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Complement-mediated inflammation or dysregulation in lipid metabolism are associated with
the pathogenesis of several diseases. These include age-related macular degeneration
(AMD), C3 glomerulonephritis (C3GN), dense deposit disease (DDD), atherosclerosis, and
Alzheimer’s disease (AD). In all these diseases, formation of characteristic lipid-rich deposits is
evident. Here, we will discuss molecular mechanisms whereby dysfunction of complement,
and especially of its key regulator factor H, could be involved in lipid accumulation and related
inflammation. The genetic associations to factor H polymorphisms, the role of factor H in the
resolution of inflammation in lipid-rich deposits, modification of macrophage functions, and
complement-mediated clearance of apoptotic and damaged cells indicate that the function of
factor H is crucial in limiting inflamsnmation in these diseases.
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INTRODUCTION

A major function of the complement system is to handle invading microbes and clear debris, but without
sufficient regulation it can attack and destroy our own cells and tissues. It can be activated through three
pathways: the classical, alternative, and lectin pathways. The alternative pathway is constantly active in
human plasma and responsible for amplifying all the complement activation cascades. To prevent
potentially harmful complement attack toward host tissues the amplification pathway of complement is
regulated by membrane inhibitors CD35, CD46, and CD55 and by soluble complement factor H and its
alternatively spliced product factor H-like protein (FHL-1) (1). Factor H functions not only in the fluid
phase to keep complement activation under control but also on surfaces to prevent attack against host
targets. FHL-1 lacks the the ability to discriminate between self and nonself targets.

Factor H recognizes specific host markers directly, such as sialic acids and glycosaminoglycans, or
indirectly via C-reactive protein (CRP) present or bound on self cell surfaces or apolipopoprotein E (apoE)
on high-density lipoprotein particles (2-4). Binding to CRP is mediated via domains 6-8 and 19-20 of
factor H, while domains 5-7 interact with apoE. Factor H usually binds to these structures in the context
with surface-deposited C3b and acts as a cofactor for factor [-mediated inactivation of C3b to iC3b (1).
From the 20 domains offactor H, the domains 7 and 19-20 mediate surface recognition, while domains 1-4
are required for regulatory activity (Figure 1). Several known mutations and polymorphisms in factor H
and anti-factor H antibodies directed against these domains are associated with diseases that can be
harmful for the carrier. This indicates that full function of factor H is essential in keeping the spontaneous
alternative pathway activation in check and in preventing complement attack against self-structures (5-7).
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FIGURE 1 | Schematic presentation of factor H domain structure. Factor H
domains 1-4 bind to C3b and regulate alternative pathway activation, while

domains 19-20 are responsible for surface recognition. The positions of the
disease-causing mutations discussed in this manuscript are indicated. C3b

crystal structure is from PDB 5FO7.

Due to its ability to bind CRP and control the alternative pathway
complement factor H has a central role in the non-inflammatory
clearance of extracellular deposits and dying cells in areas of tissue
damage (8, 9). Much of the material to be cleared includes various
types of phospholipids from cell membranes. Failure in this clearance
mechanism may lead to excessive inflammation because of
complement activation and overstimulation of macrophages. As a
consequence, macrophages can release free radicals that can oxidize
lipids and other materials and eventually harm the local tissue. The
role of complement is not only restricted to clear microbes and dead
cells from human tissues, but it also has an important role in lipid
metabolism. For example, complement expression levels are
significantly elevated in visceral adipose tissue, and increased
expression levels of CFB gene have been suggested to associate
positively with triglyceride levels and negatively with high-density
lipoprotein (HDL) levels in plasmas of obese individuals. This
indicates that complement system is involved in the metabolic
consequences associated with increased visceral fat mass (10, 11)
and in diseases characterized by the presence of lipid-rich deposits.

DISEASES WITH LIPID-RICH DEPOSITS
AND FACTOR H ASSOCIATION

Age-related-macular degeneration (AMD), C3 glomerulopathy
(C3G) encompassing two different syndromes: C3
glomerulonephritis (C3GN) and dense deposit disease (DDD;
previously called membranoproliferative glomerulonephritis type
II; MPGN-II), atherosclerosis (AS) and Alzheimer’s disease (AD)
have similar histopathological features. They all are associated with
accumulation of lipid-rich deposits in the retina (AMD),
subendothelially in kidney glomeruli (C3GN), glomerular

basement membrane (DDD), arterial intima (AS), or brain (AD).
These deposits are called drusen in AMD, dense deposits in DDD,
plaques in atherosclerosis, and senile plaques in Alzheimer’s disease.
Despite the different names the deposits share common features
such as the presence of oxidized lipids and proteins, cholesterol and
other lipids and apolipoproteins (12-14) (Figure 2). These diseases
are also often affecting the same patient. As an example, individuals
with DDD often develop ocular drusen in the macula, whose
histopathology is indistinguishable from the drusen in AMD (15).
Moreover, patients with atherosclerosis are at higher risk to develop
Alzheimer’s disease (16) similarly as AMD patients are at higher risk
to develop atherosclerosis (17). These findings indicate that the
development of the lipid-rich deposits could share a common
pathophysiological mechanism. For example, alterations in
vascular glycosaminoglycans that bind the complement inhibitor
factor H could lead to both lipid accumulation and complement
damage in atherosclerotic lesions (18). Finally, these diseases have
been studied for their genetic association with the factor H Y402H
polymorphism that is located in the domain seven of this molecule.
This polymorphism was first found to associate with AMD (19-21).
It confers a five-fold increased risk of developing the disease (22).
Interestingly, the AMD risk variant 402H also associates with DDD,
and possibly also with Alzheimer’s disease and atherosclerosis,
although conflicting results on the latter two have been found in
different genetic studies (23-27).

Age-Related Macular Degeneration
Age-related macular degeneration (AMD) is the most common cause
of visual loss in the elderly people in industrialized countries.
Accumulating evidence suggests that a defect in complement
regulation by factor H and other abnormalities in the alternative
pathway amplification process play a crucial role in the pathogenesis
of the disease. The hallmark of early AMD is formation of drusen
between the basal surface of the retinal pigmented epithelium (RPE)
and Bruch’s membrane. This leads later to necrosis of the RPE cells.
Apart from the the genetic background, aging and smoking are the
main risk factors for developing AMD (28).

Atherosclerosis

Atherosclerosis is a multifactorial disease driven by inflammation
and vascular changes. It is caused by accumulation of lipids, immune
cells and fibrous elements in the subendothelium of arteries. The
thickening and hardening of the arterial wall may lead to a total
obstruction of the blood vessel because of plaque rupture. A major
critical site is the coronary arteries of myocardium, where a local
infarction may occur. Rupture of coronary artery plaques has been
shown to be associated with complement activation in myocardial
infarction (29). Similarly, atherosclerosis may lead to cerebral
infarction or be involved in the rupture of carotid aneurysms (30).
The hallmark of early atherosclerotic lesion is the formation of fatty
streaks composed of cholesterol-laden macrophages, which are called
foam-cells. The foam cells are formed through macrophage-
mediated phagocytosis of oxidized and modified low density
lipoproteins (LDLs) that accumulate in the subendothelium of
arteries. The local inflammation induces differentiation of
monocytes into proinflammatory M1 type macrophages that play a
crucial role in the pathogenesis of atherosclerotic plaques (31).
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It seems like the complement system and especially the alternative
pathway of complement has a pro-inflammatory role in in
atherosclerosis as it serves as an amplification mechanism for C3b
generation (32).

Alzheimer’s Disease

Alzheimer’s disease is characterized by accumulation of amyloid-f3,
formation of neuronal plaques and neuroinflammation in the brain.
Impaired clearance of amyloid-B by microglial cells leads to
accumulation of senile plaques in the brain. These can activate
the complement system that triggers the development of an
inflammatory phenotype in microglia, the phagocytic cells in
brain (33). The activated microglial cells trigger astrocytes, which
amplify the pro-inflammatory signals and neurotoxic effects (34).
Activated microglia are the main source of complement
components such as Clq in the brain (35). Interestingly, the
classical pathway of complement with its components Clq and
C4 appear to contribute to the complement- and microglia-
mediated loss of brain synapses in early Alzheimer’s disease (36).
Moreover, binding of Clq to apoE has been suggested to reduce
Clq-mediated activation of the classical pathway implicating that
apoE, the major factor related to Alzheimer’s disease, acts as a
complement inhibitor (37). It has, however, been suggested that the
alternative pathway of complement could be responsible for the
pro-inflammatory effects in the pathogenesis of Alzheimer’s disease

- increases cholesterol efflux and directs
[/ macrophage polarization to M2 \l
factor H C1q C3b ic3p
>
lipid-rich deposits CRP &
neutrophil
MDA
MMP-8

apoptosis

macrophage

M1/M2
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FIGURE 2 | Role of factor H in lipid-rich deposits. Atherosclerosis, Alzheimer'd disease, AMD, and C3G are diseases characterized by formation of lipid-rich
deposits and complement-mediated inflammation. Complement regulator factor H is known to bind modified lipids and lipoproteins, interact with macrophages and
participate in the clearance of damaged and apoptotic cells through acting as a cofactor for inactivation of C3b to iC3b. Therefore, factor H is likely involved in the
resolution of inflammation in lipid-rich deposits accumulated in the arteries, brain, eyes, and kidneys.

(38). Alzheimer’s disease, AMD and atherosclerosis are all
degenerative age-dependent diseases, where complement-
mediated inflammation most likely plays a crucial role, as several
markers of complement activation have been found in the diseased
tissues (39, 40).

C3 Glomerulopathy

C3 glomerulopathy (C3G) entails two different diseases, where
complement activation, and especially the alternative pathway,
has a central role in disease pathogenesis (41). In DDD, C3b
deposits accumulate in the glomerular basement membranes and
can be seen as dense deposits by electron microscopy. In C3
glomerulonephritis (C3GN), no dense deposits are seen, but C3b
accumulation occurs subendothelially and mesangially. In a
proportion of cases, C3GN is associated with immunoglobulin
paraproteins (42). In DDD, autoantibodies have been detected
against against the C3bBb convertase, so called C3 nephritic
factors (43) and against the N-terminus of factor H (6). C3GN
and DDD are rare chronic nephritic diseases (44). DDD is more
common in children. The inflammation in C3G is mediated via
hyperactivation of complement that is triggered because of
complement dysregulation in the fluid phase. DDD sometimes
occurs in association with partial lipodystrophy (PLD). It is
characterized by loss of subcutaneous fat from the upper part
of the body. It has been suggested that complement-mediated
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lysis of factor D expressing adipocytes is induced by C3 nephritic
factor (C3Nef) in this disease (45). Moreover, in one study, a
family with DDD and PLD was found to carry an R83S mutation
in factor H in the interface region between domains one and two
causing a defect in complement regulation. This indicated a role
for alternative pathway dysregulation in the pathogenesis of this
disease (46). Several complement components are expressed by
adipose tissue including C2, C3, C4, C7, factor B, factor D (D,
adipsin), FH, and adiponectin (10, 11, 47, 48). It has been
suggested that complement is involved in mediating
inflammation in the adipose tissue, but this is maintained only
at a reasonable level due to expression of complement regulatory
proteins, including factor H (49). Therefore, although not yet
shown, a defect in factor H mediated complement regulation
could also be involved in the loss of adipose tissue in DDD-
related PLD.

LIPID-RICH DEPOSITS

According to current knowledge, inflammation is the key driver
in the formation of lipid-rich deposits in AMD, C3G,
atherosclerosis, and Alzheimer’s disease. However, the initial
trigger has not yet fully been defined except in rare cases, where
carrying a mutation can be directly linked to the disease in the
family (46). Conversely, lipid deposits may also undergo changes
and modifications that convert them into promoters of
inflammation. The particles may become proinflammatory
themselves or in the context of their microenvironment.

Inflammatory Markers

Accumulation of complement components and inflammatory
markers such as CRP around lipid-rich deposits indicate that the
deposits have triggered inflammation (50-52). It is known, for
example, that surface-exposed cholesterol binds CRP that
activates the classical pathway of complement and triggers
inflammation in the tissue (53). In atherosclerotic lesions CRP
binds to phosphocholine in modified low-density lipoproteins
(LDL) and colocalizes with LDL in human atherosclerotic lesions
(54). In this context factor H plays a crucial role in limiting
alternative complement activation through simultaneous
binding to CRP and C3b (8). Inactivation of C3b to iC3b
promotes noninflammatory clearance of certain lipid particles
and dying cells through interaction with CR3 and CR4 receptors
on macrophages (9).

In addition to CRP, there are other pentraxins that have been
suggested to play a role in the pathogenesis of at least AMD,
atherosclerosis, and Alzheimer’s disease. Pentraxin 3 (PTX3) is
expressed by RPE cells and glial cells in vitro and may be involved
in oxidative stress-mediated cell injury (55, 56). Moreover, PTX3
is a marker of disease severity in cardiovascular diseases and may
exhibit atheroprotective effects (57, 58). Similarly to CRP, PTX3
opsonizes apoptotic and damaged cells and interacts with factor
H (59). The involvement of PTX3 also in C3G is possible,
because factor H-related protein 5 (FHR5), which is implicated
in DDD and FHR5-related glomerulopathy, enhances
complement activation by inhibiting binding of factor H to
PTX3 (60).

Matrix metalloproteinase 8 (MMP-8) is a pro-inflammatory
marker secreted by neutrophils. Elevated plasma and serum
levels of MMP-8 associate with conditions such as peritonitis,
rheumatoid arthritis and cardiovascular diseases. A recent study
showed a significant association between the V62I
polymorphism in domain one of factor H and neutrophil
MMP-8 levels suggesting that this variation, with increased
regulatory activity, could be involved in suppressing
complement activation, MMP-8 expression, and inflammation
in cardiovascular diseases (61, 62). Interestingly, this same factor
H V621 variant is also associated with decreased susceptibility to
AMD (63), further strengthening the hypothesis that the
function of factor H is crucial in limiting inflammation in
these diseases.

Danger-Associated Molecular Patterns
Danger-associated molecular patterns (DAMPs) indicate structures
that are normally hidden but exposed during tissue injury. These
can be recognized by multiple different types of receptors that often
recognize also structures found on microbes. The receptors for
DAMPs include Toll-like receptors (TLRs) and Nod-like receptors
(NLRs) that can lead to activation of the inflammasome structures
inside cells, for example in macrophages. Depending in the nature
of interactions, the consequences can be inflammatory or anti-
inflammatory. Also, the complement system can be activated on
DAMPs or DAMP-like structures, which are generated by tissue
injury, protein misfolding. or mislocalization. Such structures
include, for example, mitochondria, membrane phospholipids,
oxidized lipids in atherosclerosis, amyloid-f3 in brain, or oxidized
bisretinoids on retinal pigment epithelial (RPE) cells in the macular
area of the retina (64-66).

Polyunsaturated fatty acids are vulnerable to free radical attack
caused by activated immune cells or cell apoptosis. As a
consequence, oxidation-specific epitopes, such as oxidized
phosphocholine, 4-hydroxynonenal, isolevuglandin, and
malondialdehyde (MDA), are formed. The roles of oxidized lipids
and MDA adducts in the pathogenesis of AMD, atherosclerosis and
Alzheimer’s disease have been studied in more detail (67, 68).
Interestingly, in AMD, factor H binds to both oxidized lipids and
bisretinoids in drusen. Here, the common factor H variant 402Y has
a higher affinity for oxidized lipids than the AMD risk allele 402H
(69). Also the MDA -epitopes are recognized by factor H. Both the
Y402H polymorphism in domain seven, and atypical hemolytic
uremic syndrome (aHUS) associated mutations in domains 19-20
impair this interaction (70, 71). Therefore, the found association of
factor H Y402H polymorphism with AMD, DDD and possibly also
with atherosclerosis and Alzheimer’s disease could be related to the
reduced binding of 402H to CRP and oxidized lipids compared to
402Y (19-21, 72). Reduced control of the amplification pathway of
complement could thus contribute to the inflammatory pathology
in these diseases.

Gangliosides are highly sialylated glycosphingolipids and
abundantly expressed in the human body (73). Cells lacking
terminal sialic acids, for example, due to oxidative damage,
ischemic, senescent, necroptotic or apoptotic cell death become
“DAMPs” for the complement system. Therefore, they serve as
signals for complement activation and phagocytosis (2, 74).
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A distictive feature of the alternative pathway of complement is that
its activators are structures that lack the ability to bind factor H (75).
Thus, nearly any structure without suitable polyanions (sialic acids,
glycosaminoglycans, and negatively charged phospholipids) or
membrane complement regulators can act as complement
activators aslong as they provide binding sites for C3b molecules (76).

Because factor H interacts with cell surface sialic acids and
surface deposited C3b, it has a crucial role in protecting self cells
from complement attack. The presence of anti-ganglioside
antibodies in atherosclerosis and Alzheimer’s disease patient sera
has been previously observed (77, 78). It is therefore possible,
although not shown, that these antibodies could interfere with
factor H binding to sialic acids present on gangliosides and thereby
contribute to inflammation. The antibodies could have a double-
negative effect: They could activate the classical pathway and
promote alternative pathway activation by preventing binding of
factor H to cell surface gangliosides. A documented role for anti-
ganglioside antibodies has been demonstrated in the neurological
diseases Guillain-Barré and Miller Fisher syndromes [reviewed
recently by Cutillo et al. (73)].

Apolipoprotein E

Apolipoprotein E (ApoE) is the central molecule responsible for
cholesterol metabolism in the liver, blood and brain. ApoE has
been shown to be involved in amyloid-f clearance in the central
nervous system. It promotes anti-atherosclerotic activity by
regulating lipoprotein metabolism and promoting cholesterol
efflux by the so called reverse cholesterol transport. ApoE also
modulates macrophage polarization into the anti-inflammatory
M2 phenotype (79, 80). ApoE has three allelic isoforms (apoE2/
E3/E4) of which apoE4 is strongly associated with Alzheimer’s
disease (81). ApoE4 is also associated with atherosclerosis,
nephrotic glomerular disease in children and AMD, of which
the latter has the strongest association with FH polymorphism
Y402H (26, 81-85).

ApoE is found abundantly in the lipid-rich deposits of AMD,
DDD, atherosclerosis and Alzheimer’s disease patients (12, 86—
88). However, its function in plaque formation or clearance is not
well known. In vivo apoE is mainly associated with lipids, such as
HDL particles in plasma or with small HDL-like components in
brain. However, a small portion of apoE is found in complex with
lipid-free or lipid-poor proteins. Of these, especially the apoE4
variant is likely susceptible for self-aggregation and misfolding
(89). Factor H binds both lipid-free and high density lipoprotein
(HDL) associated apoE via domains 5-7 (4). On HDL particles
factor H regulates the alternative pathway of complement but its
role in binding to lipid-free apoE is not known. The single amino
acid difference in residues 112 and 158 between the apoE isoforms
is responsible for the structural differences between these proteins
(90). Moreover, knowing that FH interacts with apoE via the
domain 7, where the Y402H polymorphism is located, it is possible
that these genetic variations could also affect binding between
apoE and FH.

Phagocytic Cells

Phagocytic cells are closely associated with disease progression
in AMD, DDD, atherosclerosis, and Alzheimer’s disease.

In atherosclerosis, macrophages play a crucial role in the
phagocytosis of modified LDL particles and cholesterol efflux, while
microglia are involved in amyloid- 3 phagocytosis. Increased intake of
cholesterol by macrophages and reduced cholesterol efflux capacity
leads to formation of foam cells in the arterial intima, while an
increased intake of amyloid-B by microglial cells induces microglial
activation and neurotoxicity (91). In microglia, the increase in free
radical generation has been suggested to be related to the binding of
amyloid- to complement receptor type 3, CR3. CR3 is a phagocytic
receptor that is involved in complement-mediated clearance of
iC3b-coated particles and suppression of inflammation. It interacts
with several different ligands, including factor H. Factor H interacts
with CR3 on several cell types (92) and possibly has a direct effect on
phagocytic functions. In cholesterol-loaded macrophages factor H
has been shown to simultaneously promote cholesterol efflux,
reduce transcription of proinflammatory genes and increase
transcription of antiatherogenic genes such as ABCA1 and
PPAR-a (93). PPAR-0 transcription factor is known to induce
the expression ABCAIL, the intracellular ATP binding cassette
transporter that regulates cellular cholesterol homeostasis (94).
Binding of factor H to CR3 has been shown to reduce acute
subretinal inflammation in mice indicating that factor H could be
involved in suppressing inflammation in human AMD as well (95).

Necrotic and Apoptotic Cells

Formation of necrotic and apoptotic cells is involved in the
pathogenesis of AMD, C3G, atherosclerosis and Alzheimer’s
disease. As mentioned earlier, complement system is involved in
the non-inflammatory clearance of apoptotic and necrotic cells that
is initiated through recognition of CRP by Clq that activates the
classical pathway of complement (96, 97). Here, binding of factor H
to CRP is crucial, as it is involved in suppressing activation of the
alternative and terminal pathways at the site of tissue damage and
during local inflammation (8, 98, 99).

While CR3 is the receptor of iC3b, complement receptor type 1
(CRI and CD35) is the receptor that has a higher affinity toward
C3b (100, 101). CRI is a cell surface complement regulator that acts
asa cofactor for factor I in the inactivation of C3b (similarly to factor
H) and further in the cleavage of iC3b to C3c and C3dg. In addition
to phagocytic cells CR1 is also found on red blood cells, where it
participates in the clearance of immune complexes by transporting
them for elimination in the spleen or liver (102, 103). Factor H
blocks binding of CR1 to C3b (104) as it competes for the same
binding site with CR1 on C3b. This competitive binding leads to
decreased C3¢/C3dg formation as only CR1, but not factor H, acts as
a cofactor for factor I in the cleavage of iC3b to C3c and C3dg. As
C3d/C3dg s recognized by CR2 on B-cells and thus links the innate
and adaptive immunity, it is possible that inhibition of C3d
formation by factor H could have consequences for the adaptive
immunity and formation of autoantibodies that has been described
at least in atherosclerosis and C3G (46, 105-107).

CONCLUSIONS

AMD, C3G, atherosclerosis and Alzheimer’s disease seem
to be unrelated to each other because of the different
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locations of the affected tissues. However, current knowledge
on the role of complement-mediated inflammation in the
development of these diseases indicates that they partially
share common pathophysiology. Current genetic and
biochemical data indicate that complement regulator factor
H participates in the modification of both complement
activation and cell responses and that defects in
complement regulation by factor H play an important role
in the pathogenesis of these diseases. More knowledge is,
however, needed to understand the exact molecular
mechanisms whereby factor H protects the eyes, the
kidneys, the brain, and arteries from inflammation that
eventually leads to formation of lipid-rich deposits in AMD,
C3G, Alzheimer’s disease, and atherosclerosis.
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