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Pancreatic islet transplantation is a promising method for the treatment of type 1 and type
3 diabetes whereby replacement of islets may be curative. However, long-term treatment
with immunosuppressive drugs (ISDs) remains essential for islet graft survival. Current ISD
regimens carry significant side-effects for transplant recipients, and are also toxic to the
transplanted islets. Pre-clinical efforts to induce immune tolerance to islet allografts identify
ways in which the recipient immune system may be reeducated to induce a sustained
transplant tolerance and even overcome autoimmune islet destruction. The goal of these
efforts is to induce tolerance to transplanted islets with minimal to no long-term
immunosuppression. Two most promising cell-based therapeutic strategies for
inducing immune tolerance include T regulatory cells (Tregs) and donor and recipient
hematopoietic mixed chimerism. Here, we review preclinical studies which utilize Tregs for
tolerance induction in islet transplantation. We also review myeloablative and non-
myeloablative hematopoietic stem cell transplantation (HSCT) strategies in preclinical
and clinical studies to induce sustained mixed chimerism and allograft tolerance, in
particular in islet transplantation. Since Tregs play a critical role in the establishment of
mixed chimerism, it follows that the combination of Treg and HSCT may be synergistic.
Since the success of the Edmonton protocol, the feasibility of clinical islet transplantation
has been established and nascent clinical trials testing immune tolerance strategies using
Tregs and/or hematopoietic mixed chimerism are underway or being formulated.

Keywords: Tregs, islet transplantation, hematopoietic stem cells, mixed chimerism, transplant tolerance
INTRODUCTION

Type 1 diabetes (T1D) arises from an autoimmune attack of the insulin-producing, islet beta cells of
the pancreas. Patients with T1D exhibit abnormalities in immune regulation that contribute to its
etiology. Organ/tissue transplantation is complicated by adaptive CD4+ and CD8+ T cell responses
that can contribute to allograft rejection (1–4). Owing to the combined specters of auto- and allo-
immune responses, islet transplantation is one of the most challenging settings to prevent
immune rejection.

Pharmacologic immunosuppressive drugs (ISDs) in islet transplantation traditionally target
effector T cell proliferation and function to prevent graft rejection (5). However, most of these ISDs
org January 2021 | Volume 11 | Article 6127371
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require life-long administration and have increased risk of
multiple adverse reactions, including susceptibility to infection
and incidence of secondary cancers (6, 7). In addition, survival of
the transplanted islets is shortened due to direct toxic effects of
the ISDs on islet b cells (8). One of the major goals in islet
transplantation is the induction of immunosuppressive drug-free
tolerance to the islet graft (9–11).

By virtue of their role in controlling alloreactive T cell
responses to organ and tissue grafts, regulatory T cells (Tregs)
are considered as promising alternatives to pharmacologic agents
to promote engraftment and survival of the transplanted organs/
tissues (12–14). Peripheral tolerance established by Tregs is
crucial to prevent immune-mediated rejection of the
transplanted graft (15, 16). Several preclinical studies have
demonstrated induction of immune tolerance in different
transplantation models such as heart, kidney, skin, liver, and
islets (17–20). Multiple clinical trials are in progress evaluating
Frontiers in Immunology | www.frontiersin.org 2
the efficacy of recipient Tregs in organ transplantation tolerance
(clinicaltrials.gov). One promising strategy in preclinical studies
is the adoptive transfer of in vitro culture expanded Tregs to
prevent the rejection of donor islet grafts (21, 22) and at least one
clinical trial testing this approach is underway (NCT03444064).
This phase I clinical trial aims to assess the safety and feasibility
of autologous polyclonal Tregs in islet transplant patients.
However, pre-clinical studies and clinical studies with
recipient-derived Tregs in solid organ transplantation have
shown that peripheral T cell tolerance is not necessarily
durable and methods to enhance Treg function is an active area
of research.

Another cell-based strategy for inducing islet allograft
tolerance originates from studies which showed that the
establishment of hematopoietic mixed chimerism between the
donor and recipient results in donor allograft tolerance
(Figure 1) (23, 24). Subsequent preclinical islet transplantation
FIGURE 1 | Treg and hematopoietic mixed chimerism as clinical strategies for tolerance induction. The left half of the figure shows direct effect of Tregs in inducing
peripheral tolerance by regulating different immune cells such as dendritic cells and T cells to suppress alloreactivity. The adoptive transfer of different types of Tregs
that been used in preclinical studies to support mechanisms of peripheral islet tolerance including polyclonal Tregs, antigen-specific Tregs, and engineered Tregs. These
studies suggest Tregs might be used to reduce or eliminate systemic immunosuppression. The right half shows establishment of mixed hematopoietic chimerism
through combined donor islet and hematopoietic stem cell transplantation. This is a state of coexistence of donor and recipient hematopoietic cell precursors with
evidence to indicate that both mechanisms of central deletion of alloreactive responses and peripheral tolerance pathways regulate allograft tolerance. The
administration of exogenous Tregs have been used to promote mixed hematopoietic chimerism and tolerance in preclinical studies. Treg are necessary for sustained
chimerism and tolerance in these models and human clinical studies have shown Treg exert allo-antigen specific regulation in the setting of mixed chimerism. Ag,
antigen; BMT, bone marrow transplantation; CTL, cytotoxic T lymphocytes; DC, dendritic cell; dTregs, donor-derived regulatory T cells; rTregs, recipient-derived
regulatory T cells; T, T cell; Teff, effector T cell.
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models which rely on mixed chimerism for tolerance induction
have developed clinically translatable approaches (25–28).
Encouragingly, clinical trials of combined kidney and
hematopoietic cell transplantation (HCT) from living donors
have demonstrated that immune tolerance to solid organs is
possible by establishing hematopoietic mixed chimerism. Over
80% of HLA-matched patients enrolled in these trials are
completely off ISDs (29, 30).

In the case of islet transplantation for T1D, experiments
in preclinical murine models first reported almost 20 years
ago have reproducibly shown that the establishment of
hematopoietic mixed chimerism not only provides durable
allograft tolerance but also prevents autoimmune islet
destruction (31). A major problem in the translation of
combined islet and HCT has been the traditionally toxic
conditioning required for HCT, but the bone marrow
transplantation field is rapidly evolving and significantly less
toxic approaches have been developed or are in early phase
clinical trials (32–34). Thus, combined islet and HCT is a
promising area of translational investigation.

Since Tregs play a critical role in the establishment of tolerance
in the setting of hematopoietic mixed chimerism (Figure 1), it is
important to better understand Tregs in this setting. It is also
possible that a combined immune therapy of Tregs and HCT may
be synergistic (35).
TREGS IN AUTOIMMUNE DIABETES

Tregs are a small subsets of CD4+ T cells, characterized by the
surface expression of CD4 and CD25, and the expression of
the transcription factor forkhead box protein 3 (Foxp3)
which is critical for their function (36). Tregs are well-
known for their suppressive function and are responsible for
safeguarding against various autoimmune diseases, including
T1D (37, 38). This review focuses on major exogenously-
administered Tregs that have been used in bone marrow and
islet transplantation settings with a special emphasis on the
classical CD4+CD25+Foxp3+ Tregs.

Non-obese diabetic (NOD) mice spontaneously develop
autoimmune diabetes and share many features of human
T1D (39, 40). Preclinical studies in NOD mice have shown
that Treg can prevent autoimmune diabetes (41–43). The NOD
mice which have defective CD28/B7 costimulation pathway
and are prone to exacerbated T1D pathology showed delayed
diabetes progression when injected with CD25+ Tregs (44).
Moreover, adoptive transfer of islet-specific Tregs reversed
Treg defect in CD28 deficient NOD mice and successfully
prevented the disease progression (45). These series of
findings suggest ex vivo-expanded Tregs as a way to satisfy
Treg deficiency in the treatment of T1D.

T1D is characterized by presence of defective Tregs function
and activation, particularly in the IL-2 pathway which can also
affect Treg function (44–47). The role of IL-2 signaling in Treg

development, metabolism, and function has been discussed in a
recent review (48). Defective IL-2 signaling is associated with
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impaired Treg metabolism and diminished suppressive function
(49). Ex vivo expansion of Tregs derived from T1D patients may
be a principle way to correct for any inborn deficiency and these
Tregs have been tested for their safety in phase 1 clinical trials
with no evidence of therapy-related adverse events reported
(50). Another clinical study has shown similar safety in
pediatric T1D patients, and suggests disease modulation with
observed reduced daily insulin requirement in treated patients
(51, 52).
TREGS FOR PROMOTING ISLET
ENGRAFTMENT

Treg therapy can be applied in two settings in islet transplantation:
promoting islet survival in initial engraftment and inducing
peripheral tolerance to eliminate immunosuppression.

The most common implantation site for clinical islet
transplantation is within the liver via hepatic portal vein infusion
(53). It is estimated that >50% of the initial islet mass that is infused
is lost within the first few days due to local inflammatory changes
and coagulation at the islet implantation site; the phenomena is
termed as instant blood-mediated inflammatory reaction (IBMIR)
(54, 55). The addition of Tregs at the time of islet infusion has been
explored as a method for reducing initial islet graft loss and
improving islet engraftment (56–58).

In addition to potentially changing the inflammation at the
islet implantation site, experiments in which Tregs are either
co-cultured, co-aggregated, or co-infused with islets have
shown that Tregs appear to affect the islets themselves (59–
62). In a preclinical study, co-culture of Tregs with the
pancreatic islets altered production of inflammatory
chemokines such as CCL2, CCL5, CXCL9, and CXCL10,
produced by the islets themselves, benefitting islet graft
survival after implantation under the kidney subcapsule (60).
TGF-b secreted from the Tregs have been shown to improve
islet viability and function in islet-Treg coculture experiment
(63). Tregs might therefore improve islet viability and
potentially reduce their immunogenicity.

A number of studies have provided preclinical evidence that
Tregs incorporated into the islet graft itself or co-administered
with the islet allograft can inhibit adaptive immune responses
(59, 61, 64). In one example, Takemoto et al. constructed co-
aggregates of BALB/c islets and C57BL/6 Tregs and transplanted
into the liver of C57BL/6 mice where a long-term survival of the
allogenic islets was observed for over 100 days without any
immunosuppression (65).
TREGS FOR MODULATING ADAPTIVE
RESPONSES IN ISLET
TRANSPLANTATION

Adoptive transfer of recipient-derived Tregs in preclinical models
has shown to be effective in preventing islet allograft rejection
January 2021 | Volume 11 | Article 612737
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through the establishment of transplant tolerance (Figure 1).
Polyclonal Tregs have been used either to protect islets from direct
contact-mediated immune attack or to modulate systemic
immune response (59–61, 65, 66). Zhang et al. adaptably
transferred donor antigen-specific Tregs in mice and found a
profound synergistic effect with rapamycin in the islet allograft
transplant setting (67). In another study by Lee et al, adoptive
transfer of donor-reactive Tregs in T cell depleted mice resulted in
indefinite survival of islet allografts. Moreover, in vitro expanded
Tregs have been shown to delay porcine islet xenograft rejection
in humanized mice by inhibiting graft-infiltrating effector T cells
(64). In addition, multiple studies have demonstrated that local
co-injection of islets and Tregs promotes islet engraftment (59,
60, 65).
CHOICE OF TREGS IN ISLET
TRANSPLANTATION

An essential question remains unanswered in studies that
examine the use of Treg therapy: which is better, donor or
recipient Treg? This has perhaps been shaped by the perception
that the only available source of clinical-grade Tregs is from the
recipient, but Tregs can potentially be obtained from cadaveric
spleen and bone marrow for clinical use.

It would be reasonable to hypothesize that both donor and
recipient Tregs may reduce inflammation during islet
transplantation. Perhaps donor Tregs would be more effective
because of alloreactive responses to recipient MHC Class II
expressed by local APCs or other cells. Likewise, recipient Tregs

co-cultured with islets themselves might be more effective in
changing islet profiles, as recipient Tregs may be more able to
exert effector function through alloreactive TCR responses.

In case of Treg modulatory effects on adaptive immune
responses, recipient Tregs might be favored as their initial
alloreactive responses to islet tissue could locally shape the
recipient adaptive immune response to allow alloreactive Tregs

to persist and expand. Alternatively, donor Tregs might be
more able to modulate adaptive responses by early and
critical interactions with infiltrating recipient immune cells. In
T1D patients, it is possible that recipient Tregs may also
have deficiencies that could be avoided with the use of
donor Treg therapy, however other methods such as ex vivo
expansion or genetic modification of T1D Tregs are being
explored (68–70). Alternatively, both donor or third-party Tregs

could be utilized.
IMPROVING TREG FUNCTION

Outside of HCT, clinical trials with Tregs have generally shown an
excellent safety profile but generally unclear efficacy. This may be
because many studies do not use lymphodepletion, which may
help with Treg engraftment (71, 72). Furthermore, the persistence
of Tregs may be affected by the concomitant use of
Frontiers in Immunology | www.frontiersin.org 4
immunosuppressive drugs (73), with some evidence pointing
to low dose IL-2 and rapamycin as a more effective strategy than
other immunosuppressive regimins (74). Likewise, the use of low
dose IL-2 and protein engineered IL-2 derivatives is being
explored (75). Other promising methods of inducing Tregs in
vivo such as the administration of tolerogenic CD11c+ DCs or
pharmacologic stimulation of Treg are well described elsewhere
(76–78).

Gene modification techniques have been proposed as
alternative strategies to produce more active and efficacious
Tregs in a large scale, involving two approaches: engineering
Tregs with T cell receptor (TCR) (79–81) or chimeric antigen
receptor (CAR) (82–84). Islet antigen-specific Tregs, generated
using lentiviral-mediated TCR gene transfer, were capable of
inhibiting effector T cells through antigen-specific suppression
(81). This demonstrates the potential applicability of
islet antigen-specific Tregs in the prevention of diabetes
progression as well as in islet transplant settings. Islet
antigen-specific Tregs generated using lentiviral transduction
showed strong suppressive activity in an antigen-specific
manner, providing a proof-of-concept for the potential use of
TCR gene transfer technology-enhanced Treg activity in
islet transplantation (81). Thus, gene transfer technology is
likely to be adapted to enhance the therapeutic efficacy of Tregs

while avoiding the pan-immunosuppression effect of
polyclonal Tregs.

CAR Tregs are genetically engineered cells which express
single chain variable fragment that recognizes specific antigen
on target cells in an TCR-independent fashion. Recently, CAR
Tregs have received growing attention in different transplantation
models (84). Insulin-specific CAR Tregs generated using
retroviral transduction were shown by Tenspolde et al. to be
functionally stable and suppressive in vivo (85). The adoptive
transfer of ex vivo expanded recipient Tregs transiently expressing
CAR to target the MHC-I of donor islets in murine models
showed improved initial allograft engraftment and survival, with
donor-specific tolerance mechanisms observed (86). These
studies suggest CAR Tregs could exert site-specific and
localized immunosuppression.
COMBINED ISLET AND BONE MARROW
TRANSPLANTATION

The use of bone marrow to induce donor-specific tolerance has
been tested in different solid organ transplantation models in
preclinical and clinical studies in living donor transplantation
(87–89). In a seminal study nearly 20 years ago, Sykes showed in
murine models that immunological tolerance to allogeneic islets
could be achieved in NOD mice with established disease through
the bone marrow mixed chimerism across MHC barriers
generated using a non-lethal dose of irradiation and a
combination of anti-CD4, anti-CD8, anti-Thy1.2, and anti-
CD40L mAbs (31). Since then, a number of studies have
explored different conditioning regimens including those with
January 2021 | Volume 11 | Article 612737
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different radiation doses or chemotherapy (fludarabine,
cyclophosphamide, or busulfan) without irradation (26, 90,
91). A common thread to these studies, lymphodepletion was
generally required for alloreactive graft tolerance and sustained
chimerism (92).

One remarkable finding of a number of studies that explored
NOD recipients is that the mixed chimerism induced from
donors was sufficient to overcome autoimmune islet attack.
Zeng et al. explored how the degree of MHC mismatch might
affect autoimmunity. They showed that increased MHC
mismatch from NOD recipients more effectively protects against
autoimmune islet rejection (93). It is likely that human cadaveric
donors of human islets will be HLA-mismatched, a major question
in the clinical translation is which HLA alleles might be
overlapping or not.

Oura et al. evaluated islet allograft survival in non-human
primates using MHC-mismatched cynomolgus monkeys and
found that islet allograft rejection is prevented as long as
mixed hematopoietic chimerism is obtained. This is different
from tolerance to kidneys transplanted into the same monkeys
that were obtained even with a transient mixed chimerism (25,
94). This suggests that islet allografts may be more immunogenic
or complicated than solid organ allografts in terms of tolerance
induction in humans.
COMPLICATIONS OF HEMATOPOIETIC
CELL TRANSPLANTATION LIMITING THE
APPLICATION OF MIXED CHIMERISM

One of the major issues with bone marrow transplantation is
the intensity of conditioning which has evolved over the past
decades with some approaches such as the use of total lymphoid
irradiation and antithymocyte globulin (TLI/ATG) have a good
safety profile in combined organ and HCT (95). Current
developments in safer conditioning in sickle cell are also
being explored (96, 97). One of the most promising approach
for newer and far less toxic HCT is the use of monoclonal
antibodies against hematopoietic stem cell niche constituents
instead of radiation or chemotherapy that is now being
explored in patients with immune deficiency (98–100).
Another complication is graft versus host disease (GVHD)
(101) which in part is in large part mediated by donor T cells
(102, 103). Early trial results of an ongoing phase 2 clinical trial
of Treg therapy given at the time of HCT reinforce their capacity
to prevent GVHD (104, 105). Aside from GVHD, dysregulated
immunity can be a complication of GVHD which can include
viral reactivation of cytomegalovirus (CMV) or Epstein bar
virus (EBV) as well as susceptibility to pathogens or
opportunistic infections (106, 107). Studies in the HCT
setting have not shown an increased risk of viral reactivation
with Treg therapy. Treg may help to regulate viral latency (108).
In combined kidney and HCT studies in the HLA-matched and
haploidentical setting, CMV reactivation might occur more
frequently than in kidney transplant alone and appears
controlled with antiviral medications (95), however the risks
Frontiers in Immunology | www.frontiersin.org 5
of immune dysregulation in the fully HLA-matched deceased
donor setting remains unknown.
CRITICAL ROLE OF TREGS IN MIXED
CHIMERISM AND GRAFT TOLERANCE

Following bone marrow transplantation, Tregs have been used to
to prevent GVHD and to prolong allograft survival through the
induction of mixed chimerism in combined marrow and organ
transplantation (109). In this regard, studies report development
of transplant tolerance by Tregs in the setting of mixed chimerism
(35, 110), the dependency of tolerance on the presence of
recipient Tregs (111), as well as the need for donor Tregs to
prevent GVHD (112). In our murine studies, recipient Tregs have
been shown to promote hematopoietic engraftment after HCT
(86). Multiple other studies have shown that the addition of Tregs

to conditioning increases donor hematopoietic engraftment
(105, 113–115). It is interesting to observe a long-term graft
tolerance even with the incorporation of Tregs which disappear
shortly after infusion (73, 116). These findings suggest that the
long-term graft survival might be due to the ability of the
transferred Tregs to induce infectious tolerance. Recent studies
show that both the donor and recipient Tregs contribute to
suppress the alloreactive responses after HCT (105, 117, 118).
The integration of Treg therapy into combined organ or islet
transplantation is therefore a potentially non-toxic method for
improving tolerance induction and establishing mixed
hematopoietic chimerism. We are currently testing this in an
ongoing trial in combined kidney and HCT from living
donors (NCT03943238).

Finally, in the context of islet transplantation with
concomitant HCT to induced mixed chimerism, donor Tregs

are likely more effective in preventing graft-versus-host disease
(GVHD) based on preclinical models in which donor Tregs

were found to prevent GVHD when given at the time of
HCT (112).
CLINICAL TRIALS WITH TREGS

Clinical islet transplantation for T1D patients with severe
hypoglycemia unawareness is an approved therapy in the
majority of advanced nations (119). This population has severe
morbidity and mortality; therefore, clinical trials are needed.
Clinical trials integrating Treg therapy and/or hematopoietic
mixed chimerism into islet transplantation have been limited.
An ongoing clinical trial (NCT03444064) is testing the
integration of autologous polyclonal Tregs in T1D patients who
are receiving the conventional Edmonton islet transplantation
protocol. Another clinical trial (NCT03162237) of islet
xenotransplantation is currently underway and involves
transplantation of 10,000 islet equivalent (IEQ) of porcine
islets and infusion of 2 million/kg autologous Tregs in the
recipients receiving induction immunotherapy with belatacept
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and maintenance immunotherapy with tacrolimus and
mycophenolate mofetil. In the only report of combined islet
and hematopoietic transplantation, a small six patient phase 1
trial integrating an infusion of cadaveric hematopoietic stem cells
intravenously post-transplant did not successfully lead to donor
chimerism or graft tolerance, but showed that the infusion of
bone marrow cells from a cadaveric source is safe and potentially
feasible (120).
CONCLUSION AND FUTURE
PERSPECTIVES

Since the success of the Edmonton protocol in showing the
benefit of islet transplantation to patients with hypoglycemia
unawareness, the major challenge of achieving and maintaining
tolerance remains. The integration of cell therapy approaches
such as Treg therapy, mixed hematopoietic chimerism, or a
combination of both remain promising.
Frontiers in Immunology | www.frontiersin.org 6
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