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Application of cell-based immunotherapy in organ transplantation to minimize the burden
of immunosuppressive medication and promote allograft tolerance has expanded
significantly over the past decade. Adoptively transferred regulatory immune cells
prolong allograft survival and transplant tolerance in pre-clinical models. Many cell
products are currently under investigation in early phase human clinical trials designed
to assess feasibility and safety. Despite rapid advances in manufacturing practices,
defining the appropriate protocol that will optimize in vivo conditions for tolerance
induction remains a major challenge and depends heavily on understanding the fate,
biodistribution, functional stability and longevity of the cell product after administration.
This review focuses on in vivo detection and monitoring of various regulatory immune cell
types administered for allograft tolerance induction in both pre-clinical animal models and
early human clinical trials. We discuss the current status of various non-invasive methods
for tracking regulatory cell products in the context of organ transplantation and
implications for enhanced understanding of the therapeutic potential of cell-based
therapy in the broad context of control of immune-mediated inflammatory disorders.

Keywords: cell therapy, adoptive transfer, cell tracking, regulatory T cell, mesenchymal stromal cell, regulatory
myeloid cell, transplantation
INTRODUCTION

Cell-based therapy using naturally occurring or genetically modified immune cells, having now been
successfully translated to the clinic for cancer treatment, is undergoing clinical development to
promote tolerance and prolong graft survival after solid organ transplantation. Cell products under
active investigation for clinical use in kidney or liver transplantation include donor-antigen
alloreactive regulatory T cells (darTreg) and polyclonally expanded Tregs (pTreg), regulatory
macrophages (Mreg), regulatory dendritic cells (DCreg), and mesenchymal stromal cells (MSCs).
Findings from the recent ONE Study, the largest multi-center consortium to date assessing adoptive
cell therapy in kidney transplant patients, have confirmed the safety of infusing various regulatory
immune cells, paving the way for further development (1). The main challenge in clinical testing of
org December 2020 | Volume 11 | Article 6145781
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regulatory cell therapy, however, is that the in vivo fate and
localization of the cell product remains largely unknown which
leads to major gaps in understanding of tolerance induction
mechanisms and hinders cell therapy protocol design. Non-
invasive, accurate, and durable techniques to monitor
exogenous cell products after infusion in both pre-clinical and
clinical human studies are critical in addressing 1) variability in
clinical outcomes, 2) potential cell toxicity and adverse side
effects of infusion, 3) anatomic localization and 4) duration
and magnitude of desired tolerogenic activity (2).

Historically, cellular staining and subsequent flow cytometry
has been a reliable approach to detecting adoptively transferred
cells (3–5) however, more advanced approaches to longitudinal
in vivo cell monitoring using whole-body imaging with novel
reporter systems, initially developed for cancer immunotherapy,
are increasingly being incorporated into both pre-clinical and
clinical transplant studies. This review will discuss current
techniques used to track and monitor the major regulatory
immune cells under clinical investigation for tolerance
induction (Table 1) and how understanding the in vivo fate of
these cell products has helped advance cell-based therapy in
organ transplantation.
Frontiers in Immunology | www.frontiersin.org 2
TRACKING/MONITORING OF
POLYCLONAL OR DONOR AG
ALLOREACTIVE TREGS IN
EXPERIMENTAL ORGAN
TRANSPLANTATION

Naturally occurring Tregs are a rare, specialized subset of
thymic-derived CD4+CD25+ T cells characterized by high
expression of the transcription factor forkhead box P3 (Foxp3).
In addition to these thymic Tregs (tTregs), naïve Foxp3-CD4+ T
cells can differentiate in the periphery to become Foxp3+ cells,
that are known as induced Tregs (iTregs) or peripheral Tregs.
Distinctions between tTregs and iTregs have been reviewed
recently (27). T cell receptors (TCRs) that recognize antigens
to which an organism is chronically exposed promote the
generation of iTregs (28, 29).

Tregs have been implicated extensively in tolerance induction
and maintenance pathways. Their potential to regulate allograft
rejection after transplantation is the most extensively evaluated
of the regulatory cell types under current investigation. Given
their paucity in the peripheral circulation in the healthy steady
TABLE 1 | Methods used to track and monitor regulatory immune cells adoptively transferred for transplant indications.

Species Cell type Transplanted
allograft

Detection method Duration of tracking post-infusion
(days)

Reference

Rodent
Tregs/autologous Heart Treg-specific mAb staining 98 (6)
Tregs/donorAg-reactive Skin CSFE dye/GFP 60 (7)
Tregs/autologous Pancreatic islet CSFE/PKH-26 dye 10 (8)
Tregs/autologous and non-
autologous

VCA Luciferase gene-reporter system 294 (9)

Tregs/autologous Heart/Lung IOPC-NH2/MRI 3 (10)
Tregs/autologous Skin 99mTcO4-/SPECT 1 (11)
Tregs/CAR Skin Luciferase gene-reporter system 21 (12)
Tregs/CAR Pancreatic islet,

skin
Luciferase gene-reporter system 21 (13)

Mregs/donor-derived Heart Donor-discriminatory Mreg mAb
staining

28 (14)

DCregs/autologous Heart PKH-26 dye 5 (15)
DCregs/donorAg-pulsed Heart PKH-67 dye 1 (16)
DCregs/donor-derived Heart Donor-discriminatory DCreg mAb

staining
7 (17)

MSCs/autologous Kidney PKH-26 dye 1–2 (18)
MSCs/donor-derived Heart PKH-26 dye 21 (19)

NHP
Tregs/autologous and non-
autologous

– CSFE/VPD450 dye 21 (20)

Tregs/autologous – CSFE dye 40 (21)
Tregs/autologous – CSFE/VPD450 dye 87 (22)
Tregs/autologous – CSFE dye 100 (23)

Human
Tregs/autologous Kidney Deuterium labeling 180 (24)
Mregs/donor-derived Kidney 111In labeling/SPECT 1 (25)
DCregs/donor-derived Liver Donor-specific MHC mAb staining 7 (26)
December 2020 | Volume 11 | Art
CAR, chimeric antigen receptor; NHP, non-human primates; Tregs, regulatory T cells; Mregs, regulatory macrophages; DCregs, regulatory dendritic cells; GFP, green fluorescence
protein; VCA, vascularized composite allotransplantation; mAb, monoclonal antibody; donorAg, donor-antigen; CSFE, carboxyfluorescein succinimidyl ester; VPD450, violet proliferation
dye 450; IOPC-NH2, superparamagnetic nano-sized iron-oxide particle; MRI, magnetic resonance imaging; 99mTcO4-, technetium-99m pertechnetate; SPECT, single-photon emission
computed tomography; 111In, 111Indium tropolonate; MHC, major histocompatibility complex.
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state, one salient issue in using Tregs to promote tolerance
induction is whether these cells can persist or self-expand in
host peripheral blood and tissue to exert a sustained therapeutic
effect after administration. Localization and physical distribution
of Tregs within allograft tissue, in particular, have been
associated with enhanced immunomodulatory function in vivo,
implicating the importance of cell homing in adoptive Treg cell
therapy for transplant tolerance (30–32). As such, methodologies
to track the fate of infused Tregs are critical and have been
incorporated into both pre-clinical and early clinical studies
(Table 2).

Early studies investigating ex vivo-expanded polyclonal Tregs
adoptively transferred to skin- or pancreatic islet-engrafted
mice relied on direct labeling of the ex vivo-expanded
Frontiers in Immunology | www.frontiersin.org 3
CD4+CD25+Foxp3+ cells with intracellular carboxyfluorescein
succinimidyl ester (CFSE) dye or on Treg generated from green
fluorescent protein (GFP) transgenic donors to study tissue
homing and survival of these cells after intravenous
administration (6, 7). Flow cytometric analysis detected labeled
autologous (6) or darTregs (7) in peripheral blood, spleen,
draining lymph nodes (LN) and allograft tissue, up to 60 to 98
days post-infusion demonstrating the persistence and trafficking
of adoptively transferred autologous Tregs to secondary
lymphoid organs. These studies also determined the cell
surface molecules integral to Treg migration. E and P selectin
ligands were found to be important in Treg homing to the graft,
while chemokine receptors CCR7, CCR2, and CCR5 were
required for their migration to secondary lymphoid tissue (8).
TABLE 2 | Observations of adoptively transferred Treg survival and migration in various species.

Species Cell origin Transplant
allograft

Sites of cell
trafficking

Duration of in vivo
detection post-

infusion

Comments Reference

Rodent
Autologous Heart Peripheral blood,

spleen, mesenteric LN,
allograft

98 days Tregs detected in blood at day 7 and 98, all others at day 98 (6)

Autologous,
donorAg-
pulsed

Skin Spleen, draining and
mesenteric LN, allograft

21 days (spleen)
60 days (LNs,
allograft)

(7)

Autologous Pancreatic
islet

Spleen, draining and
non-draining LN,
allograft

4 days Tregs migrate first to allograft then to LNs (8)

Autologous
and non-
autologous

VCA Axillary and inguinal
LNs, allograft

4–294 days (non-
autologous)
4–14 days
(autologous)

Tregs migrate first to LNs (day 4) then to allograft (day 6); Tregs
failed to persist after 2 weeks in syngeneic recipients

(9)

CAR and non-
autologous

Skin Allograft, draining LN 2–21 days (CAR)
2–7 days (non-
autologous)

Polyclonal Tregs homed to both HLA- A2-expressing allograft
and non-A2 skin while CAR Tregs homed to A2-expressing
skin allograft only

(12)

CAR and non-
autologous

Pancreatic
islet, skin

Islet and skin allograft,
draining LN, spleen

1–21 days (CAR) FITC-H-2Dd -mAbCAR Tregs show enhanced localization to the
islet allograft.

(13)

Autologous Heart/Lung Allograft 24–48 h Labeled Tregs detected in both heart and lung allograft on MRI (10)
Autologous Skin Spleen, liver, intestines,

heart, tail, thymus,
muscle

24 h Only study to demonstrate uptake of labeled Tregs in non-
lymphoid tissues

(11)

NHP
Autologous
and non-
autologous

– Peripheral blood 21 days (autologous)
6 days (non-
autologous)

In non-transplanted model, auto Treg survival higher than MHC-
mismatched Treg

(20)

Autologous – Peripheral blood, bone
marrow (BM), LNs

16 days (peripheral
blood)
37 days (peripheral
blood, + rapamycin)
13 days (BM)
6 days (LN)

Rapamycin therapy enhanced in vivo persistence of infused
Tregs in blood

(21)

Autologous – Peripheral blood,
spleen, inguinal LN,
mesenteric LN

71 days (peripheral
blood)
50 days (lymphoid
tissue)

(22)

Human
Autologous Kidney Peripheral blood 90 days Infused Tregs peaked at 2–8% of total Tregs in peripheral

blood dropping below detection by 3 months
(24)
December 2020 | Volume 11 | Art
BM, bone marrow; CAR, chimeric antigen receptor; FITC, fluorescein isothiocyanate; LN, lymph node; mAb, monoclonal antibody; MRI, magnetic resonance imaging; NHP, non-human
primates; Tregs, regulatory T cells; VCA, vascularized composite allotransplantation; MHC, major histocompatibility complex.
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More recent studies in transplanted rodents have shifted towards
non-invasive whole-body in vivo cell tracking and imaging of
adoptively transferred Tregs. Tregs isolated and expanded ex vivo
from luciferase transgenic rats were adoptively transferred into
major histocompatibility complex (MHC)-mismatched
vascularized composite allotransplant rat recipients and visually
tracked using bioluminescence imaging (BLI) longitudinally. In
contrast to the limited detection of labeled Tregs in cross-
sectional samples of earlier studies, real-time in vivo imaging
allowed Cheng et. al to identify migratory patterns of infused
Tregs first to draining LNs and then to grafted tissue over a
prolonged period of 42 weeks (9). A novel method using
superparamagnetic nano-sized iron-oxide particle, IOPC-NH2, to
label transferred T cells andmagnetic resonance imaging (MRI) was
developed by Liu et. al and successfully demonstrated localized
infiltration of IOPC-NH2-labeled autologous T cells into allograft
tissue within 24 h in a rat heart-lung transplant model (10).
Radiolabeling of ex vivo-expanded Tregs with technetium-99m
pertechnetate (99mTcO4-) was performed both directly and
indirectly via retroviral transduction with a construct expressing
the hNIS glycoprotein ion channel gene (11). These studies localized
adoptively transferred labeled Tregs in spleen, liver, lungs, and the
allograft after administration and skin transplantation in mice with
the approach allowing longitudinal detection of transferred Tregs in
vivo over time.

Tregs have been well-characterized in nonhuman primates
(NHP) (20, 21, 33–35).The in vivo persistence and homing of
adoptively transferred pTregs to secondary lymphoid organs
demonstrated in rodent models have been corroborated by
several NHP studies evaluating the survival, migration, and
function of exogenous Tregs after administration. In vivo
detection of ex vivo-expanded autologous or allogeneic Tregs
infused systemically into non-transplanted cynomolgus or
rhesus macaques was accomplished through direct CSFE or
violet proliferation dye 450 (VPD450)-labeling and subsequent
flow cytometric analysis of the labeled cells in peripheral blood,
mesenteric and inguinal LNs, and spleen at various timepoints
post-infusion (20, 21). Pharmacokinetic analysis of CSFE-labeled
autologous Tregs detected an initial rapid phase of elimination
from the peripheral blood between day 0 and day 3 post-infusion
after which these transferred cells persisted at low levels in the
blood up to 3 weeks (21). Persistence of these cells in secondary
lymphoid organs was not as durable. Labeled autologous Tregs
were detected in inguinal and mesenteric LNs harvested at days 1
to 2 post-infusion, but lost to detection by day 6 (21).
Administration of concurrent immunosuppression (IS) therapy
substantially increased survival of transferred autologous Tregs
in peripheral blood and LNs. Labeled autologous Tregs persisted
longer in peripheral blood and LNs in monkeys given rapamycin
alone or with concurrent IL-2 and were detected in these
compartments in greater numbers when compared to non-
immunosuppressed conditions 50 to 84 days post-infusion (22,
23). These studies highlight the wide variability in survival of
infused Tregs under numerous different conditions, including
the presence and type of IS, as well as cell production techniques,
particularly cryopreservation.
Frontiers in Immunology | www.frontiersin.org 4
Studies in splenectomized, kidney-transplanted NHP treated
early post-transplant with cyclophosphamide and then infused
with ex vivo-expanded autologous Tregs support their efficacy in
prolonging allograft survival and function. In addition, multiple
Treg infusions in NHP pretreated with anti-thymocyte globulin
(ATG) and post-operative rapamycin prolonged renal allograft
survival (36). In contrast, Ezzelarab et. al failed to demonstrate
enhanced heart allograft survival after adoptive transfer of
autologous pTreg to ATG-treated heart allograft recipients,
possibly reflecting, in part, reduced survival capacity of the
pTreg product in vivo (37). Overall, in vivo detection of the
transferred regulatory cells in the majority of these studies was
limited, as they focused primarily on allograft survival outcomes.
TRACKING/MONITORING OF CAR TREGS
IN EXPERIMENTAL ORGAN
TRANSPLANTATION

While the majority of pre-clinical studies investigating the efficacy
of Treg cell therapy have focused on polyclonal autologous and
non-autologous Tregs, several groups have evaluated the potential
of using chimeric antigen receptor (CAR) modified Tregs as a
more potent and targeted cellular method of tolerance induction
after transplantation. Investigators have demonstrated that
adoptive transfer of genetically engineered donor HLA-specific
CAR Tregs successfully prevents the rejection of transplanted
allogeneic cells and graft tissue in humanized mouse models (12,
13, 38, 39). In vivo BLI utilizing the luciferase-GFP reporter
system showed rapid and specific trafficking of adoptively
transferred HLA-A2-specific CAR Tregs (12) or mAb-directed
CAR Tregs targeted to H-2Dd (13) to transplanted skin or
pancreatic islet allografts respectively, persisting up to 21 days
after transfer. Additionally, both studies demonstrated that,
compared to their polyclonal counterparts, CAR Tregs achieved
a more targeted localization and longer persistence in
allograft tissue.
TRACKING/MONITORING OF TREGS IN
HUMAN ORGAN TRANSPLANTATION

In humans, early phase clinical testing of adoptively transferred
autologous Tregs in transplant patients is well underway.
Deuterium-labeled autologous pTregs were infused and tracked
in the peripheral blood of 3 kidney transplant recipients on
maintenance IS regimen of tacrolimus, mycophenolate mofetil ±
prednisone with subclinical inflammation on 6-month
surveillance biopsy (24). CD4+CD127loCD25+ Tregs were
purified via FACS from peripheral blood and single cell
suspensions from kidney biopsies. DNA was then extracted
from all purified cells and subjected to gas chromatography
and mass spectrometry (GC-MS) analysis to measure
deuterium enrichment in circulating Tregs. Infused Tregs
peaked within 7 days of infusion and were detected by
December 2020 | Volume 11 | Article 614578
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deuterium signals at 30 days. Deuterium-labeled cells fell to the
limit of detection within 3 months of infusion (24). In this study,
infused Tregs demonstrated patterns of persistence and stability
comparable to those observed in prior corresponding
immunosuppressed NHP models and non-immunosuppressed
type 1 diabetes mellitus patients receiving autologous pTreg
therapy (40). Anatomic biodistribution of clinical grade Tregs
after therapeutic infusion was ascertained in a non-transplant
autoimmune hepatitis (AIH) clinical pilot study by radiolabeling
of good manufacturing practice (GMP)-grade Tregs with
111Indium tropolonate (111In) (41). Serial gamma camera and
SPECT-CT imaging taken at serial timepoints after infusion
tracked the presence of transferred indium-labeled Tregs. 22%
to 44% of infused Tregs migrated to the liver, spleen and bone
marrow of 4 AIH patients for up to 72 h without any off-target
organ localization (41). This provides an additional effective cell
tracking method that can be implemented in current and future
transplant Treg therapy human clinical studies to assess spatial
distribution of infused cell therapy non-invasively in real-time.
TRACKING/MONITORING OF
REGULATORY MYELOID CELLS IN
EXPERIMENTAL ORGAN
TRANSPLANTATION

The myeloid cell lineage includes multiple regulatory immune
cell subsets under active investigation to induce and maintain
transplant tolerance in solid organ transplantation, including
DCregs, Mregs, and myeloid-derived suppressor cells (MDSCs)
(42) (Table 3).

MDSCs comprise a heterogeneous population of immature
myeloid progenitor cells that have been associated with
modulation of T cell differentiation. There is evidence from
Frontiers in Immunology | www.frontiersin.org 5
pre-clinical rodent models that MDSCs may play a role in
promotion of transplant tolerance by inducing Treg and
inhibiting alloreactive T cell proliferation in an inducible nitric
oxide synthase (iNOS)-dependent manner (43, 44) however,
adoptive transfer of ex vivo-generated MSDCs has not been
found in pre-clinical animal studies to improve allograft survival
(45) and, as such, has not reached clinical testing in humans to
date (46). Tracking of infused MDSCs has thus far been
restricted to mouse cancer models with one study using a
64Cu-labeled CD11b-specific mAb and PET scanning (47).

Mregs, characterized by a CD14-CD63+HLA-DR+ phenotype
and IL-10 production, have been demonstrated to suppress T cell
proliferation in vitro (48). In a heterotopic heart transplant
mouse model, administration of donor-specific Mregs
significantly prolonged allograft survival in an iNOS-dependent
manner (14). Mregs were tracked in vivo using donor-
discriminatory Mreg staining and flow cytometry analysis of
cells from recipient blood, spleen, liver, LN, BM, and lung
suspensions at serial timepoints post-infusion. 24 h after
administration, Mregs were readily detected in the blood,
spleen, liver, and lung but not in LN or BM. Persistence of
infused Mregs decreased in all tissue compartments thereafter up
to 2 weeks, after which Mregs were no longer detectable (14).
Notably, cross-dressing of recipient antigen-presenting cells
(APCs) with donor-specific Ag was not observed in this study.

DCregs are another myeloid-derived immune cell subset
whose tolerogenic properties have been well-characterized (49)
and have thus, garnered significant attention for clinical testing
and use in transplant tolerance induction therapy (50). Extensive
pre-clinical testing in organ- and skin transplanted mouse
models, has demonstrated that the adoptive transfer of ex vivo-
generated autologous or donor-derived DCreg prolongs allograft
survival and promotes donor Ag- specific tolerance. These effects
have been achieved either in the absence of, or in combination
with, short-term IS (51–57). Two reports have suggested that
TABLE 3 | Observations of adoptively transferred regulatory myeloid cell survival and migration in various species.

Species Cell
type

Cell origin Transplanted
allograft

Sites of cell traf-
ficking

Duration of in vivo
detection post-

infusion

Comments Reference

Rodent
Mregs Donor-

derived
Heart Peripheral blood,

spleen, LN, BM,
liver, lung

14 days 24-h post-infusion, infused Mregs detected most in lung/
liver, but dissipate thereafter

(14)

DCregs Autologous Heart Spleen 5 days (15)
DCregs donorAg-

pulsed
Heart Spleen 24 h (16)

DCregs Donor-
derived

Heart Spleen 24 h (17)

Human
Mregs Donor-

derived
Kidney Lung, liver, spleen,

BM
30 h Majority of labeled infused Mregs detected in lungs, then

dissipate to liver and spleen after 2.5-h post-infusion
(25)

DCregs Donor-
derived

Liver Donor-specific
MHC mAb staining

1 h (intact)
7 days (donorAg)

Intact infused DCreg were not detected after 1-h post-
infusion, however donor-specific Ag detected on recipient
DC up to 7 days

(26)
December 2020 | Volume 11 | Art
BM, bone marrow; DCregs, regulatory dendritic cells; Mregs, regulatory macrophages; mAb, monoclonal antibody.
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donor-derived DCreg can prime the alloimmune response (58,
59). In a heterotopic cardiac transplantation rat model,
infused autologous DCregs were labeled with PKH-26 red
fluorescent cell linker which allowed their detection in spleens
of recipient rats using immunofluorescence imaging of
histological sections 5 days after administration (15). The use
of additional fluorochromes allowed elucidation of interferon-
gamma production induction as a potential mechanism of
immunoregulation. The lipophilic membrane dye PKH was
also used to label rapamycin-treated autologous DCregs pulsed
with alloAg that were also administered to heart transplanted
mice (16). DCreg homing to spleen was unaffected by rapamycin
treatment, but conferred the capacity to suppress alloAg-specific
T cell proliferation. Donor discriminatory MHC staining and
flow cytometry analysis have also been utilized to detect in vivo
survival of infused donor-derived DCregs in heart-transplanted
mice, which has been shown to be short-lived likely due to
killing/removal by host natural killer (NK) cells (60). Thus, the
therapeutic effect of pre-transplant infusion of donor-derived
DCreg does not appear to depend on the in vivo persistence of
intact donor DCreg which offers a potential advantage over other
cell therapy approaches for which immunosuppressive ability
that may depend on in vivo persistence of the transferred
regulatory cells.
TRACKING/MONITORING OF
REGULATORY MYELOID CELLS IN
HUMAN ORGAN TRANSPLANTATION

In a human study published in 2011, two kidney transplant
recipients were infused with donor-derived Mreg pre-operatively
and shown to successfully wean to low-dose tacrolimus
monotherapy within 24 weeks of transplantation, with no
evidence of adverse effect or rejection (25). A small proportion
(12%) of adoptively transferred Mregs were radiolabeled using
111In prior to infusion allowing for in vivoMreg tracking in real-
time using SPECT-CT scanning. Scintigrams reconstructed from
SPECT imaging demonstrated initial trapping of labeled Mregs
in the pulmonary vasculature, but after 2.5 h re-distributed to the
peripheral blood, liver, and spleen. 24 h after infusion, Mregs
were no longer detectable in the lungs or peripheral blood and
were seen to accumulate in lymphoid and non-lymphoid organs
(25). Pre-transplant administration of Mreg therapy in two
enrolled kidney transplant recipients was most recently
assessed for safety and feasibility as part of the multi-center
ONE study, however efficacy and in vivo cell tracking/
distribution were not evaluated (1, 61).

Donor discriminatory HLA staining is being used to track
donor-derived DCregs infused 7 days before transplant into
prospective living donor liver transplant recipients. Detection
of the donor DCreg and their products is enhanced by image-
based flow cytometry methods that can directly visualize the
expression of MHC Ags and other gene products of donor or
recipient origin by APCs in the circulation and host lymph
nodes (26).
Frontiers in Immunology | www.frontiersin.org 6
TRACKING/MONITORING OF MSCS IN
EXPERIMENTAL ORGAN
TRANSPLANTATION

MSCs are naturally occurring, bone marrow-derived precursor
cells, unique in their activation and migration to inflammatory
sites, including allograft tissue, where they can exert their
immunoregulatory effects, including upregulation of Treg
differentiation in the inflammatory microenvironment (48).
Administration of ex vivo-expanded MSCs has now
consistently proven to be effective in prolonging allograft
survival in murine models of solid organ transplantation (62).
For in vivo tracking, cell labeling with PKH -26 red fluorescence
cell linker has been used in murine models infused with
autologous or donor-derived MSCs 7 days before kidney or
semi-allogeneic heart transplantation (18, 19). In kidney
allografted mice, adoptively transferred autologous MSCs
infused 1 day prior to kidney transplantation preferentially
migrated to the spleen, correlated with better graft survival,
whereas post-transplant administration of MSCs was
associated with infiltration of the allograft and subsequent C3
complement deposition without any therapeutic effect on
allograft function (18). In cardiac allografted mice, PKH-26+
donor-derived MSCs infused prior to transplantation localized to
liver, lung, primary and secondary lymphoid organs after
infusion with none detected in peripheral blood. Survival in
lymphoid tissue and lung was short-lived as PKH-26+ MSCs
were not detected in these compartments at day 7 and 21
timepoints, while transferred MSCs were still detected in liver
at day 7 post-infusion.
TRACKING/MONITORING OF MSCS IN
HUMAN ORGAN TRANSPLANTATION

Multiple human studies investigating the safety, feasibility, and
efficacy of adoptively transferred MSCs in solid organ
transplantation are currently ongoing (63–65). One large
randomized, controlled trial using MSC-based induction
therapy in living donor kidney transplantation has already
demonstrated reduced incidences of acute rejection, lower rates
of infection, and improved 1-year graft function (63). Cell
tracking/localization experiments in published human studies
are lacking, however the importance of tissue localization
following MSC administration is bound to prompt current or
future human studies to incorporate non-invasive in vivo
detection methods of this infused regulatory cell product.
CONCLUSIONS

Cell-based therapies are increasingly being considered and
investigated for minimization of IS and induction/maintenance
of tolerance in solid organ transplantation. As such, gaps in
understanding of the in vivo fate of adoptively transferred
December 2020 | Volume 11 | Article 614578

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Tran and Thomson Adoptively Transferred Regulatory Immune Cells
regulatory immune cells after administration need to be filled in
order to advance translation of these treatments to the clinic.
Current direct cell labeling and flow cytometric analyses of target
cells using intracellular dyes or surface marker tags have been
efficacious in determining persistence of transferred cells in pre-
clinical animal models; however, they lack anatomic information
and are cumbersome to apply routinely to human studies due to
the need for frequent blood draws and/or tissue biopsies. Cell
radiolabeling in conjugation with imaging modalities such as
SPECT or MRI has proven to be a more effective strategy of
longitudinal in vivo cell monitoring in humans given its non-
invasive approach, but commonly used radionuclides are often
severely limited by their short half-lives. Advanced multi-modal
approaches utilizing a dual reporter gene/radiolabeling system
and whole-body imaging would provide the highest resolution
and sensitivity of monitoring infused cell therapy in the most
comprehensive and non-invasive way.

As current early phase human studies investigating various
regulatory immune cell products for transplant tolerance
advance to higher stages of clinical testing, incorporating some
method of in vivo monitoring of the infused regulatory cell
products without detriment to their function/survival will
Frontiers in Immunology | www.frontiersin.org 7
become imperative to ensure patient safety and maximize
therapeutic potential.
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