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Lyme borreliosis is an emerging tick-borne disease caused by spirochetes Borrelia burgdorferi
sensu lato. In Europe, Lyme borreliosis is predominantly caused by Borrelia afzeli and
transmitted by Ixodes ricinus. Although Borrelia behavior throughout tick development is quite
well documented, specific molecular interactions between Borrelia and the tick have not been
satisfactorily examined. Here, we present the first transcriptomic study focused on the
expression of tick midgut genes regulated by Borrelia. By using massive analysis of CONA
ends (MACE), we searched for tick transcripts expressed differentially in the midgut of unfed,
24h-fed, and fully fed /. ricinus nymphs infected with B. afzeli. In total, we identified 553
upregulated and 530 downregulated tick genes and demonstrated that B. afzelii interacts
intensively with the tick. Technical and biological validations confirmed the accuracy of the
transcriptome. The expression of five validated tick genes was silenced by RNA interference.
Silencing of the uncharacterized protein (GXP_Contig_30818) delayed the infection progress
and decreased infection prevalence in the target mice tissues. Silencing of other genes did not
significantly affect tick feeding nor the transmission of B. afzelii, suggesting a possible role of
these genes rather in Borrelia acquisition or persistence in ticks. Identification of genes and
proteins exploited by Borrelia during transmission and establishment in a tick could help the
development of novel preventive strategies for Lyme borreliosis.

Keywords: Borrelia afzelii, Ixodes ricinus, transcriptome, tick, midgut, RNAi, massive analysis of cDNA ends (MACE)

INTRODUCTION

Lyme borreliosis is an emerging human disease, occurring predominantly in temperate regions of
the northern hemisphere (1, 2). It is caused by spirochetes Borrelia burgdorferi sensu lato and is
spread by ticks from the genus Ixodes. In Europe, ~65,000 new cases are reported annually (3).
However, the real prevalence is substantially higher due to under-reporting (4). In North America,
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the transmission cycle primarily involves the spirochete B.
burgdorferi sensu stricto and the tick Ixodes scapularis. In
Europe, the disease is caused by several Borrelia species and is
transmitted by related tick species, Ixodes ricinus and Ixodes
persulcatus. The early disease typically manifests itself with a
bulls-eye rash on the skin, called erythema migrans. The
spirochetes then disseminate throughout the body to diverse
tissues and are associated with arthritis, neurological symptoms,
and dermatitis (5). Prompt antibiotic treatment usually cures the
disease and symptoms. Despite several promising trials (6-9), a
vaccine against human Lyme borreliosis is not currently available
and prevention mainly depends on avoiding tick bites (10).

Ixodes ricinus is the most common tick in Europe and is
typically found in humid sheltered environments and forests,
mainly from early spring until late fall. It is a three-host tick,
where all developmental stages (larva, nymph, and adult female)
must feed on the host blood to undergo molting into the next
instar. B. afzelii is the dominant spirochete in Europe (11).
Borrelia enter the tick gut when the larvae feed on an infected
mouse. The spirochetes then multiply and are transstadially
maintained in the tick through the molts (12). The nymph’s
ability to survive without feeding for years contributes to
stabilization of Borrelia prevalence in the reservoir host
population. Because of their small size, the tick nymphs are
considered to be the most critical tick stage for human infections
(13). During engorgement, which typically lasts for two to four
days, the spirochetes continuously migrate from the tick into the
host. An interval between 24 and 48 h after tick attachment is
considered the most critical time for transition of B. afzelii.
Although Borrelia can already be detected in the skin on the first
day of feeding, this early spirochetal population cannot initiate a
systemic infection (12). Unlike B. burgdorferi s.s. in I scapularis
(14), which migrate through the hemolymph and salivary glands
into the host, B. afzelii probably infect the host directly from the
midgut of I ricinus (12).

The segmented tick midgut is well adapted to accommodate
an enormous volume of host blood. Unlike other blood-feeding
arthropods, digestion in ticks occurs intracellularly (15), so
extracellular pathogens are not directly exposed to the harsh
effects of secreted proteases. Despite this, the tick midgut is still a
relatively sterile environment (16), maintained presumably by
combining active components of the blood and tick immune
molecules. Adaptations of Borrelia spirochetes inhabiting the
tick midgut are still not satisfactorily explained. However, it has
been documented that during tick colonization, Borrelia change
expression of their genes (17). For instance, the main surface
protein outer surface protein A (OspA) is preferentially
expressed within the tick midgut and is downregulated during
transmission of the spirochete to the vertebrate host (18). The
tick receptor for OspA (TROSPA), is a midgut protein identified
in Ixodes scapularis, ensuring adherence of B. burgdorferi to
the midgut surface. Expression of trospa is significantly
upregulated in Borrelia-infected nymphs. Moreover, the
silencing of trospa expression reduces colonization and
transmission of the pathogen (19). Another example of this
co-adaptation is Borrelia-induced overexpression of the tick

salivary protein 15 (Salpl5) necessary for Borrelia survival in
the host (20). Borrelia-infected nymphs have also been shown to
accumulate significantly more fat reserves (21) to better survive
unfavorable temperatures and humidities (22). These examples
point to the existence of delicate gene interactions between
Borrelia spirochetes and the tick.

Here we show that midgut cells of infected nymphs before,
during, and after feeding on the vertebrate host react to B. afzelii.
By employing the MACE transcriptomic method, we were able to
identify, in total, 1,083 Borrelia-responding tick midgut genes.
Silencing of tick uncharacterized protein (GXP_Contig 30818)
by RNA interference reduced transmission of Borrelia
spirochetes from the tick to the host, whereas silencing of
several other candidate tick genes had no effect. This suggests
that these genes may have a role in processes associated with
acquisition rather than transmission of Borrelia, and persistence
in the vector.

MATERIAL AND METHODS

Biological Material

Adult females of I. ricinus were collected by flagging in a forest
near Ceske Budejovice and kept at 95% humidity, 24°C, and 15/9
daylight settings. The adult ticks were fed on a single guinea pig.
The laid eggs were preserved to hatch separately to form
individual populations, each coming from a single female. For
the transcriptomics purposes, the larvae from three populations
were mixed together to scale up the number of ticks and then
divided into two groups to prepare for infected and uninfected
nymphs (Figure 1). Prior to feeding, a half of 6-8 week old C3H/
HeN mice (Charles River Laboratories, GER) were infected with
B. afzeli CB43 (23) by subcutaneous injection of 0.2 ml of culture
(approximately 10° spirochetes). Mouse infection was checked
by PCR on ear punctures taken 3 weeks after injection. The
Borrelia-infected nymphs were obtained by feeding the larvae on
Borrelia-infected mice. Uninfected nymphs were obtained by
feeding the larvae on uninfected C3H/HeN mice. The resulted
nymphs, molted 4-6 weeks after repletion, were rested for 2
weeks and used in these experiments. The prevalence of Borrelia
infection in nymphs was checked by PCR and reached >90%. All
experiments were carried out according to the animal protection
law of the Czech Republic (§17, Act No. 246/1992 Sb) with the
approval of CAS (approval no. 79/2013). The experiments with
Borrelia were performed in BSL2 conditions.

Tick Dissection and RNA Extraction

The Borrelia-infected nymphs were divided into three groups
(MACE 1,3,5), as well as the uninfected nymphs, which were also
divided into three groups (MACE 2,4,6). The nymphs of MACE
groups 1 and 2 remained unfed. The nymphs of MACE groups 3
and 4 were forcibly removed from the naive 6-8 weeks old C3H/
HeN mice at 24 h after attachment. The nymphs of MACE
groups 5 and 6 were allowed to feed on the naive 6-8 weeks old
C3H mice until repletion (around 72 h). All tick were surface-
sterilized by washing in 3% H,O,, 70% ethanol, and distilled
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FIGURE 1 | Scheme of sample preparation for massive analysis of cDNA ends (MACE) analysis. The uninfected larvae, originating from three individual females fed
on a single guinea pig, were mixed and fed on B. afzeli-infected or uninfected mice. The nymphs then were fed on uninfected mice and dissected for midguts (150-
220 nymphs for each group) at the three indicated time points. The MACE analyses were performed on six different RNA pools (MACE 1-6).

water (30 seconds each wash). The nymphs were dissected for
midguts [pools of: 220 unfed nymphs (MACE 1,2), 180 24 h-fed
nymphs (MACE 3,4), and 150 fully fed nymphs (MACE 5,6)]
under the stereomicroscope (Olympus) on wax dishes with
diethyl pyrocarbonate (DEPC)-treated cold phosphate buffered
saline (PBS) and then transferred in RA1 buffer (NucleoSpin
miRNA Kit, Macherey-Nagel, GER) supplemented with B-
mercaptoethanol (Sigma-Aldrich). Before extraction, the
midguts were homogenized in an insulin syringe. Total RNA
(including miRNA) was extracted using the above extraction kit
by following the manufacturer’s protocol (“small+large”
protocol). The concentration of RNA was measured by
NanoDrop ND-1000 (Thermo Fisher Scientific), its consistency
was checked on an agarose gel, and stored at —80°C until
further use.

MACE Analysis

The massive analysis of cDNA ends (MACE) was performed as
previously described (24) using the GenXPro MACE Kit
(GenXPro) according to the manufacturer’s protocol (www.
genxpro.net). The isolated RNA was subjected to an additional
DNAse I treatment and its quality was assessed on an Agilent
2100 Bioanalyzer. First and second-strand cDNA synthesis was
then performed, initiated from biotinylated oligo dT primers.
The cDNA was fragmented randomly by ultrasonication,
resulting in fragments with an average size of 300bp as
determined by an Agilent 2100 Bioanalyzer. The biotinylated
3’ ¢cDNA ends were bound to a streptavidin matrix, while the
remaining fragments were eliminated through the washing step.
Then, the p5 “TrueQuant” sequencing adapter was ligated to the
unbound end of the fragments using tailed Illumina p5 and p7
oligonucleotides as primers. The quality of the final library was
determined using an Agilent 2100 Bioanalyzer. The next-
generation single-end sequencing of the 5 c¢cDNA fragments
was performed on an Illumina HiSeq2000 sequencer. To
remove the PCR bias, all duplicate reads detected by the
GenXPro in-house TrueQuant technology were removed from

the raw datasets. In addition, low-quality sequence nucleotides
and poly(A)-tails were clipped off using Cutadapt (25).
Overlapping sequencing reads were then assembled into
contigs. The reads were aligned to different reference sequences
using NovoAlign (www.novocraft.com/products/novoalign/),
resulting in “GXP_Contigs” (sequences derived from our
previously published nymphal RefSeq database (Bioproject
PRJNA657487), “Contigs” (I. ricinus sequences were derived
from NCBI nuccore and the BioProjects 177622, 230499,
34667, and 183509), and “noHITAssemblies” (assemblies of
MACE sequences that could not be mapped to sequences from
the existing BioProjects or our own RefSeq database). The
contigs of the assemblies were annotated further by BLASTX
to either the SwissProt or Trembl database (www.uniprot.org).
Contigs that did not match to one of these databases were
annotated by BLASTN to all “Ixodes” mRNA sequences
available in the NCBI database, against the “nt” (nucleotide
collection from GenBank, RefSeq, TPA, and PDB) of NCBI, or
the I scapularis genome (NW_002505054). Only uniquely
mapped reads were accepted for the quantification of the
MACE tags. Finally, gene expression was normalized per
million reads and tested for differential gene expression
between the different conditions using the DEGSeq
R/Bioconductor package (26) (R package version 1.16.0.). The
final table was produced as an Excel file (Supplemental Table 1).

In Silico Analysis

The selection of Borrelia-upregulated and downregulated genes
at different time points was performed using the MACE Excel file
according to these selection criteria: 1) the transcript was
annotated (e-value < 10E7®) in the I ricinus genome
PRJNA270959, the I scapularis genome PRJNA314100, or in
all Ixodes sequences available in NCBI; 2) “noHitAssemblies”
contigs were removed from the analysis because of no
homologies with tick sequences (no hits, host contaminants,
and short-length sequences); 3) to select upregulated genes: fold
change upregulation of expression in the infected vs. uninfected

Frontiers in Immunology | www.frontiersin.org

February 2021 | Volume 11 | Article 612412


http://www.genxpro.net
http://www.genxpro.net
http://www.novocraft.com/products/novoalign/
http://www.uniprot.org
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

Mahmood et al.

Tick Midgut Genes and Borrelia

group was set to > 5 and expression in the infected group to > 5
transcripts per million; selection of downregulated genes was
done vice versa (expression in the uninfected vs. infected group
was set to > 5 and expression in the uninfected group to > 5
transcripts per million). The selected candidate sequences were
translated into proteins (DNASTAR) and screened for the
presence of a signal sequence by SignalP 5.0 (www.cbs.dtu.dk/
services/SignalP/) and for cellular localization by DeepLoc-1.0
(www.cbs.dtu.dk/services/DeepLoc/).

Technical and Biological Validation

of the MACE Analysis

An aliquot of RNA from each MACE analysis was used for the
technical validation of MACE results. For biological validation,
we prepared 10 genetically distinct larval populations of I. ricinus
ticks coming from wild-captured adult females fed on a guinea
pig (Supplemental Figure 1). Each of the batches of larvae was
divided in half and fed on B. afzelii CB43-infected or uninfected
6-8 weeks old C3H/HeN mice (Charles River Laboratories, GER)
mice. The resulting infected and uninfected nymphs were then
fed on naive mice for Oh, 24h, and until replete (fully fed),
midguts were dissected (for each group and time point pools of:
50 unfed nymphs, 20 24h-fed nymphs, and 10 fully fed nymphs
(equal number of females and males), and RNA was extracted
following the methods and time points used for the MACE
analysis. Then, the RNA was reverse transcribed into cDNA
(0.5pg RNA per 20ul reaction; random hexamers) using the
Transcriptor High-Fidelity cDNA Synthesis Kit (Roche) and
diluted 20-times in sterile water. Gene-specific qRT-PCR
primers were designed in Primer3 (http://bioinfo.ut.ee/
primer3-0.4.0/) and verified by PCR using cDNA prepared
from a mix of infected nymphs at different time points. Gene
expression in technical and biological replicates was measured by
quantitative real-time PCR (qRT-PCR) using a LightCycler 480
(Roche) and SYBR green chemistry, as described previously (27)
and primers listed in Supplemental Table 2. Relative expression
was normalized to I. ricinus elongation factor (GU074769) and
ferritin 1 (AF068224, data not shown) using the mathematical
model of Pfaffl (28).

RNA Interference and Its Effect on Nymph
Feeding and Development

To prepare the gene-specific dsRNA, 200-600bp long gene
fragments were amplified from I. ricinus cDNA and cloned into
the pll10 vector with two T7 promoters in reverse orientations
(29), using primers listed in Supplemental Table 2 and containing
additional restriction sites Apal and Xbal. The dsRNA was
synthesized as described previously (30). The dsRNA (3 ug/ul)
was injected through the coxa of the third pair of legs into the
hemocoel of nymphs (32 nl) using Nanoinject I (Drummond).
After 3 days of rest in a humid chamber at room temperature, the
nymphs (20 nymphs per mouse, 3 mice per group) were fed on
BALB/c mice (Velaz, CR). The level of gene silencing was checked
by qRT-PCR in a mix of five fully fed nymphs and compared to the
dsGFP control group. For each group, we recorded feeding
success, length of feeding, the weight of individual nymphs after

feeding, and molting into adults (took approximately 2 months;
recorded every 2 weeks until molting in the dsGFP control group
reached 80%).

Borrelia-Transmission Experiments

Borrelia afzelii CB43-infected nymphs were prepared as
described previously (31). The infected nymphs were injected
with 32nl of gene-specific dsSRNA or dsGFP (control), rested for
3 days, and fed on the uninfected 6-weeks old C3H/HeN mice
(five nymphs per mouse, 5-8 mice per group) in plastic cylinders
attached to the murine back. Detached engorged nymphs were
weighed. The level of Borrelia infection in each mouse was
measured the second week after tick detachment by qRT-PCR
using DNA isolated from an ear biopsy and normalized to the
number of mouse genomes (actin). Three weeks after tick
detachment, mice were sacrificed and the numbers of Borrelia
in the ear, urinary bladder, and heart tissue were determined by
qRT-PCR as reported previously (12).

Statistical Analysis

For biological validations, feeding experiments, and transmission
experiments, statistical significance of differences were analyzed
using GraphPad Prism 8.0 (GraphPad Software, CA) employing
the One-way ANOVA Kruskal-Wallis test or the non-parametric
Mann-Whitney test and P < 0.05 (%), P < 0.01 (%), or P < 0.001
(%) were considered as significant. If not further specified, all
results were expressed as the mean + standard error (SEM).

RESULTS
MACE Analysis

Initially, we measured differences in gene expression of Borrelia-
infected ticks by employing the MACE technology, where high
throughput sequencing of cDNA fragments provides a high
resolution of gene expression and can reveal expression of low-
abundance transcripts, compared to standard RNA sequencing
(24, 32). We pooled more than 150 nymph midguts from each
stage of tick feeding to minimize variations in gene expression.
Being aware of intra-species genetic variation of wild-captured
ticks, we limited the transcriptomes to the mixed population of
nymphs originating from only three tick females (Figure 1).
During the preparation of ticks for the transcriptomes and
biological validations, we did not observe any adverse effects of
the Borrelia infection on tick survival, fitness, or feeding, as
demonstrated by body weights of fully fed infected nymphs
compared with uninfected controls (Supplemental Figure 2).
As a result, we obtained a total of 38,199,641 raw reads from the
six cDNA MACE libraries. By mapping these sequences to our
previously sequenced RefSeq library [containing 32,897 high-
quality GXP contigs; Bioproject PRINA657487 (33)] and the
public Ixodes genomic and transcriptomic databases, we
identified in each MACE library, on average, 17,257 GXP
contigs and 1,302 additional tick genome/transcriptome
contigs (gi|contigs absent from the RefSeq database)
(Supplemental Table 3). Overall, in the midgut transcripts, we
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observed a total of 24,276 tick genes. This number is in line with
the 26,179 transcripts identified in our previous MACE
transcriptomic project of the nymph I ricinus salivary glands
(33) and lower than the total number of genes described in the
tick I. scapularis genome project (32,572 protein-coding
genes) (34).

Identification of the Differentially
Expressed Genes

To sort the database for genes upregulated or downregulated in
the presence of B. afzelii, we defined a transcript as differentially
expressed when the fold change was > 5 (log2fold change < -2.3
or > 2.3) and the p-value < 0.05. This primary selection led to the
identification of 553 upregulated and 530 downregulated unique
genes (Figure 2). Interestingly, in the group of fully fed nymphs
(Figure 2C), we identified the largest number of Borrelia-
upregulated genes (fold change > 1) and the highest ratio
between upregulated and downregulated transcripts. Then, to
produce a slimmed list of the differentially regulated genes,
potentially confirmable by qRT-PCR in technical and biological
validations, we selected transcripts with a fold change > 5 and
expression > 5 transcripts per million in the infected (for
upregulated genes) or uninfected (for downregulated genes)
groups. By applying these criteria, we obtained a list of 118
upregulated and 96 downregulated genes (Figure 3A), of which
34, 49, and 55 genes were upregulated by infection at unfed (UF),
24h-fed (24-h), and fully fed (FF) stages, respectively. Conversely,
38, 33, and 30 genes were downregulated. Interestingly, five genes
were upregulated, and one gene downregulated in all three time
points (Supplemental Tables 4-7). The genes encode potentially
secreted proteins (SignalP) containing a signal sequence [labeled
as “SP(Sec/SPI)”] or intracellular proteins (labeled as “OTHER”).
We did not observe any pattern in the prediction of subcellular
localization (DeepLoc). The full list contained extracellular
proteins, as well as proteins localized to the cytoplasm,
mitochondrion, nucleus, or lysosome. Most of the proteins were
predicted to be soluble, although the list also contained several
membrane proteins (e.g., receptors, channels, glycoproteins). In

summary, we identified 214 tick genes with various functions and
localizations, highly differentially expressed in the presence of B.
afzelii, suggesting a significant interaction of the tick midgut
tissue with the spirochetes.

Technical and Biological Validations

of MACE

We confirmed the expression of several differentially regulated
genes arising from the MACE analysis by technical and
biological validations. We focused only on genes from our
upregulated candidate list as only these could be later silenced
by RNA interference and tested in our B. afzelii-transmission
model. We selected 46 candidates (from various time points)
with homologous sequences present in the genomic databases of
I ricinus and I. scapularis (for the selection criteria see Methods).
For 33 of these genes, we were able to design gene-specific PCR
primers and for 22 of these genes, these primers worked well in a
standard PCR assay. Their expression was then validated in
technical and biological validations by qRT-PCR. All 22
candidate genes passed the technical validation and were
proven to be upregulated at specific time points (Figure 3).
Gene expression levels in 10 genetically distinct I ricinus
populations of nymphs were then determined to validate these
candidate genes biologically. Through this strict validation level,
seven genes passed, representing 32% of the 22 pre-selected
genes. Of these, four candidates were shown to be overexpressed
at the same time point compared to MACE, while the other three
genes were overexpressed at other time points. The seven gene
sequences represented: 1) cytosolic iron-sulfur protein assembly
protein CIAO1 homolog (GXP_Contig_7059), 2) uncharacterized
protein (GXP_Contig 30818), 3) BTB domain-containing protein
(GXP_Contig_6657), 4) cytochrome p450 cyp2 subfamily protein
(GXP_Contig_26946), 5) solute carrier organic anion transporter
family member (GXP_Contig 29696), 6) cyclin-D-binding Myb-
like transcription factor 1 (GXP_Contig 16121), and 7) Kolobok-5
tv protein (GXP_Contig_1931). All transcripts encoded intracellular
proteins without predicted signal sequences (SignalP) and were
predicted for various cellular localizations (DeepLoc).
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FIGURE 2 | Expression of tick midgut genes is altered in the presence of Borrelia afzelii. Volcano plots showing differentially expressed tick transcripts analyzed by
MACE at individual time points. (A) Unfed nymphs (B) Nymphs fed for 24 h (C) Fully fed nymphs. n = number of differentially expressed transcripts. Total differentially
expressed transcripts (black), upregulated transcripts (red; p-value < 0.05 and log2 fold change > 2.3), and downregulated transcripts (blue; p-value < 0.05 and log2
fold change < —2.3). up = total upregulated transcripts, down = total downregulated transcripts, MG, midgut.
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transcript Contig Putative description idati i upregulation
UF GXP_Contig_7059 Cytosolic iron-sulfur protein assembly protein CIAO1 homolog YES YES UF, 24hrs
UF GXP_Contig_31514 Hypothetical protein YES NO
UF GXP_Contig_30818 Uncharacterized protein YES YES UF, 24hrs
UF GXP_Contig_5839 Glycine-rich protein YES NO
24hrs gi[241123951|ref XM _002403994.1| Hypothetical protein YES NO
24hrs GXP_Contig_8911 Glycine-rich protein YES NO
24hrs GXP_Contig_6131 Pla2 bee venom like a sub-family of phospholipase a2 YES NO
24hrs GXP_Contig_2889 Salivary lipocalin YES NO
24hrs GXP_Contig_28121 WC protein YES NO
24hrs GXP_Contig_7109 Enoyl-coa hydratase/isomerase YES NO
24hrs GXP_Contig_30557 Diacylglycerol acyitransferase dgat YES NO
EF GXP_Contig_16607 Putative DNA-bridging protein baf YES NO
ER GXP_Contig_6657 BTB domain-containing protein YES YES UF
FF GXP_Contig_25185 Uncharacterized protein YES NO
FF GXP_Contig_26946 Cytochrome p450 cyp2 subfamily protein YES YES UF
FF GXP_Contig_476 RNA-directed dna polymerase from mobile element jockey-like protein YES NO
EE GXP_Contig_29696 Solute carrier organic anion transporter family member YES YES UF
EFE: GXP_Contig_29976 Solute carrier organic anion transporter family member YES NO
ER GXP_Contig_16121 Cyclin-D-binding Myb-like transcription factor 1 YES YES EE
UF+24hrs+FF GXP_Contig_21561 Secreted salivary gland peptide YES NO
UF+24hrs GXP_Contig_1931 Kolobok-5 tv YES YES UF
24hrs+FF GXP_Contig_1305 Salivary secreted peptide YES NO
FIGURE 3 | Expression of selected transcripts can be verified by technical and biological gRT-PCR validations. (Upper) (A) Venn diagram of the top-score
differentially expressed B. afzelii-infected nymph midgut transcripts (fold change > 5 fold and expression > 5 transcripts per million). The upregulated transcripts are
marked by a red arrow, downregulated by a blue arrow. (B-H) gRT-PCR profiles (relative expression) of seven biologically validated transcripts were significantly
upregulated by B. afzelii infection (Mann-Whitney test). The biological validations were carried out on 10 individual tick populations. Each dot represents expression in
a single nymph population. In each graph, cDNA with the highest expression was set as 100. The tick elongation factor was used as a housekeeping gene. (Lower)
Summary table of the validated transcripts. In total, 22 transcripts from different time points of feeding (see Resuits for the selection criteria) were analyzed by the
technical and biological validations. UF, unfed; 24hrs, fed for 24hrs; FF, fully fed. P < 0.05 (*), P < 0.01 (*).

RNA Interference and Borrelia-
Transmission

To assess the role of the stimulated genes in transmission of
Borrelia, we employed the method of RNA interference and
injected nymphal ticks individually with five different gene-
specific dsRNAs designed against the previously biologically
validated transcripts. Before the transmission experiments with

infected nymphs, we tested the effect of silencing in uninfected
nymphs. The genes were successfully silenced in the fully fed
nymphs to expression levels ranging from 6 to 36% comparing to
the dsGFP control (Figure 4A). We did not observe any significant
impact on feeding success, duration of feeding, tick weight after
feeding, or molting of nymphs to adults (Figures 4B, D). We then
performed the silencing in infected nymphs. Initially, we tested
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Urinary bladder
Gene Ear week 2 | Ear week 3 | Heart week 3 week 3 Cumulative
GFP control 9/13 12/13 12/13 12/ 13 12/ 13
GXP_Contig_7059 5/5 5/5 5/5 5/5 5/5
GXP_Contig_30818 2/13 10/ 13 10/ 13 7113 10/ 13
GXP_Contig_6657 8/13 11/13 12/13 11/13 12/ 13
GXP_Contig_26946 4/5 5/5 5/5 5/5 5/5
GXP_Contig_16121 4/5 5/5 5/5 5/5 5/5
FIGURE 4 | Effect of gene silencing by RNA interference on nymph feeding and Borrelia afzeli transmission. (Upper) Silencing of five tick genes in uninfected nymphs.
(A) Evaluation of the silencing level by gRT-PCR (each group represents a mix of five fully fed nymphs). (B) Weights of individual fully fed nymphs. Each dot represents a
single tick. (C) Duration of nymph feeding. (D) Molting success of fully fed nymphs into adults (percentage of molted nymphs fed on each mouse; biological triplicates).
(Lower) Summary table of two transmission experiments with the gene-silenced B. afzeli-infected nymphs. Numbers indicate total gRT-PCR positive/total mouse tissues
during the infection (ear week 2) and after mice scarification (week 3). dsGFP was used as a negative control. A decrease of positivity by >25% is highlighted in red.

transmission with five mice per group. Silenced genes associated
with the blocking of transmission of B. afzelii in at least one mouse,
were further tested with an additional eight mice per group.
Similarly, as observed with the uninfected nymphs, gene silencing
did not affect tick feeding (Supplemental Figures 3A, B). The
transmission of B. afzelii from the tick to the mouse was not
noticeably blocked after the silencing of GXP_Contigs_7059, _6657,

_26946, and _16121 (Figure 4). The number of spirochetes
in deeper mouse tissues, as measured by qRT-PCR, was also
not significantly altered (Supplemental Figures 3C-F).
Interestingly, in the group with silenced uncharacterized protein
(GXP_Contig _30818), the progress of infection in mice was
delayed (only 15% of ears were Borrelia-positive by the second
week compared to 70% in control), which was then reflected in a
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reduction of Borrelia prevalence in the ear (3 week), heart, and
urinary bladder by 23, 23, and 46%, respectively (Figure 4).

DISCUSSION

The hypothesis that parasites actively modify the physiology and
behavior of their hosts to enhance transmission is an intriguing
and well-documented phenomenon in many species of living
organisms (35). However, evidence of manipulation of ticks
by Borrelia spirochetes is still mostly unknown. In this study,
we have revealed differential gene expression in the midgut
of I ricinus nymphs infected with the Lyme borreliosis
spirochete B. afzelii before, during, and after blood-feeding.
This study represents the first transcriptome produced from
ticks focusing on midgut genes stimulated by Borrelia. Previous
transcriptomic studies described differential gene expression in
salivary glands (33, 36), or used alternative approaches for such
gene identifications (19, 20, 37-42).

The motile Borrelia enters the tick when larvae or nymph feed
on an infected reservoir host. The spirochetes are attracted to the
feeding site by the tick proteins secreted into the saliva (43). During
the acquisition phase, the ingested spirochetes change their gene
expression and multiply in the tick midgut contents (12, 44) to
successfully infect the vector. After tick molting, the midgut appears
empty. The midgut walls are localized close to each other, and the
peritrophic matrix, a layer consisting of glycoproteins bound to the
chitin network, is absent. In these harsh conditions of limited
nutrients, which can last for months or years, the spirochetes switch
into their “sleeping mode” and can be found attached to the midgut
cell wall. OspA, a membrane lipoprotein produced by the Borrelia,
was shown to bind the tick TROSPA protein present on the surface
of I scapularis midgut cells (19). Trospa was the first tick gene
recognized as upregulated by the presence of Borrelia in the unfed
nymph. Surprisingly, we were not able to identify trospa in our
RefSeq database nor the recent TSA databases of I ricinus available
at NCBI. However, this gene has previously been sequenced from
I ricinus (NCBI: EU034646) (45), indicating that in I. ricinus, trospa
was probably expressed to a limited level.

It is unknown how Borrelia spirochetes change expression of the
tick midgut genes and how these modifications help Borrelia
multiply and persist in the gut lumen. Using the MACE method
on unfed midguts we have identified 210 downregulated and 165
upregulated tick genes as a result of infection (p-value < 0.05 and
log2 fold change < —2.3 or > 2.3). We found that mitochondrial
carboxypeptidase (V5SHK70) and cytochrome C oxidase subunit Via
(a component of the respiratory complex IV, XM_002435666) were
downregulated > 8 fold in expression, indicating possible
suppression of energy metabolism in unfed infected ticks. Among
the highly upregulated genes, we identified several peritrophins and
chitinases, constituents of the peritrophic matrix. However, the
peritrophic matrix is formed in I ricinus > 18h after the beginning
of feeding (46), meaning that mRNAs of these genes could be pre-
synthesized to accelerate the formation of the peritrophic matrix
after the initiation of feeding. Alternatively, these proteins could be
involved in establishing and maintaining other chitin structures
such as tracheae, which supplement the midgut tissue with oxygen.

Ticks do not receive any nutrients from the environment, and
the blood-feeding represents a significant milestone in their life
cycles. The Borrelia spirochetes residing in the tick midgut become
activated by a mechanism that is not completely clear [probably by
nutrients in the blood, temperature, pH (47), osmolarity (48)] and
thereby accelerate the expression of genes necessary for their
transmission and survival in the vertebrate host. In the case of
B. burgdorferi sensu stricto, the number of spirochetes multiplies
from several hundred in an unfed nymph to a hundred thousand
in a fully fed nymph (49). Next, B. burgdorferi migrate to the
basolateral surface of the midgut epithelium, cross the basal
membrane, and enter the hemocoel and salivary glands to infect
the host through the secretion of saliva (14). However, B. afzelii
appears to behave differently. These spirochetes do not multiply
during feeding, but their numbers reduce continuously, possibly
by direct traversal of the spirochetes from the midgut into the host
(12). Importantly, spirochetes of B. afzelii have not been found to
infect the salivary glands. In addition, and in contrast to B.
burgdorferi, the number of B. afzelii spirochetes dramatically
decreases over the next few months after molting (50).
Bontemps-Gallo et al. previously showed that physicochemical
parameters such as the level of oxygen, osmolality, and oxidative
stress, affect growth and motility differently in these two
genetically distinct bacterial species (51). Consistent with this,
from 42 previously identified tick Borrelia-responsive genes (19,
20, 37-42) (including tre31, isdlp, pixr, stat, etc.), in our databases
we found only duox (52) and alcohol dehydrogenase (42) being
upregulated more than two-fold, further supporting the behavioral
differences between B. burgdorferi and B. afzelii.

The primary purpose of this study was to identify tick proteins
suitable for developing new anti-tick therapies. Ideally, such
candidates should be abundantly expressed during feeding and
targeted to the tick midgut wall or secreted from the cells into the
midgut content in order to be accessible to antibodies or drugs
present in the host blood. It was demonstrated that B. afzelii enters
the host skin within 24h of attachment, but this population of
spirochetes is not infectious. This means that the Borrelia need >24h
for activation in the tick midgut to become infectious. We identified
several tick genes altered in expression at the 24h time point. We do
not know if this response was evoked explicitly by the Borrelia to
gain an advantage during transmission, reflecting ongoing host
modifications, or was induced by the tick as a reaction (immune)
against the spirochetes.

We observed that at the fully fed time point, the number of
upregulated genes were almost doubled when compared to the
downregulated genes. We hypothesized that this overexpression was
evoked by Borrelia during feeding to alter the tick physiology in
order to transmit the spirochetes from the tick midgut into the host.
To test the necessity of this upregulation, we silenced five previously
biologically validated tick genes by RNA interference and tested the
ability of nymphs to transmit Borrelia. All these candidates were
predicted to be intracellular proteins, and many of them were
transcription factors, so we tested whether silencing of these genes
could block the expression of their downstream-regulated genes.
We observed that the silencing of GXP_Contig 30818 caused the
absence of Borrelia infection in the ear the second week after tick
detachment (the beginning of infection) in 85% of mice (11 of 13).
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This delay in onset of disease probably triggered a further decrease
in Borrelia prevalence in the ear (week 3) and destination tissues,
heart, and urinary bladder. This transcript encodes yet
uncharacterized protein with predicted nuclear localization. The
expression of genes possibly regulated by this protein deserves
further attention. The silencing of other genes did not affect
Borrelia transmission. Therefore, we propose that upregulation of
these genes is necessary for processes other than transmission,
possibly for the acquisition and persistence of Borrelia.
Additionally, in the transcripts upregulated during feeding, and
similar to the unfed stage, we more often identified genes connected
with synthesis and reconstruction of the peritrophic matrix (e.g.,
peritrophins and chitinases), whose expression has been previously
shown to influence spirochete colonization of ticks (53).

We believe that this work will enable further identification
and characterization of the tick midgut proteins necessary for
acquisition, persistence, and transmission of B. afzelii from I.
ricinus. In our MACE transcriptomic database, we found, in
total, 55 Borrelia-stimulated, well expressed, and secreted or cell
membrane-associated midgut proteins. We assume that some of
these candidate proteins are necessary for Borrelia activation and
transmission and that blocking of these proteins by a specific
vaccine or a drug will contribute to the development of novel
therapies against Lyme borreliosis.
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Supplementary Figure 1 | Scheme of sample preparation for biological
validations. Ten populations of uninfected larvae, each originating from a single
female fed on a guinea pig, were fed on B. afzeli-infected or uninfected mice. The
nymphs then were fed on uninfected mice and dissected for midguts (10-50
nymphs for each group) at the three indicated time points.

Supplementary Figure 2 | Borrelia infection does not affect tick feeding or final
weights of the fully-fed nymphs. Each group of nymphs was comprised of females
(higher weights) and males (lower weights). Each dot represents a single nymph.
The data in each group contain a collection of 20 individual feedings (in total 360
infected and 339 uninfected nymphs). INF = infected nymphs, UNINF = uninfected
nymphs. The horizontal bar indicates a mean. n.s. = not significant (Mann-Whitney
test).

Supplementary Figure 3 | Effect of gene silencing by RNA interference on
nymph feeding and B. afzelii transmission.(A) Weights of individual fully-fed nymphs.
Each dot represents a single tick. (B) Duration of nymph feeding. (C-F) The
absolute number of B. afzelii in individual mouse tissues measured by gRTPCR.
Two genes with no detectable B. afzelii in the heart tissue from the silencing
Experiment 1 (left) were once more tested in the silencing experiment 2 (right).
dsGFP was used as a negative control.

Supplementary Table 1 | A list and expression of all Ixodes ricinus nymph midgut
genes identified in individual MACE transcriptomes. UF = unfed, 24hrs = fed for 24
hours, FF = fully-fed, INF = B. afzelii-infected nymphs, UNINF = uninfected nymphs.

Supplementary Table 2 | List of primers. Restriction sites for Apal/Xbal are
underlined.

Supplementary Table 3 | Raw reads and mapped contigs obtained after the
sequencing of MACE libraries. Raw reads mapped to our previously sequenced
RefSeq library (Bioproject PRINA657487) were labeled as GXP sequences.
Sequences absent from the RefSeq library, but present in other Ixodes tick
genomes and transcriptomes, were labeled as gi|. UF = unfed, 24hrs = fed for 24
hours, FF = fully-fed, INF = infected nymphs, UNINF = uninfected nymphs.

Supplementary Table 4 | A list of Ixodes ricinus nymph midgut genes
upregulated in the presence of Borrelia afzelii at three different timepoins of feeding.
n.c. = not calculated.

Supplementary Table 5 | A list of Ixodes ricinus nymph midgut genes co-
upregulated by Borrelia afzelii at different timepoints. n.c. = not calculated.

Supplementary Table 6 | A list of Ixodes ricinus nymph midgut genes
downregulated in the presence of Borrelia afzelii at three different timepoins of
feeding. n.c. = not calculated.

Supplementary Table 7 | A list of Ixodes ricinus nymph midgut genes co-
downregulated by Borrelia afzelii at different timepoints. n.c. = not calculated.
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