reduce excessive inflammation and immune
dysfunction. We have been developing an intravenous (IV) fluid therapy comprising
adenosine, lidocaine and Mg2+ (ALM) that confers a survival advantage by preventing
excessive inflammation initiated by sepsis, endotoxemia and sterile trauma. The multi-
pronged protection appears to be unique and may provide a tool to examine the
intersection points in the immune response to infection or injury, and possible ways to
prevent secondary tissue damage, such as that reported in patients with COVID-19.
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LIVING SYSTEMS: THE STEADY-STATE
AND DESIGN TOLERANCES
Fronti
A superficial consideration of the totality of the
processes in the living being immediately shows that
in the strictest sense a dynamic equilibrium is
never present.

E. Pfluger (1877) (1) p57
Living systems are not equilibrium states; they are steady-states
requiring a continual flow ofmatter, energy and exchange with the
environment (2, 3). The concept of a steady-state began in 1877
with Pfluger’s “natural adjustments”, Bernard’s concept of “milieu
inteŕieur” (1878), and Richet’s “living beings were stable but
modifiable” (1900) (3, 4). It was not until the early 1920s that
Walter Cannon combined these ideas into a unified scheme of
homeostasis (5). Cannon argued that the living organism was in a
dynamic state of constancy, with its constituent parts and processes
being actively maintained in balance despite external fluctuations.
He believed homeostasis was a systems phenomenon: “peculiar to
living beings - involving, as they may, the brain and nerves, the
heart, lungs, kidneys and spleen, all working cooperatively” (5).
The addition of negative and positive feedback circuits to support
homeostasis was not Cannon’s idea, but entered in the mid-1930s
from Russian physiologist Pyotr Anokhin’s theory of functional
systems (6). The steady-state was now viewed as comprising the
sum of negative and positive feedback mechanisms that maintains
a living systemwithin a range of operational limits or tolerances.A
stress, injury or infection was a challenge to the body’s steady-state,
and themajor goal of anynewdrug therapy, device or intervention is
to restore homeostatic balance.
EXCEEDING THE BODY’S DEFENSE
CAPABILITY AFTER A BARRIER BREACH
Except on few occasions, the patient appears to die
from the body’s response to infection rather than
from it.

Sir William Osler (1904)
During the life of an organism, the immune system continually
senses and responds to barrier breaches and threats. If a breach
occurs, the number of blood-borne and tissue-resident immune
cells can change dramatically in seconds (7, 8). “Tissue residency”
refers to immune cells that already reside in the tissue parenchyma
or stroma, where they can roam freely withoutmoving from tissue
to tissue (9). A breach is defined as a break in epithelial continuity,
external or internal, that may arise from a pathogen (e.g. viruses,
bacteria, fungi, protozoa, or helminth) or sterile injury. Sterile
injury is defined as a trauma in the absence of pathogen. However,
trauma is rarely sterile and can be colonized by opportunistic
pathogens, soon after a penetrating injury, which may lead to
secondary infection. From our hunter-gatherer, protohuman
origins, the body has developed, through natural selection, a
defense system against infection or injury that is normally
ers in Immunology | www.frontiersin.org 2
robust, self-limiting and restorative (4, 10, 11). The immune
response normally neutralizes a pathogen or promotes wound
healing. However, if the threat overwhelms the body’s internal
tolerances, such as witnessed in some patients during the current
COVD-19 pandemic or after major trauma, excessive sympathetic
outflows, inflammation, coagulopathy, endothelial and metabolic
dysfunction can occur leading to multiple organ failure and death
(11, 12). Currently, it is not known, for example, why COVID-19
triggers such an explosive inflammatory response in some patients,
and not in others (13–16). Understanding the mechanisms
responsible for these different responses resides in the control of
the immune system (17).

In this review we will: 1) present a brief history of the host’s
immune response to infection or trauma, 2) discuss the
importance of inflammation and underlying molecular defense
mechanisms in the context of an infectious diseases like COVID-
19, and 3) discuss how a new therapeutic approach using
adenosine, lidocaine and magnesium (ALM) may alter the
host’s phenotype to prevent or resolve hyperinflammation, and
help return the system to “normal” operating conditions. We
address the following questions:
BRIEF HISTORY OF IMMUNE DEFENSE:
FROM MACROPHAGES TO CLONAL
THEORY
When I first put forward the biological theory of
inflammation eight years ago, I expressed the idea
that this reaction is effected by the intermediation of a
physiological continuity between “the cells of the
connective tissue, those of the endothelial wall and
the leucocytes, which form a complete chain and play
the principal part in the inflammation of vertebrates.”
The connective tissue cells which are first attacked,
would, I thought, transmit the action to the vascular
wall, the cells of which would contract to facilitate the
passage of the white corpuscles.

E. Metchnikoff (1893) (18) p191
ORIGINS OF CELL AND HUMORAL
THEORIES OF IMMUNITY

Around 130 years ago, Russian zoologist and pathologist Elie
Metchnikoff (1845–1916) was among the first to develop a
• How does the host mount an immune defence against a pathogen?
• Is the 20th century self/nonself discrimination still a useful concept?
• How does the host discriminate infection from sterile injury?
• What role does local and systemic inflammation play in host defence?
• Are there common intersection or checkpoint points that could lead to new
drug development to bolster the hosts’ immune defence against infection and
sterile injury?
January 2021 | Volume 11 | Article 610131
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cellular theory of inflammation and phagocytic defense against
pathogens (18). The theory was built on Rudolf Virchow’s
cellular basis of disease (19), and Pasteur’s pioneering research
on vaccine development (20). For his model, Metchnikoff
embraced Darwin’s laws of natural selection, and although he
was not the first to observe phagocytosis and inflammation, he
does appear to be the first to highlight the importance of blood-
borne and tissue-resident macrophages (21, 22). Metchnikoff
viewed inflammation as a highly integrative and restorative
process (23). He also intuitively drew parallels between
phagocytes devouring the tadpole’s tail, which was “eaten” at
the appropriate time of metamorphosis, to wound repair and
bacterial killing from amoeba to humans (23). As a sideline, but
related, Metchnikoff anticipated the importance of the gut
“microbiome” to immune daily health by eating yogurt, or
other types of sour milk, to cultivate beneficial bacteria for
host health (24).

Opponents of Metchnikoff’s cellular scheme advocated the
antibody (or “antitoxin”) theory of immunity, which became
more popular. The new movement was largely driven by Emil
von Behring and Japanese bacteriologist Shibasaburo Kitasato,
who argued that antibodies provide greater specificity to ward off
foreign invaders than a freely mobile phagocyte in an
inflammatory environment (25, 26). They showed “serum
therapies” extracted from the blood of naturally or artificially
immunized animals induced immunity in sick patients suffering
diphtheria or tetanus, a practice used today in some COVID
pandemic patients (27). The partial success of serum therapies,
and later experiments in mice, led German immunochemist Paul
Ehrlich to develop his “side-chain theory” of immunity. Ehrlich
believed that living cells were covered with chemical side-chains
that formed links with foreign toxins, and when under threat, the
cell would produce more side-chains to bind the toxin (or
antigen) (26). For every antigen in nature, there is at least one
side-chain that will bind it, and once detected, more cells can be
made with the same side-chain, which are released into the blood
as “antibodies”, in a feed-forward manner. Over time, Ehrlich
believed that the host builds a “memory” immunity “ready-made”
in their blood to protect against subsequent exposures to the same
infection. Despite its ingenious specificity and refinement,
Ehrlich’s humoral hypothesis had a number of shortcomings,
as it did not explain why some cells possessed the ability to make
side-chains, and others did not (28). Metchnikoff and Ehrlich
shared the Nobel prize in 1908 for their different theories, and
the modern era of immunology was born (29).
CLONAL SELECTION THEORY OF
IMMUNITY: ONE CELL MAKES ONE
ANTIBODY

Ehrlich’s idea that antibodies were already present in blood was
also rejected in 1930 by Fritz Breinl and Felix Haurowitz (28, 30).
In its place, they developed the “template instructive hypothesis”
of immunity, which was later adopted by Linus Pauling (28, 30,
31). The theory proposed that foreign antigens served as
Frontiers in Immunology | www.frontiersin.org 3
“templates” of antibody globulin production, and helped to
explain how Karl Landsteiner could stimulate the formation of
antibodies from artificially generated substances, known as
haptens (28). Although popular, the “template” theory did not
explain a number of critical experiments that showed humans at
birth already had a “pre-immune” antibody repertoire (in absence
of antigen), or why antibody production during one’s life was
enhanced after a second inoculation (adjuvant) with faster,
stronger and long-lasting immunity (30). In 1955, Danish
immunologist Niels Jerne proposed an alternative natural
selection theory of antibody formation, where he argued that
antibody diversity was part of the host’s “in-built” memory,
which anticipated antigenic interactions rather than being a
consequence of antigen exposure (31–33). This theory was a
game-changer because it moved the focus of immunity from the
antigen-antibody response to the host’s antibody-producing cells
themselves, which were known to display memory-like
functions (23).

In the late 1950s, Jerne’s work stimulated immunologists
David Talmage and Frank Macfarlane Burnet to propose two
cell selection theories (32). According to both theories, a foreign
“antigen” binds to the host’s antigen-specific lymphocyte,
generates a signal, and activates the lymphocyte to rapidly
divide and make exact copies (26, 32) (Figure 1). While
sharing some similarities, Burnet’s clonal theory explained in
great detail: 1) why there was such a high probability of warding
off a foreign attack from a lymphocyte recognizing one epitope
and dividing, and 2) how “self” was protected from attack
because it was developed early during embryogenesis in an
environment where there was no external threats (26, 32).
According to Burnet, it was only after birth, beginning with a
clean slate, that an individual’s immune response discriminated
self from non-self (32, 34, 35). During lymphocyte development,
the embryo removed or inactivated any autoreactive clones, and
the remaining lymphocytes only become responsive after birth.
Burnet’s idea for germline selection, and the specificity that one
lymphocyte makes one antibody, was later supported by the
studies of Peter Medawar and Gus Nossal (26, 32). Burnet’s
separation of the germline selection theory (innate) and adaptive
(during life) immunity meant that the latter can respond to
millions of different foreign antigens in a highly specific way,
without causing harm to the host. Today, the adaptive immune
system comprises humoral immune responses, orchestrated by
B-lymphocytes (B cells), and cell-mediated immune responses,
orchestrated by cellular T-lymphocytes (T cells), that are
developed successively over a lifetime (Figure 1). The adaptive
immune responses are distinct from innate immunity, since they
involve specificity and immunological memory (36).
POST-CLONAL THEORY ERA: SIGNALING
WAS A PROBLEM

Despite its simplicity and elegance, Burnet’s clonal model had a
number of limitations. In the1960s, thefirst bigunknownwaswhat
January 2021 | Volume 11 | Article 610131
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kind of signal was generated to initiate an immune response, and
howwas it presented to the host, and subsequently processed (37).
On the question of antigen presentation, Bretscher and Cohn
argued on theoretical grounds that Burnet’s one signal-one
Frontiers in Immunology | www.frontiersin.org 4
response lacked specificity [38, 39 Bretscher, 2019 #5959]. They
argued, given the tens of billions of circulating cells in blood, one
signal increased the likelihood of a lymphocyte hypermutation that
could attack “self” (37–39). In its place, they suggested two signals;
FIGURE 1 | Brief history of the working models of immunity from Burnet’s clonal theory, Bretscher and Cohn two-signal model, Janeway’s pattern recognition
receptor (PRR) theory, and Matzinger’s danger theory. In 1989, Janeway’s model, building on the earlier work of Lafferty and Cunningham, ingeniously relegated the
innate function of antigen presenting cells (APCs), that roam the tissues, to recognize highly conserved microbial components of ancient origin. He called these
microbial components pathogen-associated molecular patterns (PAMPS), which serve as ligands for a broad class of PRRs located on innate cells. While Matzinger’s
danger theory recognizes Janeway’s contribution, APCs are more responsive to cellular damage, irrespective of the presence of pathogen or sterile injury (DAMPS).
Despite their different individual contributions, no model is complete as they fail to appreciate the major contribution of inflammation. An inflammatory model has been
added to the current theories of immunity (see text for more information). Depending upon the type and location of antigen, DCs can activate two arms of adaptive
immunity; humoral activation (B cell via MHC class II molecules) from extracellular pathogens and toxins, and cell-mediated immunity (cytotoxic T cells, NKT, NK and
macrophages via MHC class 1 molecules) from intracellular pathogens or tumors.
January 2021 | Volume 11 | Article 610131
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one by the receptor antibody of the B cell (Signal 1), and a second
‘partner’ signal by T-helper lymphocytes, that recognized the same
antigen (Signal 2) (Figure 1) (37, 40). The idea that lymphocyte
activation required lymphocyte cooperation provided a check-point
over mistaken identity and untoward antigenic activation (37).
Bretscher and Cohn further suggested that the second “partner”
signal may involve a membrane/membrane interaction between
the two interacting cells (37). Today, this two-signal hypothesis has
been experimentally verified; B-cell activation requires interaction
with a specific ligand (CD40), which is expressed on the surface of
an activated helper T cell (CD4+ T cells) (37, 41, 42).

The next major advance to antigenic signaling came from
studies of Lafferty and Cunningham who showed that the two-
signal model suffered from submaximal activation, and required
some form of booster ‘signal’ (43, 44). The antigen to antibody
signal (even with T-helpers) was too weak to stimulate an immune
response. They proposed a costimulation signal, which they
believed must come from another cell or cells located in the
peripheral tissues, which they termed antigen presenting cells
(APCs) (44). In 1973, the dendritic cell (DC) was the first APC
discovered by Canadian physician Steinman and Cohn in lymph
nodes and spleen (45) (Figure 1). Mature macrophages, and
other tissue-resident immune cells, also have this antigen
presenting capacity, though not to the extent of DCs (46–49).
The “costimulatory” APC signal of Lafferty and Cunningham was
an on/off signal, and spatially separated from the “priming” or
“helper” signal of Bretscher and Cohn. In addition, shifting the
initiating signal from the central lymphoid tissues to the
periphery directly challenged the concept of self/nonself
discrimination, since APCs cannot differentiate between the
two (23, 50). These were exciting times for the field
of immunology.
JANEWAY’S PATTERN RECOGNITION
RECEPTOR THEORY: RELEGATING
INNATE IMMUNITY TO ANCIENT TIMES
Fronti
I will argue that the solution to both problems (diversity
and specificity) existed prior to the development of the
adaptive immune response and persists in contemporary
mammalian immune systems.

C. Janeway (1992) (51) p11
The apparent irrelevance of self/nonself discrimination by
APCs captivated immunologist Charles Janeway in 1989 and
challenged him to rethink the problem. Janeway began by
exposing the “immunologist’s dirty little secret”, namely, that
foreign antigen alone was insufficient to elicit the adaptive
immune response (52–54). He further questioned why T
helper cells were required to activate B and T cells, and yet
foreign antigen could either activate or inactivate the same cells
in the absence of T helper cells. Janeway’s basic assumptions for
his scheme are listed in Table 1. After exposing the weaknesses of
ers in Immunology | www.frontiersin.org 5
prevailing models, Janeway ingeniously postulated that
costimulation was only switched ‘on’ if the host’s APC’s
possessed specific pattern recognition receptors (PRRs) that
recognized some common pathogen‐associated molecular
pattern (PAMP) from an invading pathogen (54) (Figure 1).

Janeway’s concept of PRRs has been experimentally
supported with a long list of PAMPS, which led him, and
colleague Ruslan Medzhitov, to clone the first human Toll-like
receptor (TLR). Together, they showed that TLR stimulation
activated signaling pathways required for the development of
adaptive immunity (55, 56). This demonstration provided strong
support on the significance of TLRs, and their ligands, to initiate
an immune response (57). Janeway and Medzhitov further
proposed that host innate recognition had ancient roots, and if
PAMPS were not present or detected, no immune response
would occur. Key to Janeway’s thinking was that the host’s
innate system was part of the germline selection process, that
APCs had evolved receptors that recognize infectious bacteria or
their components, and that they were evolutionary distinct from
clonal receptors derived from adaptive immunity after birth (52,
55). Here, the remnants of Burnett’s clonal theory are apparent,
with modifications driven by intuition and experiment.
Moreover, since PAMPS are foreign, and not produced by the
host, the immune system can efficiently discriminate self from
nonself, and instruct the adaptive immune system to respond
accordingly (51). Janeway and Medzhitov believed they had
solved this fundamental problem posed by Lafferty and
Cunningham having with regard to APC surveillance in the
periphery. Much debate exists as to why Janeway and Medzhitov
were not awarded the 2011 Nobel Prize for their unification
theory, and TLR signaling pathway demonstrations (57). The
prize was shared between Jules Hoffman (described Toll genes in
fruit flies, 1996), Bruce Beutler (showed LPS activated TLR-4
receptor, 1998) and Ralph Steinman (discovered DCs, 1973) for
their discoveries on innate immunity (57).
TABLE 1 | Major assumptions that led Charles Janeway to develop his pattern
recognition receptor (PRR) theory of innate and adaptive immunity.

Innate immunity: present in invertebrates and vertebrates

1) Acts as a first responder to infectious pathogens.
2) Recognizes antigens on pathogens via PRRs “that are ancient in their lineage”.
3) PRRs are located on tissue-resident APCs.
4) If not resolved locally, an adaptive immune response is activated.
Adaptive immunity: unique to vertebrates
5) Slower to respond and involves B and T cells.
6) APCs communicate to B and T cell receptors via PRRs.
7) Two distinct types of antigen presentation (MHC class I/MHC class II).
8) Mature T cells become activated and begin dividing rapidly by mitosis (clonal
expansion) to amplify the response to effectively control a pathogen.
9) Two advantages:

a) Specifically tailored to the invading pathogen: Each cell is committed to
make one antigen-specific receptor protein, and the host’s system can
respond to many pathogens (>100 trillion).
b) Forms a pool of memory cells from these specific effectors that can last for
many years.

10) Repeat infections can build the host’s immunity, in most cases.
APC, antigen presenting cell; MHC, major histocompatibility complex.
January 2021 | Volume 11 | Article 610131
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MATZINGER’S DANGER MODEL: MOVING
BEYOND THE IMMUNE SELF/NONSELF
DICHOTOMY
Fronti
Although this (self/nonself) paradigm has often served
us well, years of detailed examination have revealed a
number of inherent problems. This viewpoint outlines
a model of immunity based on the idea that the
immune system is more concerned with entities that
do damage than with those that are foreign.

P. Matzinger (2002) (58) p301
In 1994, Polly Matzinger challenged Janeway’s theory and his
PAMPS self/nonself dichotomy. She proposed the primary
function of the immune system “is the need to detect and
protect against danger” (59). Notwithstanding the special case
of foreign antigen recognition, Matzinger argued the host’s
innate immune cells must also recognize molecular signals
from cellular damage (59). Matzinger termed these danger or
alarm signals, damage-associated molecular patterns (DAMPs)
(35, 39, 59, 60). Danger or alarm signals arise from cellular
damage caused by pathogens or tissue trauma. Up until now
tissue injury had received very little attention, and Matzinger’s
views were intuitive and transforming. She proposed that DAMPS
and PAMPS share the common property of signaling cellular
damage, irrespective of its origin. The danger theory also
challenged Janeway’s concept of “foreign”, meaning the host’s
infectious “nonself” (Figure 1). Vertebrates have evolved
harmoniously with many billions of friendly “foreign”
microbes living in their intestines, mouth and epithelial
surfaces without causing harm. Indeed, animals and humans
have evolved two genomes; their own and the gut microbiome
(61, 62). Today, we know there are more bacteria residing in our
gut (1015) than cells in our body (1014), which are not infectious
unless there is a barrier breach (39, 60, 61). Every day we inhale
hundreds of thousands of bacteria per cubic meter of air, and
many of these inhabit our nasal-pharyngeal passages (63). These
friendly “foreigners” contribute to our immune health as part of
the gut–brain–immune axis (64), and have the potential to
become pathogenic when a breach occurs from ischemia,
trauma or disease (62).

Conceptually and operationally, Matzinger’s theory shifted
the molecular specificity of innate activation to damage in the
tissues. While sharing many features of Janeway’s PRR theory,
Matzinger concluded there was no need for a self/nonself binary
distinction to explain immunity. She wrote: “to say that
specificity is important is different from saying that a
discrimination between self and nonself is necessary” (39). The
immune response was now viewed as a response to tissue
damage or alarm “signals” that don’t discriminate (60). Over
the decades, Matzinger’s danger model has received a great deal
of experimental support, with a long list of DAMPs from
damaged or dying cells (35, 58, 60, 65). Despite their differences,
Matzinger and Janeway’s theories largely focused on the early
ers in Immunology | www.frontiersin.org 6
molecular specificity of the innate immune response, and not the
regulation of adaptive immunity (66).
INFLAMMATION: A MISSING PIECE OF
THE PUZZLE
Our understanding of inflammation started with
research in the field of leukocyte migration,
meticulously observed under the microscope by
Metchnikoff and colleagues. … He can be considered
the father of innate immunity.

B. Imhof (2016) (22) p655
From an historical perspective, it is remarkable that the
models of immunity rarely included Metchnikoff’s theory of
inflammation and phagocytotic defense (67). There was no
mention of ‘inflammation’ in any of the key papers of Janeway
and Matzinger (51, 59), or in later reviews on the “danger theory;
20 years later” (35). To be fair, cytokine biology was in its infancy
and the first drugs targeting the inflammatory system were not
developed until the 1990s (68). However, given that cytokines
were known to be produced by lymphocytes and macrophages in
the 1970s (69), and Lafferty and Cunningham had shifted the
initiating immune signal from lymphoid tissues to the periphery
(1975), it is still curious why there was no eureka moment, at
least in their writings, linking the innate immune response to
inflammation, and recognizing that immune cells were
inflammatory cells. It appears that Janeway and Matzinger
were more interested in molecular aspects of the initiating
signals and the concept of self/nonself discrimination, rather
than immune cell interactions and the changing milieu
underpinning this response.

Like most paradigm shifts in science, it is difficult to pin-point
when inflammation entered the different models of immunity. It
appears to have occurred in the 1990s when cytokine biology and
technologies were rapidly advancing. For example, in 1993
Ferrara reported an explosive inflammatory response with
profound immune dysregulation in patients receiving allogenic
tissue graft transplantation (70, 71). Ferrara coined the term
“cytokine storm” to describe this response, whereby donor T cells
produce excessive quantities of proinflammatory cytokines that
induced damage and pathology in the recipient’s tissues (70). A
few years earlier, Beutler and colleagues showed that cytokines,
such as IL-1, TNF-a, and IL-6, played a direct role in the
pathogenesis of endotoxic shock (72), and Cavaillon showed
experimentally that individual immune cells possessed the ability
to produce their own source of regulatory cytokines that
modulated their effector functions (69, 73). There are many
other examples showing that cytokines, inflammation, immune
function and disease were increasingly being recognized as part
of the same intertwined process. Another aspect not widely
reported until the 1990s, is that the main role of the immune
January 2021 | Volume 11 | Article 610131

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Dobson et al. Living in a Hostile World
system expanded from host defense to maintenance of host
health (Figure 2). This new role involved a “low-level” innate
inflammatory response with housekeeping functions such as
removal of stressed or aged cells and replacing them with new
ones, maintaining symbiotic exchanges with the gut microbiome,
maintaining CNS-cardiac health viamultiple feedback networks,
integrating inter-organ exchange, endothelial health, control of
the stress response via shared receptors and hormones, restoring
the steady-state after trauma, wound healing, and preventing
chronic diseases, including autoimmune diseases and cancer
(Figure 2).
INFLAMMATION: A BRIEF HISTORY
Fronti
The Roman Celsus is credited as first documenting
(1st century AD) the four cardinal signs of
inflammation: rubor et tumor cum calore et dolore
(redness and swelling with heat and pain).

Scott and colleagues (2004) (74)
The term inflammation is derived from Latin inflammare (to
set on fire) (74, 75). Before the 18th century, acute inflammation
was regarded more as a disease, involving Celsus’ redness, pain,
heat and swelling, and a surcharge of blood in the tissues (74). In
the third century AD, Galen also believed that inflammation was
the body’s reaction to an injury, an idea taken up in the mid-
1700s by surgeon and anatomist John Hunter (1728–1793).
“This inflammation”, Hunter wrote, “will generally be in
proportion to the degree of injury done, the nature of the parts
injured, and the state of the constitution at the time” (76) p243.
Hunter also appreciated that inflammation was universal,
beneficial and restorative: “But from whatever cause
inflammation arises, it appears to nearly the same in all, for it
is an effect intended to bring about a reinstatement of the parts
nearly to their natural functions” (76) p286. In the mid-19th

century, Virchow viewed inflammation as inherently
pathological, and in the second half of the century, as changing
cell populations in blood and the tissues, which provided a
backdrop to Metchnikoff’s phagocytosis theory (74).

Today, a typical inflammatory response consists of at least
five components (77–81) (Figure 3):

1. Initiating signals: DAMPS and PAMPS
2. Innate pattern recognition receptors: initial sensing of

DAMPS and PAMPS
3. Cell signaling transduction pathways
4. Effector responses to remove the threat (local and systemic)
5. Resolution or containment strategies to promote healing
ers in Immunology | www.frontiersin.org 7
Below, we discuss the five components of inflammation and
the linkages and possible intersection points that activate the
process, and its timely resolution for optimal healing.

1) Initiating Signals: DAMPS and PAMPS
The innate immune response resides with the tissue resident
macrophages (82), DCs (47), a subset of B memory cells (83), and
mast cells detecting a barrier breach (84). Some T cells of ancient
origins are also resident in tissues and include memory (TRM)
cells, intraepithelial lymphocyte (IELs), invariant natural killer
(iNKT) cells, and gamma-delta T-cell subsets (gdT cells) (85–87).
These cells detect a myriad of molecular stimuli, the DAMPS and
PAMPS, which comprise a complex mixture of proteins,
lipoproteins, nucleic acids and saccharides (65, 88, 89). As
mentioned above, DAMPS are released from damaged, stressed
or dying cells, including extracellular and cell membrane,
cytosolic, cytoskeleton, nuclear mitochondrial, vascular
endothelial, and blood components (65, 90).

Some DAMPS include fibrinogen, annexins, platelet
components, fibronectin, S100 proteins, syndecan-1, F-actin,
ATP, histones, DNA, TFAM, mitoROS, cytochrome C, IL-1a,
HMGB1, heparan sulfate, tenascin C, defensins, amyloid-b, and
many others (90). PAMPS, on the other hand, are molecular
signals from pathogens, or their components, that may directly
or indirectly breach barriers such as skin, lung epithelium, or the
lining of the gut, or from tissue injury that becomes infected.
PAMPs can be derived from viruses, bacteria, fungi, and
protozoa and helminths. Examples include double-stranded
RNA from viruses, LPS from gram-negative bacteria, flagellin
products from bacteria, DNA from pathogens, surface
glycoproteins, lipoproteins, and other membrane components
(53, 55, 65). Importantly, DAMPS and PAMPS are not mutually
exclusive and may share co-receptors and accessory molecules, and
form “partnerships” to coordinate a response (91). Antigens, key
drivers of adaptive immune responses, are not normally
considered PAMPs, and largely comprise proteins or
polysaccharides, although small molecules coupled to carrier
proteins can also be antigenic (e.g. haptens).

2) Innate Pattern Recognition Receptors:
Initial Sensing of DAMPS and PAMPS
The LPS sensing role of TLR4 was a huge surprise.

Bruce Beutler (Nobel Laureate) Quoted from
Ravindran (2013) (92)
DAMPS and PAMPs are detected by Janeway’s PRRs located
on immune cells and non-immune cell types (e.g. astrocytes,
neurones, cardiomyocytes, hepatocytes, gut and muscle cells)
(93, 94). PRRs serve as “sensors” to communicate the nature and
severity of the breach (94). Most, if not all, cells express at least
five families of PRRs, including toll-like receptors (TLRs), RIG-I-
like receptors (RLRs), NOD-like receptors (NLRs), C-type lectin-
like receptors (CLRs), and cytosolic DNA sensors (95–97). These
different PRRs are located either on the cell surface or
intracellularly. TLRs are the best studied, and in humans, ten
Control of inflammation is key for immune defence and everyday host health.
Without inflammation there is no immune response.
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different motifs have been characterized (96–99). Structurally,
TLRs are integral glycoproteins characterized by an extracellular
ligand-binding domain containing leucine-rich repeat motifs,
and a cytoplasmic signaling Toll/IL-1 receptor homology (TIR)
domain (100). Ligand binding to TLRs through PAMP or
DAMPS induces receptor oligomerization, which subsequently
triggers intracellular signal transduction (90, 101). For example,
TLRs can mediate cellular responses to bacterial LPS (TLR4),
lipopeptides (TLRs 1, 2, and 6), flagellum (TLR5), and microbial
RNA and DNA nucleotide sequences (TLRs 3, 7, 8, and 9) (102).
Frontiers in Immunology | www.frontiersin.org 8
As mentioned, TLRs are also expressed in most tissue cells. The
most important immune cell types expressing TLRs are
macrophages, DCs, mast cells and B cells (100). TLR9, for
example, can be modulated on cardiomyocytes to reduce
myocardial ischemia/reperfusion injury (101), and are believed
to be involved in normal cardiovascular function and disease
(103). Another important PRR that senses a wide range of
PAMPS and DAMPS is the NLRP3 protein that activates a
cytoplasmic multiprotein platform assembly known as the
inflammasome (104). The inflammasome amplifies the
FIGURE 2 | Without inflammation there is no immune response. Changes in the inflammatory milieu and low oxygen drives the type and extent of the immune
response. Metchnikoff’s theory of inflammation and phagocytotic defense was largely ignored throughout the 20th century. In the 1990s, the role of the immune
system expanded from defense to maintaining host health, which includes a low-level of inflammation associated with general housekeeping functions and
maintenance of whole body steady-state. The adaptive response proceeds only if there is sufficient antigen to drive the process. In severe cases, inflammation can
spread to become a systemic response and activate a CNS-sympathetically-driven “fight-or-flight” stress response, and if not controlled, can escalate into
widespread immune, cardiovascular and metabolic dysfunction, multiple organ failure and death.
January 2021 | Volume 11 | Article 610131
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inflammatory response via caspase-1 activation and IL-1b and
IL-18 maturation, and is critical for host defenses against
bacterial, fungal, viral infections and trauma (105, 106).

3) Cell Signaling Transduction
Pathways: Linking Receptor Activation to
Gene Expression
Once PRRs are activated, the intracellular pathways that
modulate the inflammatory response involve a network of
cascades and interconnections. There are at least five major
Frontiers in Immunology | www.frontiersin.org 9
signaling transduction pathways; NF-kB, MAPK, JAK/STAT3,
TGF-b/Smad and PI3K/AKT (Figure 4) (88, 94, 107–111). If
TLRs are activated, different signals may be directed into two
distinct pathways with different cytokine products: 1) the
myeloid differentiation primary response protein 88 (MyD88)-
dependent pathways, which is activated by most TLRs and
IFN-g, or 2) the TIR domain-containing adaptor-inducing
IFN-b (TRIF)-dependent pathway, which responds to only a
few TLRs, such as TLR3 and TLR4 (111, 112). If a robust innate
immune response is required, both MyD88 and TRIF pathways
FIGURE 3 | Overview of the immune response. The time-course depends upon the precise nature and severity of the initial threat. The process comprises five main
components; 1) initiator signals (DAMPS and PAMPS), 2) tissue-resident “innate” cells, and their receptors (PRRs), 3) cell signal transduction pathways, 4) effector
responses to neutralize the threat (innate and adaptive), and 5) active resolution to promote healing. Inflammation is key to the selection, recruitment, and phenotypic
expression of the various immune cells during the immune response. How damage control is communicated among immune cells, and their subsequent go/no-go
“decision-making criteria”, to start healing with epithelial closure, are not well understood.
January 2021 | Volume 11 | Article 610131
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can be activated (113), which leads to activation of three
transcriptional factors, NF-kB, activating protein-1 (AP-1) and
IFN regulatory factor 3 (IRF3) (114–116) (Figure 4). Similarly,
“booster” coactivation of NF-kB and AP-1 can occur via
the MAPK pathway (117), and additionally FOXO and cAMP
Response Element Binding (CREB), if the phosphatidylinositol-
3-kinase (PI3K/AKT) pathway is triggered (118) (Figure 4).
Other transcriptional factors STAT3, p53, estrogen receptor,
ATF3 (CREB family), Smad3 and 4, and NFATs all have the
ability to intersect and regulate NF-kB (115, 119). Possible
reasons for why NF-kB was selected as a principal regulator of
inflammation, and check-point for multiple pathway and
crosstalk interactions, may be to expand gene expression in a
more robust, controlled manner to deal with threats of diverse
origins. From an evolutionary perspective, having multiple
networks to finely tune the inflammatory response in a context-
and time-specific manner may have conferred the host a major
survival advantage to a pathogen or injury. Single pathway
activation may not have been sufficient to induce an adequate
effector response (113).
Frontiers in Immunology | www.frontiersin.org 10
The ultimate goal of PRR signaling is to change immune cell
activation states, and production of inflammatory mediators
(107). For example, TLR stimulation via both MyD88 and
TRIF signaling induces the maturation of DCs, specifically the
upregulation of costimulatory molecules (e.g. CD40, CD80 and
CD86) and the production of proinflammatory cytokines (e.g.
IL-6, and TNF-a) (120). The main function of cytokines is
intercellular communication among and between immune and
non-immune cells as autocrine, paracrine, or endocrine
messengers to modulate the host’s effector response (121, 122).
Other inflammatory mediators include chemokines, vasoactive
amines (histamine and serotonin), adhesion molecules,
neurogenic receptors (e.g. dopamine, adrenergic, glutamate
acetylcholine and serotonin), vasoactive peptides (Substance
P), complement components (C3a, C4a and C5a), lipid
mediators (leukotriene B4, prostaglandins and platelet-
activating factors), regulators of the extracellular matrix, pro-
resolving mediators (lipoxins, resolvins, protectins, maresins,
adenosine), and proteolytic enzymes (elastin, cathepsins and
matrix metalloproteinases) (77, 78, 121–126). Upregulation or
FIGURE 4 | Broad schematic of the main signaling transduction pathways and the changing role of the inflammatory environment. The link between receptor
activation and control of inflammatory cytokine and chemokine production involves at least five signaling transduction pathways; NF-kB, MAPK, JAK/STAT3, TGF-b/
Smad and the PI3K. The cytokine TGFb1 can also regulate NFkB and JNK pathways via TRAF6 convergence. Although the five major pathways are regulated by
different mechanisms, they share many PRRs, stressor signals (e.g. adrenergic, cholinergic, receptors/ion channels) and accessory mediators (e.g. growth factors,
hormones), and converge at common intersections points, such as NF-kB, AP-1 and the CREB family. NFkB signaling (not shown) also participates in the regulation
of the NLRP3 inflammasome, which is involved in the rapid amplification of inflammation and its resolution.
January 2021 | Volume 11 | Article 610131
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downregulation of inflammatory gene expression is also
influenced by changes in the intracellular environment such as
calcium handling, pH, redox coupling, nitric oxide, hypoxia
status, endosomal and lysosomal activity, glycolytic and
mitochondrial energy metabolism, and the generation of
reactive oxygen species (ROS) (115, 119, 127–131). Calcium
handling and oxidative stress, for example, if not tightly
regulated, can lead to pathway dysregulation, mitochondrial
dysfunction and genomic instability (131). This often occurs
after major trauma or infection and can lead to immunodeficiency,
septic shock, or induction of autoimmunity (see below) (94).
Orchestration and timing of production of these inflammatory
mediators shapes the type and extent of acute immune response to
a threat (107).

4) Effector Inflammatory Responses to
Remove the Threat (Local and Systemic)
Fronti
In acute inflammation, we find, as a general rule,
vascular dilatation accompanied by an active
condition of the endothelium of the vessel-walls and
an exudation with diapedesis, that is to say, three
events which concur in producing a considerable
afflux of leucocytes towards the injured spot.

E. Metchnikoff (1893) (18) p171
The innate effector response can range from a local
Metchnikoffian phagocytotic engulfing, digesting, debris
clearance and tissue repair, with no further action, to a full-
blown, centrally-coordinated, clonal expansion of lymphocytes, if
thehost becomes overwhelmedwith antigen (Figures 1 and 2) (41).
This innate strategy may apply to small wounds which are open to
opportunistic bacterial or viral intrusion. Thus, if antigen has not
reached threshold, it appears a pathogen threat can be dealt with
locally without activating the adaptive immune response (132–
134).While trauma per se does not activate adaptive immunity in a
conventional manner, an increasing number of studies involving
CNS and musculoskeletal injury, have shown that T cells and B
cells can be activated by endogenous “antigens”, independent of a
pathogen (135, 136). The endogenous “antigens” are believed to
belong to a class ofDAMPS that stimulate autoantibodies, thatmay
assist in cellular defense and repair (136). However, like
inflammation, where there is overactivation of T or B cells, there
is potential for collateral tissue damage and detrimental
autoimmunity (94). In the case of major trauma, the immune
cell effector response can quickly become a CNS-sympathetically-
driven “fight-or-flight” stress response, and if not controlled, can
escalate into widespread cardiovascular and metabolic
dysfunction, systemic inflammation, immunosuppression,
multiple organ failure and death (11, 12, 135, 137–139).

At the breach site, irrespective of the type of threat, there is an
increase in blood supply and a myriad of local signals that prime
and instruct innate immune cells to respond. These signals are
derived from activated vascular endothelial and tissue cells,
leakage of serum components (component), damaged nerve
cells, platelets, neutrophils, macrophages, mast cells,
ers in Immunology | www.frontiersin.org 11
monocytes, natural killer (NK) cells and DCs (140–145). These
different immune and non-immune cells, through their cytokine
networks, play pivotal roles both as producer cells and target
effector cells to produce the right response. Recruited neutrophils
produce ROS to help them neutralize rogue/damaged cells via
phagocytosis, degranulation and extracellular traps (109, 146). In
this proinflammatory environment, macrophages also switch to
a M1 killer phenotype (induced by IFN-g or TNF-a) and with
the help from mast cells, recruit more neutrophils from the
circulation to swarm into the site (7, 146–149). M1 macrophages
are also activated by complement receptors (C3a, C5a, and C5b)
(independent of antibody), which can induce the activation of
the NLRP3 inflammasome to amplify the inflammatory response
(147, 150). Resident innate NK cells also secrete cytokines, such
as IFN-g and TNF-a, and interact with macrophages, and other
immune cells, to enhance the response (151). As the attack
progresses, more neutrophils swarm in and blood monocytes
are recruited to resupply tissue macrophages (126, 152).

In the case of infection, the bridge between innate and
adaptive immunity, and induction of classical immune
memory in lymphocytes, begins at the tissues with the
activation of resident DCs (via complement and cytokines) (36,
46, 47, 153). In peripheral tissues, DCs: 1) capture and process
antigens, 2) express lymphocyte co-stimulatory molecules, 3)
migrate to secondary lymphoid organs and 3) secrete
“instructive” cytokines to initiate and drive lymphocyte
differentiation and clonal expansion (Figure 1) (128).
Depending upon the type and location of antigen, DCs can
activate two arms of adaptive immunity; 1) humoral activation
from extracellular pathogens and toxins, and 2) cell-mediated
immunity from intracellular pathogens or tumors (Figure 1).
Humoral immunity is initiated by T-cell-dependent and
-independent antigens, and leads to B cell activation, clonal
expansion and antibody secretion (Figure 1). Cell-mediated
responses, on the other hand, involve activation of cytotoxic T
cells, NK, NKT and macrophages, for the purpose of destroying
abnormal or infected cells.

DCs do not present antigens directly to T-helper cells of both
arms but first internalize and process them as antigenic peptides
that are presented by major histocompatibility complexes
(MHCs) located on their surface. DCs can present antigen on
both MHC class I and class II complexes depending upon the
source (128). Antigens arising from an intracellular source and
presented on MHC class I will activate CD8 (cytotoxic) T cells
(facilitated by IL-12 and type 1 IFN); while antigenic peptides
from an extracellular (or foreign) source are presented on MHC
class II molecules and activate CD4 (helper) T cells (128). In
contrast to MHC class II molecules, MHC class I are more
ubiquitous and found on all nucleated cells, presumably,
conferring an evolutionary advantage for wider interorgan
communications and defense (53, 58, 142, 153). Importantly,
DCs are generally classified as the master regulators of adaptive
immunity because they have greater capacity to transfer the three
signals (see above) to initiate the response compared to any other
APC (128). It is also noteworthy, that mitochondrial metabolism
is key for the regulation of the effector response. In pro-
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inflammatory cells, such as M1macrophages and activated T and
B cells, the metabolic energy in the form of ATP is generated
largely by glycolysis, while in regulatory cells, such as M2
macrophages or regulatory T cells, energy is generated by
increased reliance on mitochondrial function and beta-
oxidation (131).
5) Resolution Strategies to Halt the
Inflammatory Process and Promote
Healing
Fronti
Studies in recent years have unequivocally shown that
resolution of inflammation is an actively controlled
processes rather than a passive procedure in which the
proinflammatory immune cascade in inflammation
simply fizzles.

Markus F. Neurath (2019) (154) p627
After the threat has been neutralized, immune cells begin to
switch effector status and metabolism to their healing
phenotypes or they undergo programmed apoptosis.
Macrophages switch to an anti-inflammatory M2 phenotype
(155–159), neutrophils undergo self-destruct (160), and T cells
change their population from killer Th1 to a Th2 healing
phenotype (via IL-10 and IL-4 produced by DCs) (141, 161).
Th2 cytokines also help to maintain the presence of the M2
phenotype (155–159). In addition, DCs induce the production of
T regulatory cells that suppress the destructive pro-inflammatory
activities of Th1 cells by secreting cytokines, such as TGF-b1, IL-
10 and IL-35, and enhance M2 responses to promote cell
clearance (47, 160, 162, 163). Collectively, these changes limit
inflammation and create a permissive healing environment
(Figure 3).

As part of the healing processes, a further distinction is often
made between anti-inflammatory and pro-resolving responses
(126, 164–166). The term “pro-resolving” generally refers to the
active suppression of the inflammatory processes, such as
recruitment of immune cells, apoptosis and clearance of cell
debris, whereas the anti-inflammatory targets refer more to
specific inhibitory or blocking actions of one or more
pathways, which may involve inhibiting PRRs, signal
transduction, transcriptional/translational shuttling, and/or
gene expression (Figure 3) (77, 165, 167). Molecules that fulfill
the criteria of pro-resolving mediators include specialized lipid
mediators (lipoxins, resolvins, protectins, and maresins) (126,
166), proteins and peptides (annexin A1, adrenocorticotropic
hormone), gaseous mediators (H2S and CO), purines
(adenosine), as well as neuromodulators (acetylcholine and
other neuropeptides) released under the control of the vagus
nerve (126, 165, 167–169).

Inflammatory inhibitors, on the other hand, include
inhibitors or antagonists of TLR, NF-kB, TNF-a, Type I
interferons (IFN-a and b), Type II IFN-g, IL-1b, TGF-b1, and
suppressor of cytokine signaling (SOCS) proteins, which have
attracted much interest because of their ability to inhibit cytokine
ers in Immunology | www.frontiersin.org 12
signaling pathways, and many others (111, 170). Notwithstanding
the separation of process and pathway, much overlap exists between
anti-inflammatory mediators and pro-resolving mechanisms. The
successful development of new anti-inflammatory drugs with pro-
resolving properties will likely involve inhibition of a “systems”
process rather than targeting a single pro-inflammatory cytokine or
pathway (see below).
CNS CONTROL OF INFLAMMATION:
CROSSTALK BETWEEN THE NERVOUS
AND THE IMMUNE SYSTEM
The defense of the organism against deleterious
agencies, which is at first confined to the phagocytic
mechanisms and the somatic system of nerves, by and
by spreads to and is undertaken by the psychical
nervous apparatus … One function of these
psychical cells has been to develop a complete
science for the defense of the organism against
hostile influences.

E. Metchnikoff (1893) (18) p195
A topic that is often overlooked in discussions of immune
response is the regulatory role of the CNS. Over a hundred years
ago Metchnikoff recognized the importance of the “psychical
nervous apparatus” in the host’s defense (above quote) (18).
Today, the evidence suggests that the CNS interacts with
immune cells in a bidirectional manner through shared
receptors and neurotransmitters (126, 171–173). Macrophages,
neutrophils, mast cells, DCs, blood monocytes, B cells and T
lymphocytes all express many neurogenic receptors, including
dopamine, adrenergic (b -2, a-1 and 2), glutamate acetylcholine
and serotonin receptors (146, 148, 171, 173, 174). At the site of
infection or injury, this would allow short-range communication
between immune cells and recruitment of local neuronal signals
to fine tune the immune response (172, 173). Dopamine (DA)
bidirectional pathways are particularly interesting because
dopamine has emerged as a fundamental regulator of
inflammation (175). To this end, the primary and secondary
lymphoid organs are highly innervated by sympathetic nerve cell
terminals that store DA (176). Uncontrolled activation of
dopamine pathways is believed to contribute to excessive
inflammation and longer-term autoimmune pathologies (176).
Recent studies have shown that the CNS-immune crosstalk is
linked to increases in circulating neurohormones and cytokines,
such as IL-1b and IL-6, which in turn are known to activate the
HPA axis (173).

We have argued elsewhere that acute changes in the HPA
axis-sympathetic-parasympathetic outflows are associated with
immune dysfunction following different trauma states and sepsis
(11, 12), and responsible for “low-level” persistent inflammation
in most chronic inflammatory diseases, such as osteoarthritis and
cardiovascular diseases (61, 64). Recent studies further
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demonstrate that the vagus nerve can modulate the host immune
response after an infectious or sterile barrier breach (126, 168,
173), which may also have feedback inputs from changes to the
CNS-gut-microbiome-immune axis (61, 64, 177). Increased
vagal outflow to the spleen leads to reduced activation of
circulating neutrophils by modulating the expression of CD11b
(146). This indicates that the CNS can control neutrophil
recruitment, and may be vitally important for timely resolution
of inflammation after a barrier breach. Some catecholaminergic/
cholinergic neurotransmitters can also modulate centrally-driven
T cell-mediated immunity, although the underlying mechanisms
are not well understood. To sum up, peripheral nerve cell
interactions with immune cells is emerging as a major player
in controlling the type and extent of inflammation and the
immune response (146, 173). From a clinical perspective,
modulating the different neuro-immune circuits, and their
interactions, can potentially modify inflammatory processes
and pathways, that may lead to better outcomes after major
trauma, infection or disease.
DEVELOPING NEW THERAPIES TO
REDUCE EXCESSIVE INFLAMMATION:
CHOOSING THE RIGHT ANIMAL AND THE
CONDITIONS FOR SAFETY AND
TRANSLATION TO HUMANS
Fronti
Achieving FDA approval for only one-in-ten drug
indications that enter the clinic is a concerning
statistic for drug developers, regulators, investors
and patients.

Hay and colleagues (2014) (178)
Currently, there are few safe and effective drug therapies
targeting excessive inflammation and immune dysfunction after
trauma or infection. The widely used non-steroidal anti-
inflammatory drugs (NSAIDs), COX-2 inhibitors and TNF-a
inhibitors do not appear to be pro-resolving, and may in fact
exacerbate the resolution process (166). The reasons for lack of
progress in drug development in this area is complex. The 90%
failure rate of new drugs reaching FDA approval is one of the
major impediments because of the high risks of failure and high
costs (178). Furthermore, if a drug does reach approval, around
30% have been shown to have a postmarket safety event (139,
179). This adverse event statistic is startling given the high level
of scrutiny from independent institutional review boards and
pre-market safety and regulatory oversight guidelines imposed by
the FDA. We propose at least five reasons for “translational failure”:

1. Choice of animal model and gut microbiome status
2. Male animal species and human study bias
3. Heterogeneity of the human response to infection or injury
4. Poor clinical trial design in a real-world environment
5. Ignoring the systems approach
ers in Immunology | www.frontiersin.org 13
In our view, choosing the right animal model is one of the
single determinants for failure of new drugs to translate (61, 62,
177, 180, 181). An overlooked variable is the composition of gut
microbiome. In the 1960s, disease was an unwanted variable in
small animal experiments, and potentially harmful bacteria were
selectively bred out of animal colonies (61, 62, 177). These
animals are called specific pathogen-free (SPF) and the gut
composition varies from institution to institution, and different
animal suppliers. The problem with modifying gut microbiomes
is that the microflora ‘mix’ can lead to host immune alterations
and responses that are often not representative of the human
condition (61). In a landmark study, Beura and colleagues
demonstrated that SPF adult mice have “immature” immune
systems that were more prone to inflammation and infection
than conventionally-bred mice (182). Their SPF mice lacked
effector-differentiated and mucosally-distributed memory T
cells, and when co-housed and bred with pet store mice, their
immune system shifted closer to adult humans (182). Similarly,
we have reported that SPF animals are not suitable for studying
traumatic injury or hemorrhagic shock (62, 177).

Male bias in animal and human studies is another important
variable affecting drug translation. In the past, the exclusive use of
male animals assumes that male and female animals are
biologically identical (183, 184). This assumption is false (137,
183, 185). Women have twofold higher mortality after equivalent
burn injury than men, and have lower incidence of sepsis and
mortality after major surgery or blunt force trauma (186).Women
also have different responses to many FDA-approved drugs than
men, including anti-inflammatory drugs, and in some cases with
adverse outcomes (184, 187–189). Problems with translation also
depend on the heterogeneity of the population including socio-
economic, age andhealth status, that can impact clinical trials (179,
181, 190).While randomized control trials are considered the “gold
standard”, theymaynotalwaysmimic real-life treatment situations
because of their strict inclusion/exclusion criteria, and highly
controlled settings (191). In addition, many trials suffer from
poor design and low statistical power to support primary and
secondary endpoints (184, 191).

Another major contributor to “translational failure”, that
receives little attention, is the flawed practice of drugs targeting
single nodal steps (61, 62, 180). Targeting individual pro-
inflammatory cytokines, for example, or any single step along a
signaling pathway, ignores the importance of the system. Single-
nodal thinking rarely solves a medical problem unless the site is
believed to be a central hub or intersection point. The IL-1
receptor has been proposed to be such a site, and while anakinra
(IL-1 antagonist) has an excellent safety record, further trials are
required to demonstrate its clinical efficacy after an infection and
trauma (192, 193). Reductionism in scientific discovery is
important in breaking a system into its constituent parts, and
studying them, however, it does not do away with the system (61,
62, 177). This flawed way of thinking, we believe, is responsible
for a high failure rate of translating promising new drugs, and
why there are so many failed clinical trials (194). A systems
approach is much more likely to increase animal to human
success of translation.
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TOWARD A SYSTEM-BASED DRUG TO
PROTECT AGAINST EXCESSIVE
INFLAMMATION AFTER INFECTION AND
STERILE INJURY
Fronti
What we anticipate seldom occurs; what we least
expect generally happens.

Benjamin Disraeli (1804–81), Henrietta Temple (3)
Brief History: Teaching Old Drugs New
Tricks
Twenty years ago, the first author (GPD) asked if it was possible
to pharmacologically manipulate the human heart to operate
more like the heart of a natural hibernator for improved
protection during adult and pediatric cardiopulmonary bypass
or valvular surgery (2, 3, 195). Within 10 years, high dose ALM
cardioplegia was translated from isolated rat heart experiments
into human cardiac surgery. We chose adenosine (A) to inhibit
the sinoatrial node and reduce the atrial and ventricular action
potential (AP) duration (A1 receptor subtype and A1 linked
opening of KATP channels), lidocaine (L) to reduce AP amplitude
by arresting Na+ fast channels, and magnesium (M) to stabilize
the membrane and protect against reperfusion arrhythmias
(196). We theorized this strategy would arrest the heart at its
resting membrane potential and avoid the use of commonly used
high potassium, which depolarizes the membrane and promotes
‘ischemic’ injury currents (197, 198). Two prospective,
randomized, clinical trials have shown the ALM cardioplegia
to be superior to high potassium cardioplegia with less days in
hospital (199, 200). After surgery, the heart is reanimated in
sinus rhythm with 10-times lower concentrations of ALM in a
ers in Immunology | www.frontiersin.org 14
heart. This resuscitation strategy led to a second idea; namely, the
application of ALM to resuscitate and protect the heart after
major trauma such as hemorrhagic shock, cardiac arrest, heart
attack and stroke and trauma of surgery itself (3).

Adenosine, Lidocaine, and Mg2+ Immune-
Modulatory Functions
We will now briefly review our efforts to develop an intravenous
(IV) fluid therapy comprising adenosine, lidocaine and Mg2+

(ALM) that uniquely protects against trauma and infection, and
may be useful as an immune-modulatory agent for coronavirus 2
(SARS-CoV-2), and other viral challenges. Our early experiments
focused on traumatic injury (139, 201–205) and subsequently we
showed the same therapy protects against sepsis and endotoxemia
in different animalmodels (3, 206, 207). The individual effects ofA,
L orM also have been shown to confer some protection, but not to
the same extent as ALM combined (12, 208). Some of these effects
on immune cells, and key regulatory sites, are listed inTables 2 and
3. Each drug exerts anti-inflammatory and immunoregulatory
effects from molecular to cellular and tissue-level responses
(209–214), including 1) differential PRRs expression (e.g. TLRs)
and activity of cell surface receptors, 2) the activation of signal
transduction pathways and 3) the transcription factors responsible
for regulating inflammatory cytokine production, and
preservation of cellular energy metabolism (3, 211, 215–238)
(Tables 2 and 3). In addition, A, L or M individually have been
shown to support endothelial-mediated inflammatory/immune
functions (3, 239), however, they do not do so to the same extent
asALMcombined (12, 208). The precisemechanisms of howALM
confers a survival benefit at the level of the immune system, and the
intersection between trauma and infection, are not known (3, 139).
What follows is a characterization of the ALM survival phenotype
and why it may be applicable to reduce inflammation from a
viral attack.
TABLE 2 | Summary of the effects of adenosine, lidocaine and magnesium alone on immune cells.

Immune Cell Type Adenosine Lidocaine Magnesium

Macrophage • Inhibits M1 (induced by IFN-g plus TNF-a or
TLRs).

• Enhances M2 (anti-inflammatory).

• Inhibits M1 (↓ NO, CAT-2 & IL-1b from LPS-activated
macrophages).

• High concentrations
↓ M1- type inflammation,
enhance M2.

Dendritic Cell • Extracellular ATP activates.
• Downregulates & dampens T cell activation &

cytokine secretion.

• Suppresses activation of DCs via ↓ cell-mediated Th1
cell differentiation (↓IL–6, TNF-a and IL–12) and ↑ IL-10
in LPS-activated DCs).

• High concentrations
suppress Langerhans cell
functions in vitro.

Neutrophils • Inhibits neutrophil adhesion & transmigration. • Inhibits by ↓ protein kinase.
• Inhibits superoxide release by ↓ integrin-mediated

outside-in signaling & GPCR function (211).

• Reduces respiratory
burst (212).

T Cells, CD8+

(cytotoxic cells)
• Inhibits effector differentiation (209). • ↓ T cell proliferation and cytokine secretion partly by

inhibition of NF-kB signalling (211).
• ↑ inhibitory effect on the T cell-mediated immune

response during major surgery.

• Regulates cytotoxic
functions (213).

• Decreased levels
activate T cells (214).

T Cells, CD4+

(helper cells)
• A2A inhibits IFN-g to limit T cell activation &

secondary M1 activation in inflamed tissues.
• Abrogates T cell proliferation & suppresses expression

of the T cell-derived proinflammatory cytokines IL-2,
TNF-a & interferon (IFN)-g via NF-kB-mediated
inhibition of mRNA expression (211).

NK cells • Inhibits proliferation, maturation, & cytotoxic
function (210).

• Inhibitory at high concentrations.
• Low concentrations ↑ killing activity.

• Regulates cytotoxic
functions.

• Decreased levels
activate NK cells (214).
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Adenosine, Lidocaine, and Mg2+ Defends
Against Infection and Trauma
A 4-hour infusion of ALM after polymicrobial sepsis led to 6-day
survival (without antibiotics), while controls died from different
levelsof immunedysfunctionondays2and4 (3, 207).ALMsurvival
was associated with suppression of the systemic inflammatory
response. Interestingly, blood IL-1b levels remained at baseline
levels, which we argued was associated with inhibition of the
inflammasome (207). As discussed, IL-1b is a potent inducer of
inflammation via the inflammasome and activation of NF-kB (112,
240). In another porcinemodel of LPS endotoxemia, ALM infusion
Frontiers in Immunology | www.frontiersin.org 15
blunted inflammation and bolstered the cardiovascular system to
produce a high flow, hypotensive, vasodilatory state with improved
O2 delivery over a 4-hour period (241).

With respect to trauma, the ALM therapy suppressed
inflammation after hemorrhagic shock, major surgery or
traumatic brain injury (139, 201–205, 242). After hemorrhagic
shock, ALMextended survival to 3 days, whichwas associatedwith
improved cardiac function, correction of coagulopathy,
preservation of platelets, and differential expression of the master
genes of metabolism (ampk, sirt-1, PGC-1a and mtCO3).
Metabolic genes were upregulated in heart and brain and
TABLE 3 | Effects of Adenosine, Lidocaine and Magnesium alone on Toll-like receptors, NF-kb, TNF-a and inflammasome activity.

Adenosine Lidocaine Magnesium

General
Properties,
Receptors &
Functions

• Adenosine exerts its actions via four
distinct G protein-coupled receptors (A1,
A2A, A2B and A3), & different
downstream signaling pathways (3).

• The A1 and A3 receptors are coupled to
the Gi family of proteins resulting in
decreased cAMP. A2A receptors are high
affinity Gas-coupled receptors that
increase intracellular cAMP.

• Adenosine has potent anti-inflammatory,
vasodilator, anti-ischemic, & cardio- and
neuro-protective properties, & is involved
in wound healing.

• Adenosine receptors are widely
expressed in the CNS, heart, liver,
spleen, muscle, kidney, lung & immune
cells (3).

• Lidocaine acts via blocking Na+ fast channels
& non-Na channels, including specific
receptors within G-protein- coupled receptor
family (primarily via the Gaq subunit) (226).

• Lidocaine is an analgesic, anti-arrhythmic &
has anti-inflammatory properties on various cell
types, including monocytes, macrophages &
neutrophils. It also has anti-ischemic properties
in many tissues (3).

• Mg2+ exerts its effect on voltage-dependent
binding sites & receptor channels (e.g.
NMDA receptor) and as a cofactor for
energy-linked enzymatic reactions.

• Mg2+ is a natural calcium antagonist. & a
potent calcium channel inhibitor, affecting
Ca2+ regulation in immune & non-immune
cells (233).

Toll receptors
(TLRs)

• Reduces cell surface expression of TLR4
& TNF-a in human macrophages in
response to LPS or hyaluronic acid
stimulation (215, 216).

• Downregulated TLR4 & NF-kb & inhibited
induction of IL-1b, IL-6, IFN-g, TNFa in liver &
kidney in rat model of LPS-induced sepsis.
NF-kB also downregulated in the heart, with
increased survival (227).

• Similar results have been reported after sterile
injury (228).

• No studies showing a direct or indirect effect
of Mg2+ on TLRs.

NF-kb • Potent inhibitor of the NF-kB pathway in
B cell antigen receptor signaling, &
downregulates TLR4 in splenic B
lymphocytes (217).

• The suppression appears to target
blocking the phosphorylation &
subsequent degradation of the inhibitor of
NF-kb (218).

• Blocks activation of NF-kB & enhances
AP1 binding activity in ischemic rat heart
(219).

• Downregulates TLR4/NF-kB expression
& prevents myocardial ischemia-
reperfusion injury (220).

• Inhibits T cell proliferation & suppresses
expression of the T cell-derived
proinflammatory cytokines IL-2, TNF-a & IFN-g
via NF-kB-mediated inhibition of mRNA
expression (211).

• Attenuates LPS-induced acute lung injury by
inhibiting NF-kB activation (229).

• Reduces progression of cerebral ischemia-
reperfusion injury in rats by suppressing the
activation of NF-kB, p65 & p38 MAPK (230).

• Increased basal IĸBa levels in isolated blood
mononuclear cells, & upon TLR stimulation
was associated with reduced NF-kB
activation and nuclear localization (234).

• Inhibits LPS-induced inflammatory molecules
production & NF-kB activation in activated
RAW264.7 cells. May involve antagonizing
calcium by inhibiting the L-type calcium
channels, or both (235).

• Similar effects reported in activated microglia
(236).

TNF-a • Inhibits TNF-a by signaling via A2A &
A2B receptors in macrophages (221).

• Inhibits TNF-a in adult rat ventricular
myocytes, & in human heart following
ischemia-reperfusion injury (222–224).

• Prevents TNF-a-induced secretion of the
proinflammatory mediators IL-1b & IL-8 from
intestinal epithelial cell lines, via down-
regulation of NF-kB translocation to the
nucleus (211).

• Decreased TNF-a expression in lung &
systemically in pigs undergoing lung resection
surgery (231).

• Inhibits expression of TNF-a via PI3-K/AKT &
NF-kB-dependent mechanisms (237).

Inflammasome • Key regulator of inflammasome activity via
the A2A receptor (225).

• Suppresses the generation of IL-1b in
macrophages, & may block inflammasome-NF-
kB-caspase-1 activation (232).

• Inhibits NLRP3 inflammasome, IL-1b upregulation,
and pyroptosis, & believed linked to decreased
intracellular calcium levels (238).
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downregulated in the periphery (liver, gut) at 3 days. Increased
expression of sirt-1 in heart is clinically relevant because sirt-1
activation has been shown to inhibit NF-kB signaling, and reduce
inflammation (243). Similarly, upregulation of heart mtCO3
indicates improved mitochondrial metabolism by improving
cytochrome c oxidase to drive ATP synthesis (204). TFAM
(transcription factor A, mitochondrial), a gene involved in
Frontiers in Immunology | www.frontiersin.org 16
mitochondrial biogenesis, was also significantly increased in
heart and brain at 3 days. From a systems perspective, the ALM
survival phenotype appears to be associated with changes to the
CNS, with downregulation of sympathetic activation and
upregulation of parasympathetic outflow during recovery (3). As
discussed above, an increased reliance of parasympathetic outflows
is consistent an anti-inflammatory survival phenotype (146).
FIGURE 5 | ALM therapy drug development has revealed a duality of protection against infection/toxin and major trauma. The ALM survival phenotype involves an
early genetic switch and reprograming of the whole body to provide CNS-cardiac-endothelial and mitochondrial support and early bolstering of the immune system
with suppression of hyperinflammation and secondary injury processes. The underlying mechanisms have been shown to involve the differential expression of the
master genes of metabolism, however, it is not known what transcriptional signaling mechanisms are involved in ALM suppressing of inflammation after infection or
trauma. Genomic and proteomic analysis arrays may help unmask the changes in patterns of gene expression, and the nature of the ALM survival switch that
protects against an infection/toxin or major trauma.
January 2021 | Volume 11 | Article 610131

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Dobson et al. Living in a Hostile World
Future Studies and Outstanding Questions
Currently, we don’t know how and when the host “switches”
from an injury phenotype to a survival one, or if protection can
be extended from 3 to 7 days, or longer. Neither do we know if
the therapy confers the same whole-body protection if
administered at later times after insult? Other questions
include what are the underlying mechanisms responsible for
ALM’s ability to reduces the “cytokine storm”? What roles do
different immune cells, such as macrophages and neutrophils,
and platelets play in inflammatory suppression? What is the role
of adenosine receptors, lidocaine Na+ fast channels and
magnesium ions to PRR signal activation and transduction of
inflammatory pathways? What role does ALM play in regulating
intracellular Ca2+ and the metabolic pathways involved in
maturation of the immune response? Are there common
intersection points at NF-kB in the regulation of the immune
response? How is ALM’s dual protection capability linked to
altering CNS-cardiac-endothelial-mitochondrial coupling and
improved survival after trauma and infection?

Adenosine, Lidocaine, and Mg2+ as a
System-Based Therapy
On the basis of the available evidence, ALM appears to confer a
“systems’ effect” of dual protection, which has led us to propose a
Systems Hypothesis of Trauma (SHOT) (11, 12). SHOT is
discussed in detail elsewhere and begins with improved CNS
control of cardiovascular function, support of endothelial-
glycocalyx integrity, and improved O2 delivery and mitochondrial
metabolism, that isnot replicatedwith the individual activesA,LorM
(3, 11, 12). ALM’s dual protection capability may offer a unique
opportunity to control excessive inflammation and secondary injury
in patients suffering infectious diseases, such as COVID-19
presenting with cardiac, metabolic, pulmonary and immune
dysfunction (193, 244, 245) (Figure 5).
CONCLUSIONS

For much of the 20th century, the different models of immunity
rarely included Metchnikoff’s theory of inflammation and
Frontiers in Immunology | www.frontiersin.org 17
phagocytotic defense. Today, inflammation is viewed as a key
component of innate and adaptive immunity that creates a
milieu that removes and resolves infectious and non-infectious
threats. The type and extent of immune response is determined
by the mix of cytokines and other neural and inflammatory
mediators that determine the selection, activation, recruitment
and fate of immune effector cells. Although inflammation is
essential for threat neutralization and healing, if left unresolved,
it can lead to immune dysfunction and further tissue damage
with coagulopathy, endothelial dysfunction, mitochondrial
dysfunction, organ failure and death. We have been developing
an intravenous (IV) fluid therapy comprising adenosine,
lidocaine and Mg2+ (ALM) that confers a survival advantage
by preventing excessive inflammation associated with sepsis,
endotoxemia and sterile trauma. ALM may provide a therapeutic
option for treating COVID‐19.
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156. Rőszer T. Understanding the Mysterious M2 Macrophage through
Activation Markers and Effector Mechanisms. Mediators Inflammation
(2015) 2015:816460. doi: 10.1155/2015/816460

157. Ley K. M1 Means Kill; M2 Means Heal. J Immunol (2017) 199:2191–3. doi:
10.4049/jimmunol.1701135

158. Bahia D, Satoskar AR, Dussurget O. Editorial: Cell Signaling in Host-
Pathogen Interactions: The Host Point of View. Front Immunol (2018)
9:221. doi: 10.3389/fimmu.2018.00221

159. Shrivastava R, Shukla N. Attributes of Alternatively Activated (M2)
Macrophages. Life Sci (2019) 224(May 1):222–31. doi: 10.1016/
j.lfs.2019.03.062

160. Li JJ, Tan J, Martino MM, Lui KO. Regulatory T-Cells: Potential Regulator of
Tissue Repair and Regeneration. Front Immunol (2018) 9:585. doi: 10.3389/
fimmu.2018.00585

161. Corthay A. How do Regulatory T Cells Work? Scand J Immunol (2009)
70:326–36. doi: 10.1111/j.1365-3083.2009.02308.x

162. Wan YY, Flavell RA. ‘Yin-Yang’ functions of TGF-b and Tregs in immune
regulation. Immunol Rev (2007) 220(Dec):199–213. doi: 10.1111/j.1600-
065X.2007.00565.x

163. Okeke EB, Uzonna JE. The Pivotal Role of Regulatory T Cells in the
Regulation of Innate Immune Cells. Front Immunol (2019) 10:680. doi:
10.3389/fimmu.2019.00680
January 2021 | Volume 11 | Article 610131

https://doi.org/10.1016/j.bbalip.2014.12.006
https://doi.org/10.3390/ijms20061346
https://doi.org/10.3390/ijms20061346
https://doi.org/10.4049/jimmunol.181.3.1849
https://doi.org/10.1016/j.jneuroim.2005.10.017
https://doi.org/10.3389/fmed.2018.00316
https://doi.org/10.1186/1423-0127-18-90
https://doi.org/10.1186/1423-0127-18-90
https://doi.org/10.3389/fnins.2018.00690
https://doi.org/10.1042/BCJ20170714
https://doi.org/10.1042/BCJ20170714
https://doi.org/10.1111/joim.12871
https://doi.org/10.1371/journal.pone.0078695
https://doi.org/10.1016/j.semcdb.2014.03.002
https://doi.org/10.14800/rci.1169
https://doi.org/10.1016/j.it.2015.01.003
https://doi.org/10.1016/j.bbadis.2020.165845
https://doi.org/10.1126/science.1077905
https://doi.org/10.4049/jimmunol.177.1.298
https://doi.org/10.1016/j.molimm.2007.01.011
https://doi.org/10.1016/j.injury.2007.09.023
https://doi.org/10.1016/j.injury.2007.09.023
https://doi.org/10.1016/j.neuroscience.2014.08.045
https://doi.org/10.1016/j.injury.2007.09.027
https://doi.org/10.1016/j.injury.2007.09.027
https://doi.org/10.1016/j.injury.2007.08.041
https://doi.org/10.1038/nri2448
https://doi.org/10.3389/fimmu.2014.00603
https://doi.org/10.3389/fimmu.2015.00212
https://doi.org/10.1186/s12915-017-0392-4
https://doi.org/10.3390/ijms19061801
https://doi.org/10.1097/SHK.0000000000001601
https://doi.org/10.1097/SHK.0000000000001601
https://doi.org/10.1016/j.phrs.2019.104580
https://doi.org/10.3389/fimmu.2014.00402
https://doi.org/10.1016/j.neuron.2019.01.012
https://doi.org/10.1038/nri2782
https://doi.org/10.1186/s12964-019-0471-y
https://doi.org/10.1126/science.1198687
https://doi.org/10.1155/2017/1463216
https://doi.org/10.1155/2017/1463216
https://doi.org/10.1007/3-540-32636-7_2
https://doi.org/10.1007/3-540-32636-7_2
https://doi.org/10.1007/s00281-019-00771-2
https://doi.org/10.1007/s00281-019-00771-2
https://doi.org/10.1161/ATVBAHA.113.301453
https://doi.org/10.1155/2015/816460
https://doi.org/10.4049/jimmunol.1701135
https://doi.org/10.3389/fimmu.2018.00221
https://doi.org/10.1016/j.lfs.2019.03.062
https://doi.org/10.1016/j.lfs.2019.03.062
https://doi.org/10.3389/fimmu.2018.00585
https://doi.org/10.3389/fimmu.2018.00585
https://doi.org/10.1111/j.1365-3083.2009.02308.x
https://doi.org/10.1111/j.1600-065X.2007.00565.x
https://doi.org/10.1111/j.1600-065X.2007.00565.x
https://doi.org/10.3389/fimmu.2019.00680
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Dobson et al. Living in a Hostile World
164. Nathan C, Ding A. Nonresolving inflammation. Cell (2010) 140(6):871–82.
doi: 10.1016/j.cell.2010.02.029

165. Headland SE, Norling LV. The resolution of inflammation: Principles and
challenges. Semin Immunol (2015) 27(3):149–60. doi: 10.1016/
j.smim.2015.03.014

166. Panigrahy D, Gilligan MM, Huang S, Gartung A, Cortes-Puch I, Sime PJ,
et al. Inflammation resolution: a dual-pronged approach to averting cytokine
storms in COVID-19? Cancer Metastasis Rev (2020) 39(2):337–40. doi:
10.1007/s10555-020-09889-4

167. Sugimoto MA, Sousa LP, Pinho V, Perretti M, Teixeira MM. Resolution of
Inflammation: What Controls Its Onset? Front Immunol (2016) 7:160. doi:
10.3389/fimmu.2016.00160

168. Dalli J, Serhan CN. Immunoresolvents signaling molecules at intersection
between the brain and immune system. Curr Opin Immunol (2018) 50:48–
54. doi: 10.1016/j.coi.2017.10.007

169. Spite M, Serhan CN. Novel Lipid Mediators Promote Resolution of Acute
Inflammation: Impact of Aspirin and Statins. Circ Res (2010) 107:1170–84.
doi: 10.1161/CIRCRESAHA.110.223883

170. Duncan SA, Baganizi DR, Sahu R, Singh SS, Dennis VA. SOCS Proteins
as Regulators of Inflammatory Responses Induced by Bacterial Infections:
A Review. Front Microbiol (2017) 8:2431. doi: 10.3389/fmicb.2017.
02431

171. Pacheco R, Riquelme E, Kalergis EM. Emerging Evidence for the Role of
Neurotransmitters in the Modulation of T Cell Responses to Cognate
Ligands. Cent Nerv Syst Agents Med Chem (2010) 10(1):65–83. doi:
10.2174/187152410790780154

172. Procaccini C, Pucino V, De Rosa V, Marone G, Matarese G. Neuro-
endocrine networks controlling immune system in health and disease.
Front Immunol (2014) 5:143. doi: 10.3389/fimmu.2014.00143

173. Dantzer R. Neuroimmune Interactions: From the Brain to the Immune
System and Vice Versa. Physiol Rev (2018) 98(1):477–504. doi: 10.1152/
physrev.00039.2016

174. Besedovsky H, Sorkin E. Network of immune-neuroendocrine interactions.
Clin Exp Immunol (1977) 27(1):1–12.

175. Pinoli M, Marino F, Cosentino M. Dopaminergic Regulation of Innate
Immunity: A Review. J Neuroimmune Pharmacol (2017) 12(4):602–23. doi:
10.1007/s11481-017-9749-2

176. Prado C, Contreras F, Gonzalez H, Diaz P, Elgueta D, Barrientos M, et al.
Stimulation of dopamine receptor D5 expressed on dendritic cells potentiates
Th17-mediated immunity. J Immunol (2012) 188(7):3062–70. doi: 10.4049/
jimmunol.1103096

177. Letson HL, Morris J, Biros E, Dobson GP. Conventional and Specific-
Pathogen Free Rats Respond Differently to Anesthesia and Surgical
Trauma. Sci Rep (2019) 9(1):9399. doi: 10.1038/s41598-019-45871-z

178. Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J. Clinical
development success rates for investigational drugs. Nat Biotechnol (2014) 32
(1):40–51. doi: 10.1038/nbt.2786

179. Downing NS, Shah ND, Aminawung JA, Pease AM, Zeitoun J-D, Krumholz
HM, et al. Postmarket Safety Events Among Novel Therapeutics Approved
by the US Food and Drug Administration Between 2001 and 2010. JAMA
(2017) 317(18):1854–63. doi: 10.1001/jama.2017.5150

180. Dobson GP. Addressing the global burden of sepsis: Importance of a
systems-based approach. Crit Care Med (2014) 42(Dec 12):e797–8. doi:
10.1097/CCM.0000000000000595

181. Pound P, Ritskes-Hoitinga M. Is it possible to overcome issues of external
validity in preclinical animal research? Why most animal models are bound
to fail. J Transl Med (2018) 16(1):304. doi: 10.1186/s12967-018-1678-1

182. Beura LK, Hamilton SE, Bi K, Schenkel JM, Odumade OA, Casey KA, et al.
Normalizing the environment recapitulates adult human immune traits in
laboratory mice. Nature (2016) 532:512–6. doi: 10.1038/nature17655

183. Lee SK. Sex as an important biological variable in biomedical research. BMB
Rep (2018) 51(4):167–73. doi: 10.5483/BMBRep.2018.51.4.034

184. Franconi F, Campesi I, Colombo D, Antonini P. Sex-Gender Variable:
Methodological Recommendations for Increasing Scientific Value of
Clinical Studies. Cells (2019) 8(5):476. doi: 10.3390/cells8050476

185. Mauvais-Jarvis F, Bairey Merz N, Barnes PJ, Brinton RD, Carrero J-J, DeMeo
DL, et al. Sex and gender: modifiers of health, disease, and medicine. Lancet
(2020) 396(10250):565–82. doi: 10.1016/S0140-6736(20)31561-0
Frontiers in Immunology | www.frontiersin.org 21
186. Valvis SM, Waithman J, Wood FM, Fear MW, Fear VS. The Immune
Response to Skin Trauma Is Dependent on the Etiology of Injury in a Mouse
Model of Burn and Excision. J Invest Dermatol (2015) 135(8):2119–28. doi:
10.1038/jid.2015.123

187. Demyanets S, Wojta J. Sex Differences in Effects and Use of Anti-
inflammatory Drugs., in Sex and Gender Differences in Pharmacology.
Handbook of Experimental Pharmacology. R-Z V, editor. Berlin: Springer
(2012) p. 443–72.

188. Gölz C, Kirchhoff FP, Westerhorstmann J, Schmidt M, Hirnet T, Rune GM,
et al. Sex hormones modulate pathogenic processes in experimental
traumatic brain injury. J Neurochem (2019) 150(2):173–87. doi: 10.1111/
jnc.14678

189. Doran SJ, Ritzel RM, Glaser EP, Henry RJ, Faden AI, Loane DJ. Sex
Differences in Acute Neuroinflammation after Experimental Traumatic
Brain Injury Are Mediated by Infiltrating Myeloid Cells. J Neurotrauma
(2019) 36(7):1040–53. doi: 10.1089/neu.2018.6019

190. Van Norman GA. Phase II Trials in Drug Development and Adaptive Trial
Design. JACC: Basic Trans Sci (2019) 4(3):428–37. doi: 10.1016/
j.jacbts.2019.02.005

191. Lewis SC, Warlow CP. How to spot bias and other potential problems in
randomised controlled trials. J Neurol Neurosurg Psychiatry (2004) 75:181–7.
doi: 10.1136/jnnp.2003.025833

192. Dinarello CA. Overview of the IL-1 family in innate inflammation and
acquired immunity. Immunol Rev (2018) 281(1):8–27. doi: 10.1111/
imr.12621

193. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, et al.
COVID-19: consider cytokine storm syndromes and immunosuppression.
Lancet (2020) 395(10229):1033–4. doi: 10.1016/S0140-6736(20)30628-0

194. Moore TJ, Zhang H, Anderson G, Alexander GC. Estimated Costs of Pivotal
Trials for Novel Therapeutic Agents Approved by the US Food and Drug
Administration, 2015-2016. JAMA Intern Med (2018) 178(11):1451–7. doi:
10.1001/jamainternmed.2018.3931

195. Dobson GP. On Being the Right Size: Heart Design, mitochondrial efficiency,
and lifespan potential. Clin Exp Pharm Physiol (2003) 30(8):590–7. doi:
10.1046/j.1440-1681.2003.03876.x

196. Dobson GP, Faggian G, Onorati F, Vinten-Johansen J. Hyperkalemic
cardioplegia in adult and pediatric cardiac surgery: end of an Era?
Front Clin Trans Physiol (2013) 4(Aug 28):1–28. doi: 10.3389/
fphys.2013.00228

197. Dobson GP, Jones MW. Adenosine and Lignocaine: a new concept in non-
depolarising surgical arrest, protection and preservation. J Thoracic
Cardiovas Surg (2004) 127(3):794–805. doi: 10.1016/S0022-5223(03)01192-9

198. Dobson GP. Membrane Polarity: A target for myocardial protection and
reduced inflammation in adult and pediatric cardiothoracic surgery
(Editorial - Free Standing). J Thorac Cardiovasc Surg (2010) 140
(December):1213–7. doi: 10.1016/j.jtcvs.2010.05.040

199. Onorati F, Santini F, Dandale R, Ucci G, Pechlivandis K, Menon T, et al.
“Polarizing” microplegia improves cardiac cycle efficiency after CABG for
unstable angina. Int J Cardiol (2013) 167(6):2739–46. doi: 10.1016/
j.ijcard.2012.06.099

200. Onorati F, Dobson GP, San Biagio L, Abbasciano R, Fanti D, Covajes C, et al.
Superior Myocardial Protection using ‘Polarizing’ Adenosine, Lidocaine, and
Mg2+ (ALM) Cardioplegia in Humans. J Am Coll Cardiol (2016) 67
(14):1751–3. doi: 10.1016/j.jacc.2015.12.071

201. Letson HL, Dobson GP. 3.0% NaCl Adenosine, Lidocaine, Mg2+ (ALM)
bolus and 4 hours ‘drip’ infusion reduces non-compressible hemorrhage by
60% in a rat model. J Trauma Acute Care Surg (2017) 82(6):1063–72. doi:
10.1097/TA.0000000000001454

202. Letson HL, Dobson GP. Adenosine, Lidocaine and Mg2+ (ALM) fluid
therapy attenuates systemic inflammation, platelet dysfunction and
coagulopathy after non-compressible truncal hemorrhage. PloS One (2017)
12(11):e0188144. doi: 10.1371/journal.pone.0188144

203. Letson HL, Dobson GP. Adenosine, Lidocaine and Mg2+ (ALM)
resuscitation fluid protects against experimental traumatic brain injury.
J Trauma Acute Care Surg (2018) 84(6):908–16. doi: 10.1097/
TA.0000000000001874

204. Letson HL, Morris JL, Biros E, Dobson GP. ALM fluid therapy leads to 72 hr
survival after hemorrhagic shock: a model for studying differential gene
January 2021 | Volume 11 | Article 610131

https://doi.org/10.1016/j.cell.2010.02.029
https://doi.org/10.1016/j.smim.2015.03.014
https://doi.org/10.1016/j.smim.2015.03.014
https://doi.org/10.1007/s10555-020-09889-4
https://doi.org/10.3389/fimmu.2016.00160
https://doi.org/10.1016/j.coi.2017.10.007
https://doi.org/10.1161/CIRCRESAHA.110.223883
https://doi.org/10.3389/fmicb.2017.02431
https://doi.org/10.3389/fmicb.2017.02431
https://doi.org/10.2174/187152410790780154
https://doi.org/10.3389/fimmu.2014.00143
https://doi.org/10.1152/physrev.00039.2016
https://doi.org/10.1152/physrev.00039.2016
https://doi.org/10.1007/s11481-017-9749-2
https://doi.org/10.4049/jimmunol.1103096
https://doi.org/10.4049/jimmunol.1103096
https://doi.org/10.1038/s41598-019-45871-z
https://doi.org/10.1038/nbt.2786
https://doi.org/10.1001/jama.2017.5150
https://doi.org/10.1097/CCM.0000000000000595
https://doi.org/10.1186/s12967-018-1678-1
https://doi.org/10.1038/nature17655
https://doi.org/10.5483/BMBRep.2018.51.4.034
https://doi.org/10.3390/cells8050476
https://doi.org/10.1016/S0140-6736(20)31561-0
https://doi.org/10.1038/jid.2015.123
https://doi.org/10.1111/jnc.14678
https://doi.org/10.1111/jnc.14678
https://doi.org/10.1089/neu.2018.6019
https://doi.org/10.1016/j.jacbts.2019.02.005
https://doi.org/10.1016/j.jacbts.2019.02.005
https://doi.org/10.1136/jnnp.2003.025833
https://doi.org/10.1111/imr.12621
https://doi.org/10.1111/imr.12621
https://doi.org/10.1016/S0140-6736(20)30628-0
https://doi.org/10.1001/jamainternmed.2018.3931
https://doi.org/10.1046/j.1440-1681.2003.03876.x
https://doi.org/10.3389/fphys.2013.00228
https://doi.org/10.3389/fphys.2013.00228
https://doi.org/10.1016/S0022-5223(03)01192-9
https://doi.org/10.1016/j.jtcvs.2010.05.040
https://doi.org/10.1016/j.ijcard.2012.06.099
https://doi.org/10.1016/j.ijcard.2012.06.099
https://doi.org/10.1016/j.jacc.2015.12.071
https://doi.org/10.1097/TA.0000000000001454
https://doi.org/10.1371/journal.pone.0188144
https://doi.org/10.1097/TA.0000000000001874
https://doi.org/10.1097/TA.0000000000001874
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Dobson et al. Living in a Hostile World
expression and extending biological time. J Trauma Acute Care Surg (2019)
87(3):606–13. doi: 10.1097/TA.0000000000002397

205. Letson HL, Granfeldt A, Jensen TH, Mattson TH, Dobson GP, et al. ALM
supports a high flow, hypotensive, vasodilatory state with improved O2
delivery and cerebral protection in a pig model of non-compressible
hemorrhage. J Surg Res (2020) 253(Sept):127–38. doi: 10.1016/j.jss.2020.03.048

206. Griffin MJ, Letson HL, Dobson GP. Adenosine, Lidocaine and Mg2+ (ALM)
induces a reversible hypotensive state, reduces lung edema and prevents
coagulopathy in the rat model of polymicrobial sepsis. J Trauma Acute Care
Surg (2014) 77(3):471–8. doi: 10.1097/TA.0000000000000361

207. Griffin MJ, Letson HL, Dobson GP. Small-volume Adenosine, lidocaine and
Mg2+ (ALM) 4 hour infusion leads to 88% survival after 6 days of
experimental sepsis in the rat without antibiotics. Clin Vaccine Immunol
(2016) 23(11):863–72. doi: 10.1128/CVI.00390-16

208. Torres Filho IP, Torres LN, Salgado C, Dubick MA, et al. Novel Adjunct
Drugs Reverse Endothelial Glycocalyx Damage After Hemorrhagic Shock in
Rats. Shock (2017) 48(5):583–9. doi: 10.1097/SHK.0000000000000895

209. Linnemann C, Schildberg FA, Schurich A, Diehl L, Hegenbarth SI, Endl E,
et al. Adenosine regulates CD8 T-cell priming by inhibition of membrane-
proximal T-cell receptor signalling. Immunology (2009) 128(1 Suppl):e728–
37. doi: 10.1111/j.1365-2567.2009.03075.x

210. Chambers AM, Wang J, Lupo KB, Yu H, Atallah Lanman NM, Matosevic S.
Adenosinergic Signaling Alters Natural Killer Cell Functional Responses.
Front Immunol (2018) 9:2533. doi: 10.3389/fimmu.2018.02533

211. Lahat A, Ben-Horin S, Lang A, Fudim E, Picard O, Chowers Y. Lidocaine
down-regulates nuclear factor-kB signalling and inhibits cytokine
production and T cell proliferation. Clin Exp Immunol (2008) 152:320–7.
doi: 10.1111/j.1365-2249.2008.03636.x

212. Cairns CB, Krafi M. Magnesium attenuates the neutrophil respiratory burst
in adult asthmatic patients. Acad Emerg Med (1996) 3(12):1093–7. doi:
10.1111/j.1553-2712.1996.tb03366.x

213. Chaigne-Delalande B, Li F-Y, O’Connor GM, Lukacs MJ, Jiang P, Zheng L,
et al. Mg2+ regulates cytotoxic functions of NK and CD8 T cells in chronic
EBV infection through NKG2D. Science (2013) 341(6142):186–91. doi:
10.1126/science.1240094

214. Diao B, Huang X, Guo S, Yang C, Liu G, Chen Y, et al. MAGT1-mediated
disturbance of Mg(2+) homeostasis lead to exhausted of HBV-infected NK
and CD8(+) T cells. Sci Rep (2017) 7(1):13594. doi: 10.1038/s41598-017-
11522-4

215. Haas B, Leonard F, Ernens I, Rodius S, Vausort M, Rolland-Turner M, et al.
Adenosine reduces cell surface expression of toll-like receptor 4 and
inflammation in response to lipopolysaccharide and matrix products.
J Cardiovasc Transl Res (2011) 4(6):790–800. doi: 10.1007/s12265-011-9279-x

216. Yang Y, Lv J, Jiang S, Ma Z, Wang D, Hu W, et al. The emerging role of Toll-
like receptor 4 in myocardial inflammation. Cell Death Dis (2016) 7:e2234.
doi: 10.1038/cddis.2016.140

217. Minguet S, Huber M, Rosenkranz L, Schamel WWA, Reth M, Brummer T.
Adenosine and cAMP are potent inhibitors of the NF-kappa B pathway
downstream of immunoreceptors. Eur J Immunol (2005) 35(1):31–41. doi:
10.1002/eji.200425524

218. Gessi S, Varani K, Merighi S, Fogli E, Sacchetto V, Benini A, et al. Adenosine
and lymphocyte regulation. Purinerg Signal (2007) 3(1-2):109–16. doi:
10.1007/s11302-006-9042-y

219. Li C, Ha T, Liu L, Browder W, Kao RL. Adenosine prevents activation of
transcription factor NF-kappa B and enhances activator protein-1 binding
activity in ischemic rat heart. Surgery (2000) 127(2):161–9. doi: 10.1067/
msy.2000.101582

220. Fuentes-Antras J, Loan AM, Tunon J, Egido J, Lorenzo O. Activation of toll-
like receptors and inflammasome complexes in the diabetic cardiomyopathy-
associated inflammation. Int J Endocrinol (2014) 2014:847827. doi: 10.1155/
2014/847827

221. Hamidzadeh K, Mosser DM. Purinergic Signaling to Terminate TLR
Responses in Macrophages. Front Immunol (2016) 7(2):1–6. doi: 10.3389/
fimmu.2016.00074

222. Wagner DR, Combes A, McTiernan C, Sanders VJ, Lemster B, Feldman AM.
Adenosine inhibits lipopolysaccharide-induced cardiac expression of tumor
necrosis factor-alpha. Circ Res (1998) 82(1):47–56. doi: 10.1161/
01.RES.82.1.47
Frontiers in Immunology | www.frontiersin.org 22
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