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Cellular function is reliant on the dynamic interplay between the plasmamembrane and the
actin cytoskeleton. This critical relationship is of particular importance in immune cells,
where both the cytoskeleton and the plasma membrane work in concert to organize and
potentiate immune signaling events. Despite their importance, there remains a critical gap
in understanding how these respective dynamics are coupled, and how this coupling in
turn may influence immune cell function from the bottom up. In this review, we highlight
recent optical technologies that could provide strategies to investigate the simultaneous
dynamics of both the cytoskeleton and membrane as well as their interplay, focusing on
current and future applications in immune cells. We provide a guide of the spatio-temporal
scale of each technique as well as highlighting novel probes and labels that have the
potential to provide insights into membrane and cytoskeletal dynamics. The quantitative
biophysical tools presented here provide a new and exciting route to uncover the
relationship between plasma membrane and cytoskeletal dynamics that underlies
immune cell function.

Keywords: plasma membrane, actin cytoskeleton, fluorescence correlation spectroscopy, fluorescence recovery
after photobleaching, immune cells, metal induced energy transfer, volumetric imaging, quantitative imaging
INTRODUCTION

Life is dynamic. Cellular components are in constant motion bridging various time- and length-
scales. This includes the plasma membrane and the cortical actin cytoskeleton, which form a
dynamic interface between the cell and its environment, working together to control cellular
signaling and morphology as well as to maintain the mechanical integrity of the cell. It is becoming
increasingly clear that the dynamics of the cortical actin cytoskeleton and the plasma membrane are
intimately linked to immune cell function, playing a critical role in, for instance, the regulation of
receptor organization, granule section, and specific cytoskeletal protrusions (1–4). Despite their
individual importance, how both the membrane and the cortical actin cytoskeleton dynamics are
coupled, and how feedback between the two structures shapes their interplay in immune cells
remains unknown. Crucially, to understand the functional significance of this interplay,
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measurement techniques are required that allow the dynamics of
actin and membrane to be captured simultaneously, enabling
their direct correlation in both space and time.

Actin-Membrane Interactions at a Glance
The interactions between the membrane and the actin cortex are
numerous and complex and have been the subject of intense
research (5, 6) (Figure 1A). Underlying the plasma membrane
the actin cortex exists as a densely cross-linked meshwork of
filamentous actin (F-actin) formed by the polymerization of
globular actin (G-actin) monomers undergoing constant
Frontiers in Immunology | www.frontiersin.org 2
turnover on the second time-scale (7). The dynamic
architecture of the actin cortex is governed by two primary
modes of F-actin polymerization driven by either Arp2/3 or
formin nucleation leading to constantly varying actin mesh-sizes
from tens of nanometers to microns (8). The dynamic nature of
the cortex as well as its mechanical plasticity is largely mediated
by a variety of myosin motors that cross-link individual filaments
and induce active mechanical stress within the network (8).

Biochemically linking the actin cortex and the plasma
membrane are a series of specific protein-protein and protein-
lipid interactions (9). One of the most important membrane
A B
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FIGURE 1 | Plasma membrane organization and actin cytoskeletal dynamics are intrinsically linked to immune cell organization and function over many length- and time-
scales (A–C). Techniques with the ability to quantify simultaneous dynamics present an exciting route to understand the interplay of cortical actin and plasma membrane in
immune cells (D–F). (A)On the nano-scale actin filaments are turning over and binding the plasma membrane influencing its organization which in turn impacts on actin
organization and the distribution of receptors, lipids and other membrane constituents. (B) Defined actin and membrane flows, organization and their integrity are crucial for
cell-cell contacts such as during immunological synapse formation on the meso-scale. (C)Within tissue, immune cells must navigate through biophysically diverse
environments, relying on both a dynamic plasma membrane and actin cytoskeleton to carry out their function. (D) Fluorescence correlation spectroscopy (FCS) and FCCS
measure fluctuation of fluorescently labeled molecules diffusing through the focus of a confocal microscope. Typical transit times range from µs to hundreds of ms
highlighting the large dynamic range and unrivaled temporal resolution of these techniques. Auto-correlation (AC) of the intensity traces (in two spectral channels CH1 and
CH2) allows to calculate diffusion coefficients and interactions (cross-correlation, CC). (E) Fluorescence lifetime imaging (FLIM) allows to monitor changes in fluorescence
lifetime. Acquiring FLIM images typically takes seconds to minutes. Functional probes can change their lifetime in accordance to their environment sensing, for example,
viscosity. In metal induced energy transfer (MIET) the lifetime change is correlate with the distance to the surface and allows the recalculation of heights yielding the
membrane topology, for example, during cell spreading. (F) Volumetric imaging using, for instance, a light-sheet approach allows to image the cellular context in 3D at
moderate time resolution (down to seconds). Combination with the dynamics techniques, single particle tracking (SPT), fluorescence recovery after photobleaching (FRAP),
and FC(C)S represents a promising route for mapping plasma membrane and actin dynamics in the full physiological setting by correlating their time- and length-scales.
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components mediating this interaction is the glycolipid
phosphatidylinositol-bisphosphate, PIP2. By binding the ERM
(ezrin, radixin, and moesin) proteins, an actin binding family of
proteins, PIP2 provides a linkage between cytoskeleton and
membrane (Figure 1A). In addition to the ERM proteins,
WASP and WAVE, key regulators of Arp2/3 driven actin
polymerization, are also able to bind PIP2 in the membrane,
leading to active polymerization of F-actin at the plasma
membrane (6). Notably, the conserved diversity of specific
linkages between cortex and membrane is indicative of the
importance of the tight coupling of these structures for their
function within the cell.

In addition to the specific molecular interactions between the
plasma membrane and actin cortex, there are a number of more
general biophysical interactions that havebeenwell characterized in
vitro (10), for example, the local charge of the membrane has been
shown to influence actin binding (11). Furthermore, curvature
introduced by the polymerization of the actin cytoskeleton during
the formationof specific protrusions can influence the diffusion and
distribution ofmembrane proteins (12, 13). Conversely,membrane
curvature induced by the physical membrane microenvironment
can lead to actin polymerization (14). Local changes in actin
polymerization can also induce changes in the rate and diffusion
mode of lipid and protein components as well as the membrane
tension (15–18). Crucially, membrane composition, dynamics, and
organization influence the underlying actin cytoskeleton. Similarly,
the dynamics and architecture of the actin cytoskeleton has been
shown to influence the plasma membrane (19). Therefore, the
complex interplay between membrane and cortical cytoskeleton
makes assessing causal links challenging, highlighting the unmet
need for techniques that allow the dynamics of both components to
be quantified simultaneously in space and time.

Actin-Membrane Interactions in
Immune Cells
Many stages of the immune response, for example, antigen
recognition, rely on the integration of information by immune cells
from their environment, often involving the formation of highly
specialized cell-cell contacts, such as the immunological synapse (IS)
that forms between T-cells, B-cells, and antigen presenting cells
(APCs) (Figure 1B). At these contacts, immunological signaling is
initiated and propagated via the interactions of a wide array of
molecules, occurring on and in the proximity of the plasma
membrane. Owing to this, the dynamics of both the plasma
membrane and the underlying actin cytoskeleton have a profound
impact on the organization and dynamics of crucial signaling
molecules. The process of immune cell activation spans a range of
time- and length-scales starting with nano-scale reorganization and
receptor engagement (sub-second), actin polymerization driven
retrograde flow (seconds), to micron-scale cellular activation,
spreading, and cytokine secretion (up to hours) (20–22).

DuringT-cell activation and IS formation, one of the key steps in
the adaptive immune response, there has been increasing interest in
the role of specific cytoskeletal protrusions in the initiation and
orchestrationof earlyT-cell signaling at the plasmamembrane (23–
25). Microvilli at the T-cell surface have been shown to provide an
Frontiers in Immunology | www.frontiersin.org 3
efficientmeans of environment scanning, while association of ERM
proteins to the plasmamembrane interface has been shown to lead
to the accumulation of signalingmolecules atmicrovilli (23, 24, 26).
Following T-cell receptor (TCR) triggering, the T-cell undergoes a
dramaticmorphological change driven by the rapid polymerization
of F-actin. This results in the formation of an increased contact area
between the two cells, which is characterized by the retrograde flow
of actin filaments within a lamellipodial structure at its periphery as
well as a ramified actin network at its center (27). Crucially, TCRs
are trafficked in coordination with the F-actin flow toward the
center of the IS and the continuedflowof actinhasbeen shown tobe
necessary for continued activation, sustainingPLCg1 signaling (28–
30). Notably, once the IS has formed, recent evidence suggests that
tension generated by specific dynamic actin structures influence the
symmetry and lifetime of the IS (31).

In contrast to its polymerization, the depletion of actin has
also been shown to play a role in immune cell function. Targeted
killing by cytotoxic T lymphocytes requires the precise spatio-
temporal control of actin depletion with recent studies pointing
to a complex and intricate mechanism, whereby the density of
the cortical actin underlying the membrane is tuned by the
interaction of the kinase PIP5K and the loss of the charged PIP2
lipid (32, 33).

Like the cortical actin cytoskeleton the plasma membrane is a
dynamic structure, constantly in motion and continuously
reorganizing (34, 35). The presence of defined domains or rafts
(tens of nanometer in diameter) has been evoked to explain a
number of phenomena, including lateral heterogeneity of the
plasma membrane and, for example, the non-random distribution
of membrane proteins on the cell surface (35–38). Along these lines,
the reorganization of immune receptors by specific incorporation
into such structures has been described (39–41). This is based on a
biophysical property of the membrane and the proteins themselves:
proteins can exhibit a preference for different lipid environments
preferring, for instance, a densely packed lipid environment (liquid
ordered phase, highly viscous) enriched in saturated lipids and
cholesterol (42, 43). In contrast, other proteins can prefer the liquid
disordered membrane environment, rather associating with loosely
packed, unsaturated lipids resulting in a low viscosity environment.
This could act as means of increasing interaction likelihood and
forming signaling platforms (44, 45). The degree of order and the
viscosity of the membrane are primarily tuned by the cholesterol
content and in addition likely by its specific interactions with
proteins and lipids (46–48). Intriguingly, the attachment of actin
filaments to the membrane has been seen to influence membrane
organization, resulting in the formation of ordered domains (49,
50), providing a potential mechanism for actin to indirectly
influence membrane protein organization.

As is evident, studies of the dynamics of the cytoskeleton and
membrane have led to important insights into the function of
immune cells (51–53).Despite this, there are only a limited number
of studies that have attempted to address the correlated biophysical
and biochemical dynamic mechanisms whereby membrane and
actinwork together in immune cells. Recent advances in correlative
imaging such as the combination of super-resolution microscopy
and electron microscopy have allowed for detailed insights into
January 2021 | Volume 11 | Article 612542
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structural links between plasma membrane and cortical actin
organization (54–56). However, these approaches only allow
snapshots of a constantly evolving structure and thus do not
allow the dynamic interplay to be followed live, and therefore
make assessing causality challenging. Furthermore, little is known
about how these interactions influence the behavior of cells inmore
complex tissue environments or in their full physiological setting,
with our knowledge often restricted to in vitro single cell studies
(Figure 1C). This has primarily been due to a lack of accessible
technologies with sufficient temporal (< ms binding and transport
events) and spatial resolution (single proteins on the order of
nanometres can effect changes on cellular level beyond tenth of
micrometers) to assess the correlated dynamics of the plasma
membrane and the actin cytoskeleton without perturbing the
system. In addition to this, such lack of technology has been
confounded by a lack of membrane and actin probes that can
operate at physiological conditions and offer reliable performance
within the cellular environment.

Here, we review recent advances in both dynamic
measurement techniques and actin/membrane probes that have
not yet been widely applied to study immune cells. In our view,
these methods present a significant opportunity to address the
complex interplay between these two systems crucial to the
immune response by simultaneous quantification of both
membrane and actin dynamics.
FROM FLUORESCENCE IMAGING TO
QUANTIFICATION OF DYNAMICS

Live-cell fluorescence imaging is the method of choice to
understand the behavior of dynamic biological processes owing to
the specificity of labeling structures of interest and the minimal
invasiveness of the approach. Observing events crucial to the
immune response occurring in live cells has long been performed
by employing fluorescence microscopy with confocal and total
internal reflection fluorescence (TIRF) time-lapse imaging due to
their optical sectioning capabilities yielding key insights into the
dynamic nature of these processes (57, 58). This approach has
revealed, for example, the formation and trafficking of T-cell
receptor clusters (21, 59), which is crucial for initiation and
continuation of signaling and has been shown to be strongly
regulated by the dynamic interplay of the membrane and cortical
actin cytoskeleton flows (60, 61). Despite their success, imaging
alone restricts the level of quantitative information that can be
extracted from the biological system of interest, for instance, due to
the limited time resolution of time-lapse imaging acquisitions (tens
of ms to s).

An alternativequantitative route to assessing transient processes
such as cellular reorganization driven by molecular diffusion,
binding-kinetics, or flow has been the use of dynamic techniques
such as single particle tracking (SPT), fluorescence recovery after
photobleaching (FRAP), or fluorescence fluctuation spectroscopy
(FFS) approaches. For a detailed technical description, we refer the
reader to (62–64). In immunology, these traditional techniques and
their advancements have, for instance, been used to investigate the
Frontiers in Immunology | www.frontiersin.org 4
diffusion properties of key signalingmolecules such as BCR, CD1d,
TCR, CD45, or Lck in live cells (65–74).

Fluorescence Fluctuation Based
Approaches to Assess Simultaneous
Dynamics
The spatial heterogeneity across microns along with fast molecular
interactions within the cell membrane represent a challenge to all
dynamic techniques which rely on maintaining single molecule
sensitivity in the crowded cellular environment. Similar to
fluorescence time-lapse imaging FRAP and SPT are
conventionally limited to resolving processes in the ms time
regime. Using fluctuation based techniques such as fluorescence
correlation spectroscopy (FCS) offers unmatched temporal
resolution (down to ns) to cover the range from very fast
molecular binding dynamics (µs) to motion of large protein
complexes in the membrane (hundreds of ms). Unfortunately,
the spatial resolution remains diffraction limited (~200 nm).
Thus, inherently one will average many molecular interactions
missing precise details on dynamics and potential sub 100 nm
spatial heterogeneity which could be functionally important, for
instance, during receptor-ligand engagement. The combination of
stimulated emission depletion (STED) super-resolution
microscopy with FCS has proven itself as a valuable remedy and a
tool to assess nano-scale diffusion directly at the relevant spatio-
temporal scales (75, 76). It has revealed a vast heterogeneity in
diffusion behaviors of membrane constituents caused by
interactions with lipid domains, transmembrane proteins, or the
cortical actin cytoskeleton (16, 17, 77).While STED-FCS offers very
high spatial resolution in living specimens (<50 nm), it is limited by
comparatively high light exposure, requires dedicated equipment
(depletion beam), and necessitates special dyes (75).

By samplingnot onlya singlepoint, but rather a linearor circular
region, scanning fluorescence correlation spectroscopy (sFCS)
studies offer not only increased statistical power over
conventional FCS but also limited phototoxicity (78, 79), and
allow spatial heterogeneities in molecular diffusion dynamics to
be accounted for (Figure 1D). The increased statistical power of
sFCS can be exploited to decipher the diffusion mode of the
molecule of interest (determining if a molecule undergoes free
Brownian or hindered diffusion (80) due to nano-scale
interactions). On the one hand, changes in diffusion behavior can
initiate signaling pathways and on the other hand can be indicative
of a cellular state such as activation (81, 82). Similar to STED-FCS,
the statistical analysis of sFCS data can yield details of dynamic
molecular organization but notably does not rely on any special
equipment or dyes and can be performed on any turn-key confocal
laser scanning microscope (79, 80). Critically, two-color scanning
fluorescence cross-correlation spectroscopy (sFCCS) data can be
used to characterize the dynamics of two species of interest,
exploring their interplay in detail (83–86) (Figure 1D). Super-
resolved (STED) cross-correlation studies have not yet been
achieved, but in combination with beam scanning bare potential
to uncover short-lived interactions (87, 88). Together with
harnessing the statistical power of scanning approaches, we
anticipate that the advances in fast photon-counting acquisitions,
January 2021 | Volume 11 | Article 612542
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high-count rateFCSand thus fast photonfilteringmaypave theway
to the realization of such techniques (89, 90). Cross-correlation
studies offer a unique opportunity to quantify cytoskeletal and
membrane dynamics simultaneously, for example, probing the
dynamic interactions between signaling molecules at the plasma
membrane and the flow of the actin cytoskeleton during synapse
formation, allowing cross-correlation on short (µs to ms) time-
scales. Such correlated, simultaneous acquisitions represent a
promising way to dissect causation and may decipher when the
actin cytoskeleton is driving the membrane organization and
vice versa.

Imaging larger regions allows for the mapping of diffusion
across space and delivers increased spatial information at the
expense of temporal resolution (> ms). Both TIRF and single-
plane illumination (SPIM) schemes have been combined with
camera based FCS acquisitions yielding similar and even larger
statistics compared to sFCS (91–93). Crucially, these techniques
provide subcellular or cellular imaging, contextualizing the
dynamic measurements and allowing routine correlation with
specific compartments of the cell. Expanding such approaches
using image mean squared displacement (iMSD) analysis can
even yield insights into the diffusion modes with a statistical
power similar to STED-FCS and sFCS (94, 95). For camera based
acquisitions the frame time (of about 1 ms minimum) represents
the most common bottleneck for resolving fast diffusion (96).
Given recent advances in camera technology this will likely not
pose a limitation for much longer. For example, interferometric
scattering (iSCAT) microscopy, which relies on collecting
scattered light from the sample rather than fluorescence
emission, allows frame rates of multiple kilo Hertz covering
most of the range of dynamic processes in biology (97–99).

Exploiting Fluorescence Lifetime to
Measure Dynamics and Topology
The time a fluorophore spends in the excited state is termed
fluorescence lifetime and can be used as an additional means for
introducing contrast in fluorescence microscopy with the
fluorescence lifetime strongly depending on the environmental
conditions and fluorophore properties (62). The unrivaled
temporal resolution of fluorescence fluctuation approaches offer a
promising route to decipher lateral membrane organization. Yet,
biology operates in all three spatial dimensions, for example, actin
polymerization causing plasma membrane deformations, and the
aforementioned methods are largely blind to changes in axial
organization. In the following, we discuss a possible remedy
exploiting fluorescence lifetime modulation.

The recent advances in commercially available fluorescence
lifetime imaging (FLIM) platforms enable fast acquisitions (few
seconds per frame) and easy access to this microscopy modality
(100). Typically, fluorescence lifetime information is used as an
intrinsic method to generate contrast in unlabeled samples (using
auto-fluorescence) or in conjunction with Foerster resonance
energy transfer (FRET), where the lifetime shortening of the
fluorescence donor is used to calculate the distance between two
fluorochromes (donor and acceptor) revealing molecular
interactions or conformational changes (101) (Figure 1E).
Frontiers in Immunology | www.frontiersin.org 5
A versatile variation of FRET makes use of the lifetime and
fluorescence quenching abilities of thin metal films on the glass
coverslip. Inmetal induced energy transfer (MIET), the lifetime can
be used to calculate the height (distance from the quenching
surface) of a fluorophore with nanometer precision across a range
of 0-150 nm (102) (Figure 1E). The dynamic range and localisation
precision can be tuned by the coating material (most commonly
gold andmore recently graphene) (103–105).MIETdisplays a great
opportunity toexploremembrane topologyandcurvature (106), for
example, in commonT cell surface interaction studies using plasma
membrane markers, as has been applied to study the epithelial-to-
mesenchymal transition of epithelial cells (107). This becomes even
more powerful when combined with two-color labeling (108, 109),
allowing the simultaneous spatio-temporal quantification of the
actin cortex and plasma membrane topology, which may elucidate
microvilli structures and allow axial mapping of segregation and IS
organization (109). Specifically, it could be used to differentiate
actual protein clusters from axially stacked molecules (as in
microvilli). MIET can be combined with FCS (or rather its cousin
fluorescence lifetime correlation spectroscopy) allowing for height
dependant dynamic measurements, giving the opportunity to
separate receptor dynamics proximal and distal from the surface
withinonemeasurement ina fewseconds, allowingkey insights into
the mobility of receptors in the vicinity of specific actin structures
(110). As a further extension, the combination of fluorescence
lifetime imaging with functional probes paves the way for some
exciting applications, whereby membrane topology can be
correlated with other readouts, such as membrane tension,
curvature, or order (see below).

Fast Volumetric Imaging and
Its Combination With Dynamic Techniques
Theaforementionedapproachesgivehighlydetailed insightson fast
time- and short length-scales. Nevertheless, the actin cortex plasma
membrane interplay also affects larger-scale cellular dynamics such
as pushing/pullingof themembrane, cellmigration and samplingof
the immediate surroundings (see introduction) (Figure 1C). The
investigation of these processes necessitate tools that are able to
operate in in all three dimension (3D), capturing the complex
geometries and topologies of cellular and multicellular samples. In
biology, 3D (volumetric) imaging has typically been achieved using
axial scanning confocalmicroscopy, andmore recently using super-
resolution techniques such as 3D-SIM. Unfortunately, such
techniques are often restricted to relatively long (several seconds
tominutes) scan times, limiting their application to slowly evolving
biological systems. To investigate transient processes in a more
physiological setting (compared to a planar coverslip), great
advances in volumetric and in vivo imaging have been made,
primarily based on the use of light sheet technologies, allowing
for rapid 3D acquisition (111–116) (Figure 1F). These volumetric
imaging approaches present an opportunity to overcome a long-
standing issue for the investigation of plasma membrane and actin
cortex interactions in lymphocytes such as T-cells. Typically, due to
restrictions imposed by conventional imaging methods, specific
activation is achieved by replacing the antigen presenting cell by a
coverslip coated with an activing molecule or a supported lipid
January 2021 | Volume 11 | Article 612542
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bilayer presenting target molecules (117, 118). This approach has
led to a great number of important insights into immune cell
biology, yet it omits a large proportion of the biological complexity
and three-dimensional geometry present within the physiological
interactions between immune cells and target cells. Consequently,
the opportunity to investigatingplasmamembrane and actin cortex
interactions in physiological geometry using volumetric imaging is
likely to yield great insights (33, 119, 120).

Crucially, instead of acquiring time-lapse imaging alone,
combing the aforementioned dynamic techniques such as FCS,
FRAP, or SPT with light-sheet imaging has the great advantage
of providing spatial context for the observations (121). Notably,
in contrast to FCS, the FRAP method can not only extract the
dynamics of one species of interest, but can also quantify reaction
processes, such as the binding of actin monomers within the
actin cortex (122). The combination of FRAP with volumetric
imaging therefore represents an exciting opportunity to correlate
diffusive processes, for example, at the plasma membrane with
the reaction driven turnover of the actin cortex beneath. Such
technologies will likely be key in providing insights into the
correlated dynamics of immune cell membrane and actin
cytoskeleton within physiologically relevant environments (123).

All these techniques and ideas, of course, rely on appropriate
and non-perturbing labeling strategies. Excitingly, a large variety
of actin and membrane labels are now available.
Labels and Probes for Quantification of
Plasma Membrane Dynamics
A variety of approaches can be chosen to label the plasma
membrane. Broadly speaking, labels can be divided in specific
labels, binding to or mimicking a certain lipid, and non-specific
labels, displaying usually hydrophobic compounds, which insert
into the membrane. The former can be used to study a specific
lipid or pathway, the latter as a general membrane label.

Non-specific labels such as DiO or DiI have been around for
decades and have even been used for in vivo cell tracking (124, 125).
They conveniently incorporate quickly into the membrane by
incubation alone which works well with model membranes but
can require optimisation for live-cell membrane staining (126).
Homogeneous membrane labeling can also be achieved using
various other commercial compounds such as the CellMask™

dyes (Life Technologies). More recently, the MemBright dyes
were developed allowing for higher photo-stability, lower working
concentration and super-resolutionmicroscopy applications (127).
Alternatively, specific labels can be used tomimic the structure of a
lipid ormembrane constituent. This can be a lipidmodifiedwith an
organic dye, a protein domain specifically binding to a lipid or even
an antibody (126, 128). Labeled lipid analogs have enabled
insightful studies of the dynamic nano-scale organization of the
membrane (76, 77, 87). Nevertheless, due to the comparable size of
dye and lipid it cannot be excluded that the analog does not exactly
represent the native lipid. An important constituent of the plasma
membranewith anabundance of about 30%–40% is cholesterol (35,
46). A variety of probes and cholesterol binding proteins are
available (47, 129), however how cholesterol is distributed
Frontiers in Immunology | www.frontiersin.org 6
laterally and axially in the plasma membrane remains under
heated debate.

It should be noted that fluorescent WGA conjugates are
commonly used to stain the plasma membrane. This protein
displays a lectin and rather binds the membrane adjacent
glycocalyx thus spatial variations can occur within one cell and
definitely when comparing different cell types (127). Some proteins
have specific domains to interact with lipids. Such proteins can be
tagged with a fluorescent protein and in this way be engineered to
become a lipid reporter. These are convenient probes as the cells do
not require any further labeling, but overexpression of such
reporters may sequester the native lipid species, infer with
endogenous signaling and membrane binding and lipid species
specificity is often modulated by multiple components. Lipid
binding domains include C1-domain (DAG), C2-domain
(phospholipids), FYVE- and PX-domain (PI3P), PH-domain
(phosphoinositide polyphosphates), and Annexin V (PS) (128,
130, 131).

A variety of compounds exists that not only label themembrane
but also report on its properties (environment-sensitive dyes),
known as functional probes. Polarity-sensitive dyes, for example,
change their fluorescence properties depending on the local order
(molecular packing, accessibility of the hydrophobic core to water
from the exterior medium) of the surrounding membrane (132,
133). This results in quantifiable changes in fluorescence spectra or
lifetimes and can be combined with super-resolution microscopy
(134, 135). Other probes sense different membrane properties such
as tension or viscosity (136, 137). Work with probes that change
their spectrum upon changes in the local environment is
experimentally convenient as it only requires acquisition in two
optimized spectral channels (even though spectral detection is
preferred) (138). Unfortunately, these dyes typically have a very
broad emission spectrum that makes it difficult to simultaneously
quantitatively image another structure such as actin in addition.
Therefore, we anticipate again that lifetime-based probes and
acquisitions may show better sensitivity (139, 140).

Approaches for Quantifying
F- and G-Actin Dynamics
Visualizing the dynamics of the actin cytoskeleton in living cells
remains challenging, largely owing to the rapid turn-over of the
molecular components of the cytoskeleton. Two main strategies
exists for the visualization of actin within living cells: either genetic
approaches modifying G-actin monomers directly with a
fluorescent protein or a self-labeling tag (SNAP/Halo), or by
using a variety of indirect filamentous F-actin binding labels, for
example, the short peptides Lifeact or F-tractin, which are
additionally modified with a fluorescent protein (141–143). As
with lipid labeling, care must be taken to use the appropriate
strategy for the desired dynamic output, for instance, FRAP or
FCS studies assessing actin diffusion must utilize a direct G-actin
approach to ensure that the measured diffusion is that of G-actin
and not the indirect actin probe e.g. Lifeact-filament binding. A
recent versatile approach is the visualizationofmembraneproximal
F-actin by a membrane-bound F-tractin reporter (MPAct) as this
directly reports on plasma membrane cortex interactions (144).
January 2021 | Volume 11 | Article 612542
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This enables to investigate actin cortex remodeling in proximity of
the membrane, which could yield novel insights into actin-rich
protrusions and their dynamic reorganization during T-cell
activation. Labeling F-actin in live cells can also be performed
with a small organicmolecule, SiR-actin (143). This is derived from
a toxin and has the advantage that it can simply be added to the cell
of interest, is cell permeable and can readily be used with super-
resolution STEDmicroscopy (145). Because of its mode of binding
to actin filaments, it may perturb native actin dynamics. A rather
recent approach displays the use of anti-actin nanobodies
(Chromotek) (146–148) or direct delivery of mRNA encoding for
labeled Lifeact with certain advantages for primary cells (IBIDI). In
immunology both Lifeact and F-tractin have beenwidely applied to
visualize F-actin dynamics (141, 149). More recently, Lifeact has
also been implicated in changing endogenous actin dynamics (150–
152). As with any secondary labeling, careful optimisation and
controls are necessary. When investigating F-actin a comparison
with a (fixed) phalloidin stain can serve as a control.

Common to all labeling strategies applied to fluorescence
microscopy in living cells should be the use of probes that do not
disturb the native behavior of the tagged molecule and do not
influence the biological system. As mentioned above, lipids and
the attached fluorescent dyes are of a comparable size, and thus
measures should be taken to ensure that the lipid behaves as its
native counterpart. Often a variety of chemical structures need to
be screened in order to optimize labeling of a target molecule (i.e.
signaling function, cellular localisation, molecular interactions
and so forth need to be preserved and checked) (77, 129). Similar
issues arise with the use of fluorescent proteins which can
sterically hinder their target protein or artificially cause
oligomerisation (153). Therefore, it is advisable to use flexible
linkers and trial multiple labeling strategies, for example, C- and
N-terminal tagging (154, 155). Overall, we would like to
emphasize that controls ensuring the preserved function are of
the utmost importance.

Perturbation Studies Using Biochemical-
and Photo-Manipulation
Specific labeling of molecules allows the membrane or the
cytoskeleton to be studied in different physiological settings. A
common additional step of the analysis is to perform
perturbations, disturbing the steady-state of the actin assembly
or membrane structure or even the actin-membrane interplay.
By systematically perturbing different components of the system
independently, the impact of each on the signaling and function
within the living cell can be inferred and key-components, for
example, as drug targets be identified.

Perturbations at the plasma membrane are commonly
performed by altering the lipid composition. For transient
changes, lipid species can simply be fed but recent evidence shows
that the cells quickly counteract this to preserve the biophysical
properties of the membrane (156). More commonly, certain
membrane constituents are depleted. For instance, cholesterol
which is a major component of the plasma membrane, playing an
important role in signaling, and is proposed to be the major
organizer of nanodomains aka rafts and has a profound effect on
the overall biophysical properties such as viscosity and rigidity of
Frontiers in Immunology | www.frontiersin.org 7
the plasma membrane is a common target (46, 157). Treatments
with cholesterol oxidase or methyl-b-cyclodextrin are routinely
used to deplete cholesterol directly at the plasma membrane (158)
for studying fast time scales such as seconds to minutes.
Alternatively, drugs such as statins which interfere with
cholesterol synthesis in the cell enable investigations of longer
time scales up to hours and days (35). In that way, changes in
cellular function, membrane organization or signaling upon
variations in cholesterol content can be probed (77, 159).
Analogously the role of sphingomyelin can be studied by treating
the cell with sphingomyelinase or drugs such as fumonisin B1 or
myriocin, respectively (35, 47, 77, 160).

Similarly, the actin cytoskeleton and its turnover can be targeted
with various drugs or genetically modified (161, 162). For instance,
Latruncullin B alongwithCytochlasins or Phalloidin can be used to
rapidly block F-actin polymerization (163), specifically inhibiting
the addition of new actin monomers to the barbed end of F-actin
(27, 28, 163). In contrast, Jasplakinolide canbeused to stabilize actin
filaments and promote polymerization (2, 164). Other drugs can be
used to tune the cortex structure by influencing the nucleation of F-
actin. For example,CK666can inhibit actinbranchingbybinding to
Arp2/3which can in turnbeused to study the influenceof the cortex
organization and ultra-structure on the nano-scale diffusion
behavior within the membrane (16, 165, 166). Furthermore, the
formin inhibitor SMIFH2 can be used to remodel actin filaments
and cortex structure (167, 168). In addition, a number of drugs can
be used to target myosin molecular motors that drive stress
generation within cortex. Specifically, both blebbistatin (169), an
inhibitor ofmyosin II ATPase activity, and the rho kinase inhibitor
Y27632 (170), are commonlyused toperturb the ability ofmyosin II
to actively generate stress within the cortex.

While these studies provided profound insights, for example,
into actin reorganization during T-cell activation (27, 168), such
perturbations using small molecules and enzymes affect the cell as a
whole and can have unwanted side effects: For example, SMIFH2
has recently been indicated to inhibit myosins in addition to
formins (171). Because of this, care needs to be taken when
interpreting their effect on the structure or process of interest. A
remedy to looking at global changes may come with the
introduction of more photo-caged compounds or photo-
activatable proteins, offering the potential for spatio-temporal
control of perturbations (172–174). In addition, model systems
such as cell-derived vesicles offer more control but do not allow to
measure a living system (17, 35, 175).
DISCUSSION AND FUTURE PERSPECTIVES

The communication of immune cells with their environment, other
immune cells and target cells involves a diversity of complex
receptor-ligand interactions. These interactions all take place
within the context of the plasma membrane and the underlying
actin cortex. Consequently, their dynamics are intimately linked to
the biophysical properties of both the membrane and the actin
cytoskeleton and are constantly influencing one another. In this
review, we have sought to highlight tools and technologies that
present exciting opportunities to uncover the correlated dynamics
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of the plasma membrane and the cortical actin cytoskeleton at the
immune cell interface for the first time, harnessing the power of
simultaneous acquisitions. In particular, the presented methodologies
provide a route to pick apart the key determinants of actin-membrane
dynamics, unraveling the causal mechanistic relationships between
the two systems. Crucially, these technologies operate across a wide
range of length- and time-scales, allowing the investigation of
nanoscale interactions on the sub-millisecond time scale up to large
scale whole-cell measurements using volumetric imaging. Armed
with these new technologies, immunologists can address key
questions regarding the interactions of molecules on or in the
proximity of the plasma membrane. The ubiquity of membrane
interactions in immune cell functions means these techniques have
the potential to provide insight into a wide range of immunological
cell types, in both the adaptive and innate immune response.

As detailed, these new technologies together with novel
functional probes allow the assessment of important biophysical
parameters such as lipid order, charge, viscosity, and membrane
tension.Manyof these parameters have been implicated in immune
cell function, thus their systematic probing using these newly
available tools is timely (176–178). Coupled with established
immunological methods, such as fluorescence-activated cell
sorting (FACS), these techniques provide a powerful route to
better understand the function of a wide range of immune cells.

Tomaximize the gains fromthepresented techniques, theymust
be applied at the appropriate time- and length-scales. FCS, for
instance, operates at the ms to ms time scales and sub-micron
spatial-scales, and FRAP rather on ms to s and on micron scales.
MIET offers high sensitivity in the axial direction, but remains
diffraction limited laterally, and temporal resolution is limited by
the sample signal and lifetime acquisition (~s). Volumetric imaging
can be extremely rapid, but in most cases cannot surpass the
diffraction limit in spatial resolution. 3D-SIM is promising in the
regard of isotropic sub-diffraction resolutionbut sacrifices temporal
resolution (179, 180). Therefore, care needs to be taken to answer
the right questions with the right tools. In addition to this, as
discussed, probes and labels should be chosen such that they
maximize the potential of the applied technique, for example, in
FCS, dyeswith a highmolecular brightness andhigh photo-stability
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are desirable, whereas dyes utilized for FRAP should allow for
efficient photobleaching. For MIET, fluorescent dyes showing a
single exponential lifetime decay curve are desirable to allow for
more straightforward reconstruction of the topological features
from the quenched lifetimes. In addition, the labeling density
should be considered: SPT, for example, can only be applied in
the case that single molecules (single emitters) can be tracked,
whereas FRAP and FCS can operate over a much wider range of
molecular densities. Lastly, as for any multi-color microscopy
experiments, the emission spectra and the possible overlap of the
utilized dyes should be taken into account. Especially for dynamic
techniques spectral bleed-through can result in themeasurement of
false positive interactions.

While these techniques present exciting opportunities for
single cells and subcellular context, future work should focus
on extending the capabilities of these methods to operate in more
complex, more relevant multi-cellular environments including
tissues and living organisms. Indeed, work in this direction is
well underway with the introduction of rapid volumetric imaging
systems like those presented here. We believe that great potential
lies in the combination and integration of large scale volumetric
imaging with technologies such as FC(C)S, FRAP and SPT,
providing quantification of key biophysical parameters
throughout the functionally diverse life cycles of immune cells.
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