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T-cell epitope matching according to the TCE3 algorithm classifies HLA-DPB1
mismatches in permissive and non-permissive. This classification has been shown to
be predictive for mortality and acute GvHD (aGvHD) events in large international cohorts.
We retrospectively genotyped HLA-DPB1 in 3523 patients transplanted in Germany
between 2000 and 2014 and in their unrelated donors using an Illumina amplicon-NGS
based assay. Aim of the study was to evaluate DP-compatibility beyond the established
TCE3 algorithm by assessing the combined effect of several DP-mismatch parameters on
post-transplant outcome. We implemented an extended DP-mismatch assessment
model where TCE3, DP allotype expression with respect to rs9277534, mismatch
vector and number of mismatches were conjointly taken into consideration. In this
model, non-permissive HLA-DPB1 mismatches showed significantly increased aGvHD
risk if they were accompanied by two HLA-DPB1 mismatches in GvH direction (HR: 1.46)
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or one mismatched highly expressed patient allotype (HR: 1.53). As previously reported,
non-permissive HLA-DPB1 mismatches associated with a significantly higher risk of
aGvHD and non-relapse mortality (HR 1.36 and 1.21, respectively), which in turn
translated into worse GvHD and relapse free survival (HR 1.13). Effects on GvL and
GvHD appeared strongest in GvH-directed non-permissive mismatches. Our study
results support the consideration of additional HLA-DPB1 mismatch parameters along
with the established TCE3 matching algorithm for refinement of future donor selection. In
particular, our findings suggest that DP non-permissiveness associated with two HLA-
DPB1 mismatches or at least on highly expressed mismatched patient allotype should
be avoided.
Keywords: stem cell transplantation, graft-versus-host-disease, HLA-DPB1, HLA-DPB1 expression,
HLA-DPB1-permissiveness
INTRODUCTION

Allogeneic hematopoietic stem cell transplantation has become
an established clinical treatment for various, otherwise often
incurable diseases of the lympho-hematopoietic system.
Improvements in treatment protocols as well as donor
selection procedures have led to increasing numbers of patients
undergoing hematopoietic stem cell transplantation (HSCT) (1).
Although the first choice is usually an HLA-identical sibling,
often such donors are not available and therefore unrelated
donors are used (2). As the segregation of haplotypes in
unrelated donors cannot be determined, only locus-wise
matching is performed and depending on the frequency of the
patient’s HLA-phenotype, sometimes HLA-differences have to
be accepted (3). It has become apparent, that matching for the
antigen recognition domain (ARD) for classical HLA-loci
improves post-transplant mortality and morbidity (4). The
minimal consensus on compatibility testing requires high
resolution typing for HLA-A, -B, -C, and -DRB1. Many
centers in Europe also include HLA-DQB1 compatibility in
donor selection strategies. The relevance of HLA-DPB1
matching in unrelated stem cell transplantation has long
remained undefined. This may be due to several characteristics
that distinguish HLA-DPB1 antigens from other classical HLA-
molecules. First, HLA-class II molecules are formed as
heterodimers of an alpha and a beta chain; the ARD is formed
by the alpha-1 and the beta-1 domain. Most polymorphisms are
located within the beta-1 domain (exon 2 of the respective gene).
These polymorphisms are almost evenly distributed across
allotypes of classical HLA-molecules. In contrast, for HLA-
DPB1, most of the polymorphisms are observed within six
polymorphic regions throughout exon 2 of the HLA-DPB1
gene, resulting in several clusters with similar immunogenicity
(5). This leads to significantly less diversity regarding T-cell
epitopes. Second, the linkage disequilibrium between classical
HLA-genes is very strong, particularly for HLA-B/C and HLA-
DR/DQ genes, forming conserved haplotypes, which are
frequently observed (6). However, the linkage between HLA-
DPB1 and other classical HLA-genes is rather low because of a
recombination hotspot between the HLA-DQ and HLA-DP
org 2
genes, which in turn occasionally leads to HLA-DPB1
disparities among apparently HLA-identical sibling donors and
far more often to HLA-DPB1 incompatibility between recipients
and their otherwise fully HLA-matched unrelated donors
(~80%) (7, 8). Third, the expression of HLA-DPB1 is similar
to that of HLA-DRB3/4/5 and HLA-DQB1 antigens and lower as
compared to the classical HLA-antigens HLA-A, -B, -C, and
-DRB1 (9, 10). The former are therefore referred to as low
expression loci (LEL) and the latter as high expression loci
(HEL). Last, serological typing for HLA-DPB1 has always been
much more difficult due to lack of suitable antisera. It has been
shown that only two sets of dimorphic amino acid epitopes
account for most of the serological reaction patterns observed,
resulting in considerably less diversity compared to the other
classical HLA-antigens (11).

Early studies had shown that the impact of HLA-DPB1
differences on the incidence of GvHD was balanced by a lower
relapse rate and therefore did not translate into better survival
outcomes (12). It was also recognized that HLA-DPB1
differences might have an additional detrimental effect on the
presence of other mismatches. Later it was discovered using
cytotoxicity assays that HLA-DPB1 alleles may be grouped
according to their T-cell immunogenicity into three groups
(13). This led to the T-cell epitope matching algorithm, which
allows grouping of DP-mismatches between patient and donor in
permissive and non-permissive and which has been shown to
associate with clinical outcome in large retrospective cohorts (7,
14). Another proposed model relates to the expression levels of
HLA-DPB1 mismatches, which is influenced by an SNP in the 3’-
UTR of HLA-DPB1 alleles (rs9277534) (15). Aim of our study
was to validate these models in an independent cohort and to
explore, if the two models are possibly complementary.
PATIENTS AND METHODS

Study Cohort
This study included patients transplanted for various
hematological diseases with peripheral blood stem cells (PBSC)
or bone marrow (BM) from an unrelated donor at German
January 2021 | Volume 11 | Article 614976
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centers. The transplants were performed from 2000 to 2014. All
searches were conducted by the search unit in Ulm. Only
transplants with first allogeneic transplantation were included.
Disease status at time of transplantation was classified according
to the definitions used in the establishment of the EBMT risk
score (16). Myeloablative conditioning (MAC) was classified
according to the definitions for standard intensity conditioning
regimens of the EBMT MED-AB manual Appendix III and
published consensus suggestions (17). Less intense regimens
were considered as reduced intensity (RIC). Most of the
patients received in-vivo T-cell depletion with ATG or
Campath. Standard of post-Tx immunosuppression was a
cyclosporine based treatment approach in the vast majority of
cases. Study design, collection of clinical data and ethics aspects
are described in detail in the Supplemental Material.

HLA-Typing
For all patients high resolution HLA-typing was available for
the gene loci HLA-A, -B, -C, -DRB1 and -DQB1, defining all
polymorphisms within the ARD – exons 2 and 3 for HLA-class I,
and exon 2 for HLA-class II molecules (18). Non-expressed
alleles were excluded according to NMDP confirmatory typing
requirements. For HLA-DPB1 retrospective typing was applied
based on an NGS-amplicon sequencing methodology using the
Illumina (San Diego, CA, USA) platform. This in-house protocol
was validated and CE-certified as IVD-reagent and is routinely
used in stem cell donor typing. HLA-alleles are considered as
matched if they show the same protein sequence within the ARD.

Definitions
HLA-DPB1 TCE3 matching was performed according to the
revised TCE3 matching procedure based on functional distance
(19). DPB1 mismatches were classified as permissive and non-
permissive. In some models for non-permissive mismatches
mismatch directionality (i.e. GvH vs HvG) was considered.
Prediction of SNP rs9277534 was based on HLA-DPB1
genotyping using imputed information as previously described
(20). With respect to rs9277534, DPB1 mismatches were
categorized into two surface expression groups (G allele as
high and A allele as low expressed). In the combined DP
mismatch model, TCE3, rs9277534, mismatch vector as well as
number of mismatches were conjointly taken into consideration.
Specifically, for the expression part only mismatched allotypes in
GvH direction (the mismatched patient allotype) were
considered ranging from matched to zero mismatches in GvH
vector, one mismatch in GvH vector and “low-expressed”
(rs9277534-A), one mismatch in GvH vector and “high
expressed”(rs9277534-G) and both mismatched alleles
irrespective of rs9277524 genotype. For the immunogenicity
part the hierarchy with increasing risk was DP matched, DP
permissive mismatched and DP non-permissive mismatched. As
to the overall number of DP mismatches, this was calculated on
the basis of GvH direction only.

Endpoints of interest were overall survival (OS), GvHD and
relapse-free survival (GRFS), non-relapse mortality (NRM),
aGvHD incidence and relapse incidence. OS was defined as
Frontiers in Immunology | www.frontiersin.org 3
time to death or last follow-up. GRFS was defined as time to
aGvHD, relapse or death, whichever occurred first. NRM was
defined as time to death from any cause except relapse. A relapse
event was treated as competing risk. The endpoint aGvHD
incidence was defined as time to first diagnosis of aGvHD
(grades II-IV). An additional subanalysis for aGvHD (grades
III-IV) was conducted. Death from any cause without prior
aGvHD was considered as competing risk. Relapse incidence was
defined as time to relapse and death from any cause without
prior relapse was treated as competing risk. Patients alive and/or
free from the event of interest were censored at last follow-
up (21).

Statistical Analysis
For descriptive statistics, the chi-squared test was used for
categorial variables and the Mann-Whitney-U-Test for
continuous variables. For survival analyses of the endpoints OS
and GRFS Kaplan-Meier estimates were used and comparisons
were performed with the log-rank test (22). For the endpoints
NRM, aGvHD and relapse, cumulative incidence curves for
competing risk data were generated and compared with the
method of Gray (23). For multivariate analyses cause specific
Cox models have been used, allowing for adjustment of time-
dependent covariate effects in a piecewise constant manner (24).
The breakpoints were chosen graphically (22). A center effect was
adjusted. As this study represents a validation study of previous
analyses, a significance level of 0.05 was considered sufficient
for confirmation.
RESULTS

High Prevalence of HLA-DPB1
Mismatches in 10/10 HSCT 9/10
HLA-Matched Hematopoietic
Stem Cell Transplantation
The cohort consisted of 10/10 (n=2450, 69.5%) and 9/10 HLA
(i.e. HLA-A, -B, -C, -DRB1, -DQB1) matched transplant pairs
(n=1073, 30.5%). The distribution of diagnoses was similar in
both groups, median age was slightly lower in the 9/10 matched
transplants. Details regarding the cohort’s features are shown in
Table 1. Median follow-up was 52 months.

Retrospective genotyping of HLA-DPB1 locus in patients and
their respective donors confirmed the high prevalence of HLA-
DPB1 mismatches in both, 10/10 and 9/10 HLA-matched
transplantations already reported elsewhere (7, 25, 26).
Specifically, in the subgroup of 10/10 HLA-matched
transplantations only 21.3% (n=521) were HLA-DP identical,
while in the subgroup of 9/10 HLA-matched this fraction was
18.5% (n=198). Further categorization of DP mismatches as to
permissiveness according to TCE3 revealed that in 37.9%
(n=929) of 10/10 and in 34.9% (n=375) of 9/10 matched
transplantations, respectively, the DP mismatch was
permissive. For the remainder of the transplantations the
HLA-DPB1 mismatches were non-permissive with even sub-
January 2021 | Volume 11 | Article 614976
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distributions into the GvH and HvG vector. Almost half of the
transplantations were single DP-mismatches, while 30% showed
two DP differences. A double DP mismatch in GvH direction
regardless of permissiveness was seen in about 23% of the cases.
These data are summarized in Table 2. Additional multivariate
analyses considering separately 10/10 and 9/10 HLA matched
cases showed that the HLA-DP mismatch effect remained
constant and uninfluenced by the presence of an additional
HLA mismatch with the exception of relapse. The latter is
analyzed in more detail right after. The data of these analyses
are presented in detail in the Supplemental Material [S5-S7,
Supp3-Supp7(F)].
Frontiers in Immunology | www.frontiersin.org 4
Known Associations of Non-Permissive
HLA-DPB1 Mismatches With Outcome
Endpoints Confirmed
Regarding the effect of HLA-DPB1 mismatch on outcome
endpoints, our results are in line with those previously reported.
Specifically as to GRFS, 10/10 HLA-matched transplant pairs with
HLA-DP non-permissive mismatches compared to HLA-DP
matched or permissively mismatched cases exhibited a clearly
higher composite risk of relapse, GvHD II-IV or death as
presented in the GRFS outcome endpoint. These results are
graphically depicted in Figure 1 (p=0.002) and in more detail
presented in Table 3. A similar result was seen in the subgroup of
9/10 matched transplantations where also patients with a DP
matched or permissively mismatched donor showed significantly
better GRFS (p=0.026), (Figure 2, Table 3). Multivariate analysis
confirmed the results of the univariate models with non-
permissive DP mismatches associating with significantly inferior
GRFS (HR 1.16, CI 1.08–1.26, p<0.001, Table 4). No significant
difference was observed between TCE3 permissively mismatched
and fully DP matched transplantations with regard to this
endpoint (HR 0.95, CI 0.86–1.06, p=0.401). Another GRFS
analysis considering GvHD III-IV led to similar findings (Table
S2 in Supplemental material). It is of note that in the composite
endpoint GRFS, the impact of TCE3 matching showed a time-
dependent effect for non-permissive mismatches. This effect was
only significant in the first 100 days after transplantation (non-
permissive until d100: HR 1.23, CI 1.11-1.36, p<0.001 and non-
permissive GvH direction until d100: HR 1.31, CI 1.16–1.48,
p<0.001). Afterwards, non-permissive mismatches showed only
a non-significantly increased risk of worse GRFS (Table S1 in
Supplemental Material). Time-dependent effects of other clinical
covariates were also modeled and are shown in Table S1 in
Supplemental Material. These time-dependent covariables
resemble effects that were explored and published previously
(24, 27).

Non-relapse mortality was also significantly higher in DP
non-permissive mismatched transplant pairs, both in the 10/10
HLA-matched (p=0.010, Figure 3A) and in the 9/10 HLA-
matched group (p=0.013, Figure 3B). The results of the
univariate analyses are shown in detail in Table 3. Again,
the results of the univariate analysis were confirmed in the
multivariate models, as non-permissive mismatches showed a
TABLE 1 | Patient characteristics.

10/10 (%) 9/10 (%) Total P-Value

N 2450 1073 3523 n.a.
Median age (range) 54 (0–77) 52 (0–76) 53 (0–77) 0.014
AML 852 (34.8) 401 (37.4) 1253 0.466
MDS 375 (15.3) 161 (15.0) 536
NHL 313 (12.8) 114 (10.6) 427
ALL 273 (11.1) 131 (12.2) 404
Myeloma 231 (9.4) 94 (8.8) 325
CLL 135 (5.5) 54 (5.0) 189
Acute Leukemia 120 (4.9) 45 (4.2) 165
other 79 (3.2) 34 (3.2) 113
CML 72 (2.9) 39 (3.6) 111
Early stage 924 (37.7) 420 (39.1) 1344 0.531
Intermediate stage 837 (34.2) 346 (32.2) 1183
Advanced stage 629 (25.7) 280 (26.1) 909
Unknown or n.a. 60 (2.4) 27 (2.5) 87
KPS 80-100 1,875 (76.5) 740 (69.0) 2615 0.119
KPS <80 116 (4.7) 60 (5.6) 176
Missing 459 (18.7) 273 (25.4) 732
BM 146 (6.0) 85 (7.9) 231 0.036
PBSC 2,304 (94.0) 987 (92.0) 3291
Missing 0 (0) 1 (0.1) 1
MAC 1,501 (61.3) 699 (65.1) 2200 0.033
RIC 948 (38.7) 374 (34.9) 1322
Missing 1 (0) 0 (0) 1
ATG/Campath 1,652 (67.4) 701 (65.3) 2353 0.400
No ATG/Campath 514 (21.0) 193 (18.0) 707
Missing 284 (11.6) 179 (16.7) 463
Donor Age 18-30 845 (34.5) 309 (28.8) 1154 <0.001
Donor Age 31-45 1,174 (47.9) 480 (44.7) 1654
Donor age 46-60 363 (14.8) 211 (19.7) 574
Missing 68 (2.8) 73 (6.8) 141
P-D CMV neg neg 787 (32.1) 299 (27.9) 1086 <0.001
P-D CMV neg pos 205 (8.4) 111 (10.3) 316
P-D CMV pos neg 569 (23.2) 306 (28.5) 875
P-D CMV pos pos 760 (31.0) 294 (27.4) 1054
Missing 129 (5.3) 63 (5.9) 192
P-D ABO match 995 (40.6) 418 (39) 1413 0.421
P-D ABO major 551 (22.5) 249 (23.2) 800
P-D ABO bidir 223 (9.1) 115 (10.7) 338
P-D ABO minor 613 (25.0) 262 (24.4) 875
Missing 68 (2.8) 29 (2.7) 97
Acute Leukemia, undifferentiated, biphenotypic, secondary or unclassified; n.a., not
applicable; KPS, Karnofsky performance score; BM, bone marrow; PBSC, peripheral
blood stem cells; MAC, myeloablative conditioning; RIC, reduced intensity conditioning; P-
D Patient-Donor; major, major incompatibility; bidir, bidirectional incompatibility; minor,
minor incompatibility.
TABLE 2 | Results of HLA-DPB1 TCE3 matching.

10/10 (%) 9/10 (%) Total

DP matched 521 (21.3) 198 (18.5) 719
DP permissive MM 929 (37.9) 375 (34.9) 1304
DP non-permissive GvH vector 493 (20.1) 241 (22.5) 734
DP non-permissive HvG vector 507 (20.7) 259 (24.1) 766
DP non-permissive MM total 1,000 (40.8) 500 (46.6) 1,500
DP 1 MM 1,206 (49.2) 522 (48.6) 1,728
DP 2 MM 723 (29.5) 353 (32.9) 1,076
DP non-permissive 2MM GvH vector 377 (15.4) 196 (18.2) 573
DP permissive 2MM GvH vector 165 (6.7) 70 (6.5) 503
January
 2021 | Volume
 11 | Article 6
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significantly higher risk of NRM when compared to DP matched
transplantations (HR 1.21. CI 1.02–1.42, p=0.029, Table 4).
Permissive mismatches showed a risk similar to DP matched
transplantations (HR 0.97, CI 0.81–1.15, p=0.693), as seen for
GRFS. As expected the incidences of aGvHD were significantly
higher in the HLA-DPB1 non-permissive mismatched groups in
both univariate and multivariate models (Tables 3 and 4,
Figures 3C, D). Analysis of the effect of HLA-DP MM on the
incidence of chronic GvHD did not show significant results. The
findings of this analysis are presented in the supplemental
material (Table S7).As far as relapse incidence is concerned,
both univariate and multivariate analyses clearly showed
a significantly lower risk for HLA-DP non-permissive
mismatches in otherwise 10/10 HLA-matched transplantations
(p=0.045, Figure 3E). The respective results are shown in detail
in Tables 3 and 4. Multivariate analysis of relapse incidence in
patients with advanced disease stage confirmed the results of the
whole cohort as to the effect of non-permissive DP mismatches
(S3 in Supplemental Material). Additional subanalyses
comparing the DP-matched group separately vs. the TCE3
permissively and non-permissively mismatched group,
respectively in 10/10 and 9/10 HLA matched transplantations
revealed that DP matched cases exhibit a significantly higher risk
of relapse compared to both, TCE3 permissively and non-
permissively mismatched cases (HR 0.85, CI 0.73-0.99),
p=0.038 for DP matched vs. TCE3 permissive mismatched; HR
0.81, CI 0.69-0.94), p=0.006 for DP matched vs. TCE3 non-
permissively mismatched in 10/10 HLA transplantations). This
Frontiers in Immunology | www.frontiersin.org 5
was however, evident only in the 10/10 HLA matched setting, as
the additional HLA mismatch appeared to completely abrogate
that beneficial effect of DP mismatch (both permissive and non-
permissive) vs. DP match as to lower relapse incidence. This was
seen in both, multivariate and univariate models for relapse
incidence. These data are presented in more detail in the
supplemental material (Supp7(E), Supp7(F), S5 and S6).
Furthermore the impact of DP mismatches on OS was not
statistically significant in either univariate (data not shown) or
multivariate analyses (Table 4). Last, a significant impact of
CMV matching status on transplantation outcome was seen
neither in the 10/10 nor the 9/10 HLA-matched group (Table
S5 and S6).

Mismatch Directionality Relevant Only in
aGvHD and Relapse
Subanalysis of the vector of non-permissiveness against DP
matched/permissively mismatched showed significantly higher
risks for both GvH and HvG directed mismatches in the GRFS
endpoint. (Non-permissive GvH: HR 1.19, 1.08–1.31, p<0.001 and
non-permissive HvG: HR 1.14, 1.03–1.26, p=0.001). The
detrimental effect of the non-permissive mismatches on NRM
was again independent of the mismatch directionality as both,
GvH and HvG vector non-permissive mismatches, associated with
increased NRM risk (GvH: HR 1.20, CI 1.03–1.41, p=0.014; HvG:
HR1.26, CI 1.09–1.46, p=0.002). Contrary to the previous endpoint
analyses, the mismatch vector appeared to indeed play a role in
aGvHD incidence, as the higher risk observedwasmostly driven by
non-permissive mismatches in GvH direction (HR 1.50, CI 1.29–
1.75, p<0.001). In linewith the results for aGvHD, the effect of non-
permissivemismatches on relapse incidence appeared to bemainly
driven by the GvH vector (GvH direction: HR 0.84, CI 0.73–0.97,
p=0.018; HvG direction: HR 0.98, CI 0.86–1.12, p=.0763; Table 4).
It is of note that this vector effect was not seen in the subanalysis of
patients with advanced disease, as no differenceswere seen between
GvH and HvG vectors (Table S3 in Supplemental Material).

Effect of Non-Permissive HLA-DPB1
Mismatch Aggravated by Increasing
Number of DP Mismatches and High
Expression Level of Mismatched Allotype
in GvH Vector
In the combined DP mismatch (TCE3-rs9277534) model, an
interesting finding was that apart from TCE3 permissiveness also
the overall number of DP mismatches as well as the anticipated
expression level of the mismatched allotype with a GvH vector
contributed to the overall mismatch effect. Specifically, a
significantly higher risk of GRFS, NRM and aGvHD was found
for DP non-permissive mismatches with two overall DP-allele-
mismatches inGvHdirection (Table 5). For aGvHD incidence, also
DP non-permissive mismatches with one high expressed
mismatched patient allotype (rs9277534-G) showed significantly
higher risk estimates (Table 5). Conversely, with respect to relapse
incidence, these categories associatedwith significantly lower risk as
shown inTable5. The enhancementofnon-permissiveDPeffecton
the aforementioned endpoints becomes clear after comparison of
FIGURE 1 | GRFS (Graft vs Host disease- and relapse-free survival; GvHD II-
IV) in 10/10 HLA-matched cases with respect to DP mismatch
permissiveness according to TCE3. DP Perm vs. DP Non-Perm cases, where
DP Perm = DP matched or TCE3 permissively mismatched and DP Non-
Perm = DP TCE3 non-permissively mismatched (p=0.002).
January 2021 | Volume 11 | Article 614976

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Mytilineos et al. HLA-DPB1 Matching in Unrelated HSCT

Frontiers in Immunology | www.frontiersin.org 6
the respective hazard risks for non-permissive DP mismatches
overall and for non-permissive DP mismatches with highly
expressed patient mismatched allotype or double mismatch in
GvH direction as presented in Tables 4 and 5. Although
statistical significance was not reached in the subgroup of two
overall permissive mismatches in GvH direction, a clear trend was
seen at least for aGvHD (Table 5).
DISCUSSION

Several factors seem to contribute to the alloreactivity is induced
by HLA-DPB1 differences. These are linked to the intrinsic
immunogenicity on account of T-cell epitopes, the numbers
and vectors of mismatches as well as the expression level of the
mismatched allele. HLA-DPB1 mismatching represents
therefore a multilevel variable and any individual model
represents only a simplification of the true biological
relationship. In this retrospective study we sought to conjointly
assess the effect of the aforementioned factors with the aim to
offer a more unified approach as to DP mismatch evaluation for
donor selection. Through our analysis we were able to confirm
previously described associations, while we also showed that
consideration of additional factors might be meaningful for
histocompatibility assessment and for improving predictiveness.

Regarding the prevalence of HLA-DPB1 mismatches in 10/10
as well as 9/10 HLA-matched HSCTs, no differences were
TABLE 3 | Univariate analysis.

Univariate Analysis

10/10 HLA-matched HSCT 9/10 HLA-matched HSCT

Endpoints HLA-DP matched/permissive
MM

HLA-DP non-permissive
MM

p-
value

HLA-DP matched/permissive
MM

HLA-DP non-permissive
MM

p-
value

GRFS (GvHD II-IV)
1 year 43.1% (40.5–45.9) 37.6% (34.6–40.9) 34.4% (30.5–38.7) 28.8% (24.9–33.2)
3 year 31.7% (29.1–34.4) 27.6% (24.6–30.8) 0.002 25.7% (22.0–29.9) 20.1% (16.6–24.3) 0.026
5 year 28.0% (25.5–30.8) 23.9% (21.0–27.2) 21.9% (18.4–26.2) 18.1% (14.7–22.3)
GRFS (GvHD III–IV)
1 year 49.1% (46.5–51.9) 45.3% (42.2–48.7) 39.7% (35.8–44.1) 38.1% (35.8–44.1)
3 year 34.4% (31.8–37.1) 31.9% (28.8–35.2) 0.014 29.6% (25.9–33.9) 25.2% (21.5–29.6) 0.191
5 year 29.0% (26.5–31.8) 27.5% (24.6–30.8) 23.3% (19.7–27.5) 21.8% (18.2–26.1)
Non-relapse
mortality
1 year 20.9% (18.7–23.1) 25.6% (22.8–28.5) 27.0% (23.3–30.9) 33.1% (28.8–37.5)
3 year 26.2% (23.8–28.7) 31.0% (27.9–34.1) 0.010 31.6% (27.6–35.7) 40.0% (35.3–44.6) 0.013
5 year 27.6% (25.1–30.2) 32.7% (29.6–36.0) 33.7% (29.5–38.0) 42.0% (37.2–46.7)
Relapse incidence
1 year 28.3% (25.9–30.8) 25.8% (23.0–28.7) 27.6% (23.5–31.8) 29.9% (26.0–33.9)
3 year 38.5% (35.8–41.3) 34.3% (31.0–37.5) 0.045 36.2% (31.6–40.8) 37.3% (33.0–41.5) 0.201
5 year 41.9% (39.1–44.8) 37.0% (33.6–40.3) 38.4% (33.6–43.1) 41.8% (37.3–46.3)
aGvHD II–IV
incidence
at day 100 after
HSCT

22.9% (20.8–25.1) 29.4% (26.6–32.4) <0.001 31.3% (27.5–35.2) 38.4% (34.1–42.6) 0.010
January
 2021 | Volume 11 | Article
GRFS, GvHD and relapse free survival; GvHD, Graft versus Host Disease; MM, mismatch; HSCT, Hematopoietic Stem Cell Transplantation; HLA, Human Leukocyte Antigen. Statistical
significance marked in bold.
FIGURE 2 | GRFS (Graft vs Host disease- and relapse-free survival; GvHD II-
IV) in 9/10 HLA-matched cases with respect to DP mismatch permissiveness
according to TCE3. DP Perm vs. DP Non-Perm cases, where DP Perm = DP
matched or TCE3 permissively mismatched and DP Non-Perm = DP TCE3
non-permissively mismatched (p=0.026).
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TABLE 4 | Multivariate analysis.

RM Relapse aGVHD II-IV

P-value HR (CI) P-value HR (CI) P-value

03) <0.001 1.01 (1.00–1.01) 0.004 –

1.00 –

20) 0.816 1.66 (1.43–1.93) <0.001 –

3)* <0.001 2.06 (1.77–2.38)* <0.001 –

– 1.00
46) <0.001 – 1.41 (1.24–1.61) <0.001

– –

– –

– 1.00
37) 0.028 – 1.17 (1.01–1.35) 0.037
78) <0.001 – 1.25 (1.04–1.51) 0.017

– –

– –

– –

– –

– –

7)* <0.001 – –

1.00 –

1.38 (1.09–1.76)* 0.007 –

1.00 1.00
0.80 (0.69–0.92) <0.001 0.67 (0.58–0.78) <0.001

1.00 1.00
84) 0.005 1.88 (1.10–3.24) 0.022 0.56 (0.37–0.84) 0.005
84) 0.004 1.93 (1.11–3.34) 0.020 0.57 (0.37–0.86) 0.008

1.00 1.00
39) <0.001 0.90 (0.81–1.01) 0.094 1.33 (1.17–1.51) <0.001

1.00 1.00
15) 0.693 0.91 (0.78–1.05) 0.198 1.04 (0.86–1.24) 0.698
42) 0.029 0.85 (0.74–0.99) 0.033 1.36 (1.15–1.61) <0.001

1.00 1.00
41) 0.014 0.84 (0.73–0.97) 0.018 1.50 (1.29–1.75) <0.001
46) 0.002 0.98 (0.85–1.12) 0.763 1.18 (1.01–1.38) 0.037

ence interval. Covariates showing time-dependent effects are labeled with an asterisk (*), -, not included
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OS GRFS N

HR (CI) P-value HR (CI) P-value HR (CI)

Patient Age 1.02 (1.01–1.02) <0.001 1.01 (1.01–1.01)* <0.001 1.02 (1.02–1
Early stage disease 1.00 1.00 1.00
Intermediate stage disease 1.23 (1.08–1.40) 0.002 1.23 (1.11–1.37) <0.001 1.02 (0.87–1
Advanced disease stage 1.85 (1.63– 2.10)* <0.001 1.53 (1.38–1.70) <0.001 1.31 (1.13–1.
10/10 HLA 1.00 1.00 1.00
9/10 HLA 1.26 (1.14–1.40) <0.001 1.26 (1.16–1.37) <0.001 1.28 (1.12–1
Patient HLA-C KIR Ligand group C1x 1.00 – –

Patient HLA-C KIR Ligand group C2C2 1.18 (1.04–1.35) 0.012 – –

Donor age 18–30 1.00 1.00 1.00
Donor age 31–45 1.13 (1.01–1.27) 0.029 1.08 (0.99–1.19) 0.085 1.18 (1.02–1
Donor age 46–60 1.25 (1.08–1.45) 0.003 1.12 (0.99–1.26) 0.067 1.48 (1.24–1
P-D CMV neg-neg 1.00 – –

P-D CMV neg-pos 1.13 (0.94–1.36) 0.190 – –

P-D CMV pos neg 1.14 (0.99–1.30) 0.061 – –

P-D CMV pos pos 1.09 (0.95–1.23) 0.210 – –

RIC 1.00 1.00 1.00
MAC 1.23 (1.08–1.39)* 0.001 1.15 (1.04–1.27) 0.007 1.28 (1.11–1.
KPS 80–100 1.00 1.00 –

KPS <80 1.56 (1.26–1.93) <0.001 1.37 (1.15–1.64) 0.001 –

No in-vivo T-cell depletion 1.00 1.00 –

In vivo T-cell depletion 0.84 (0.72–0.97)* 0.015 0.78 (0.69–0.88)* <0.001 –

Year of Tx 2000–2003 – 1.00 1.00
Year of Tx 2004–2009 – 0.56 (0.42–0.76) <0.001 0.58 (0.40–0
Year of Tx 2010–2014 – 0.57 (0.41–0.78) <0.001 0.57 (0.39–0

TCE3 Permissive/DP matched 1.00 1.00 1.00
TCE3 Non-permissive 1.03 (0.94–1.14) 0.543 1.16 (1.08–1.26)* <0.001 1.23 (1.09–1

DP matched 1.00 1.00 1.00
TCE3 permissive 0.91 (0.80–1.04) 0.179 0.95 (0.86–1.06) 0.401 0.97 (0.81–1
TCE3 Non-permissive 0.97 (0.85–1.11) 0.662 1.13 (1.02–1.26)* 0.025 1.21 (1.02–1

TCE3 Permissive/DP matched 1.00 1.00 1.00
TCE3 Non-permissive GvH 0.95 (0.84–1.08) 0.455 1.19 (1.08–1.31)* <0.001 1.20 (1.03–1
TCE3 Non-permissive HvG 1.11 (0.98–1.24) 0.093 1.14 (1.03–1.26) 0.001 1.26 (1.09–1

P-D, Patient-Donor; RIC, Reduced intensity conditioning,; MAC,Myeloablative conditioning; TCE3, T-cell epitope 3matching; HR, Hazard ratio; CI, Confi
in model. Statistical significance marked in bold.
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observed between our findings and those seen in other studies (7,
25, 26). The same applies for distribution of non-permissive
mismatches in GvH and HvG direction, which was balanced in
the respective immunogenicity models (28). HLA-DP matched
and permissively mismatched transplants have been grouped
together for this analysis, as the broadly used TCE algorithm tool
makes no distinction between these two groups for which we
only observed a difference in the relapse analysis as already
mentioned before.

In line with previously reported associations of HLA-DPB1
non-permissive mismatches with outcome endpoints, we also
observed a clearly higher risk of aGvHD and NRM (7, 14).
Although the risk of relapse was significantly lower in the non-
permissive mismatch group, the composite GRFS endpoint was
Frontiers in Immunology | www.frontiersin.org 8
overall inferior compared to the matched/permissively
mismatched ones, most probably due to the detrimental effect
of non-permissive HLA-DPB1 mismatches on aGvHD
incidence. The higher induced T-cell alloreactivity most likely
accounts for this effect, as this has been previously shown by in-
vitro testing (5, 13). Interestingly, with respect to OS, the two
opposite effects of NRM and relapse appear to have mutually
eliminated one another, as no significant differences were
observed with respect to DP mismatch permissiveness. Closer
look into the death cause analysis in DP non-permissively
mismatched and matched/permissively mismatched cases may
explain the aforementioned observation on OS (death cause
analysis results are presented in detail in the Supplemental
Material section). Although non-permissive HLA-DPB1
January 2021 | Volume 11 | Article 614976
A B

D

E F

C

FIGURE 3 | (A–F) Competing risks outcomes [non-relapse mortality (NRM), acute GvHD (aGvHD) and relapse] with respect to DP mismatch permissiveness
according to TCE3 in 10/10 and 9/10 HLA-matched cases. DP Perm vs. DP Non-Perm cases, where DP Perm = DP matched or TCE3 permissively mismatched
and DP Non-Perm = DP TCE3 non-permissively mismatched.
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mismatches significantly increased the risk of aGvHD, this didn’t
translate into higher mortality. This doesn’t seem to be the case
for relapse, where matched or permissively mismatched cases
showed a markedly higher mortality related to relapse (42.6%)
compared to non-permissively mismatched cases (33.8%), (data
shown in Supplemental Material, Table S4). The additional HLA
mismatch this time did not seem to impact the DP match effect
as similar relapse-related death rates were observed for the DP
compatibility groups analyzed in both, 10/10 and 9/10 HLA
settings (data not shown). One additional factor is the time
dependence of DP mismatch effect on GRFS, as from day 100
post HSCT it ceased to be significant (27).

Multivariate Models were checked for interaction between
HLA-DPB1 and other classical HLA-mismatches by forming an
interaction term, which showed not statistical significance. This
is also shown in the separate analysis of 10/10 HLA and 9/10
HLA matched cases, where the respective effect of HLA-DPB1
mismatch did not appear to be influenced by the prevalence
of an additional HLA mismatch with the exception of relapse
as already mentioned previously. This implies that
HLA-DP mismatches confer their effect on outcome rather
independently from additional HLA-mismatches. As far as
mismatch directionality is concerned, our analysis revealed
that non-permissive mismatches in GvH direction mainly
drove the overall effect of higher aGvHD but also lower relapse
risk when compared to non-permissive mismatches in HvG
direction. The fact that no such effect was observed in NRM
suggests that DPB1-mismatch-induced morbidity is not only
restricted to aGvHD but may also affect other pathophysiological
pathways such as conditioning associated toxicity or infections
early after hematopoietic stem cell transplantation (29). A
mechanism of interaction may be the upregulation of HLA-
class II molecules during viral infection possibly aggravating the
impact of DPB1 mismatches in such cases (30). It’s also possible
that this effect may be influenced by ATG/Campath treatment as
well as post-transplant immunosuppression. This is supported
by the fact that a similar effect was also seen in a cohort from the
MDAnderson Cancer center (31) but not in a multicenter cohort
of patients where the transplant was facilitated by the NMDP
(27). As to the mismatch directionality effect on relapse, it could
be immunobiologically underpinned by the notion that highly
immunogenic patient mismatched HLA-DPB1 probably
stimulates donor T-cells resulting in a better GvL effect.
Similar observations have also been reported elsewhere (28,
32). Interestingly, this effect was not evident in the advanced-
disease-stage patient group. This might be attributed,
however, to weakened statistical power on account of
multiple combinations.

In our analysis we explored the impact of HLA-DPB1
mismatches on GRFS, a composite endpoint now increasingly
used for assessing the success of HSCT, as it simultaneously
measures the proportion of patients free from disease and
GvHD (33). We considered two degree levels for aGvHD,
II-IV and III-IV. No marked differences were observed
between the two subanalyses. As GRFS is a combined endpoint
summarizing three events (occurrences of aGvHD, relapse or
T
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death), different effects are measured together. Perhaps the most
interesting finding of this analysis was the absence of vector
effect, although the latter was evident in aGvHD and relapse. An
explanation for that could be the opposite effect of GvH directed
non-permissive DP mismatches on these two endpoints resulting
in an overall dampened and statistically insignificant effect.

Aim of this study was to conjointly assess different DP
mismatch alloreactivity predictive models so that an extended
predictive model can be proposed. To this end we included in
our analysis, along with the TCE3 algorithm, the HLA-DPB1
expression model as proposed by Petersdorf et al. (14).
Assignment of the rs9277534-G polymorphism was done by
inference based on linkage disequilibrium data. A recent study
showed that such an approach could be highly accurate (20).
The G allele expression within the mismatched recipient
allotype was associated with higher incidence of aGvHD
suggesting a dose effect of the mismatched HLA-allotype (15).
Such an association has also been reported for HLA-C
differences (34). A shortcoming of the HLA-DPB1 expression
model approach by Petersdorf et al. is that it was only applied to
single mismatched HLA-DPB1 cases with no data available as to
the effect of double mismatched HLA-DPB1 cases in GvH
direction, which do however occur with a frequency of
around 23%. In the combined DP mismatch model we aimed
at combining the TCE3 immunogenicity- with the HLA-DPB1
expression-model taking also into consideration the mismatch
directionality as well as the overall number of DP mismatches
with GvH vector. This way we formed a hierarchy out of all
implicated factors. The most important observation from this
combined analysis consists in that HLA-DP non-permissive
mismatch effect appears to be aggravated by the prevalence of
two overall DP mismatches in the GvH direction as well as by
an anticipated higher expressed patient mismatched allotype.
The impact of two DP mismatches in GvH direction on non-
permissive mismatch effect appears to be stronger as it
significantly enhances the effect on GRFS, NRM, aGvHD and
relapse. This observation is clinically relevant considering that
about 16% of HSCTs are expected to have a non-permissive
HLA-DP mismatch with two overall DP mismatches in GvH
direction. The expected increased surface expression of the
patient non-permissively mismatched allotype, on the other
hand, appears to be significantly evident only for aGvHD and
relapse. In summary these findings suggest that the
combination of non-permissive DP mismatches with 2 DP-
allele-mismatches as well as of non-permissive mismatches with
a highly expressed mismatched patient allotype should be
avoided. A recent study of Petersdorf et al. suggested that the
overall number of mismatches is mainly relevant in HLA-
mismatched transplantations whereas the expression level of
the mismatched allotype is important in fully HLA-matched
cases (35). Due to smaller cohort size and therefore
compromised statistical power, we have not been able to
confirm these findings in our study, as 10/10 and 9/10 HLA
matched cases were assessed together in our combined DP-
mismatch model. All other combinations including non-
permissive mismatches with no mismatch in the GvH
Frontiers in Immunology | www.frontiersin.org 10
direction or a single low expressed mismatched allotype seem
to be tolerable. This analysis is not yet conclusive as to whether
double permissive DP-allele-mismatches in GvH direction
should also be avoided or not, although a clear trend was also
seen in this group. It is of note, however that this subgroup
corresponded to only 6.7% of all included cases. Our study
results indicate that although the immunogenicity model and
the expression model confer distinctive effects on outcome due
to different underlying mechanisms, they may be combined for
refined donor selection strategies. Nevertheless, due to the
many different possible combinations more data are needed
and larger studies are warranted before final conclusions
are drawn.

Limitations of our analysis are the small sample size in some
sub-analyses particularly in the combined DP mismatch model.
Missing data has also been a substantial problem for CMV status
and blood group as well as for date of development of acute and
chronic GvHD in the EBMT promise registry database although
in direct collaboration with the transplant centers we were able to
collect a substantial proportion of these missing data. Still
missing data in the final analysis showed a completely random
pattern, indicating no data collection bias. Furthermore, our
cohort represents patients transplanted in Germany and shows a
large proportion of patients treated with ATG as part of the
conditioning treatment as well as a low proportion of patients
treated with mTOR inhibitor based immunosuppression, which
may limit comparability with other cohorts showing
different features.

In conclusion, our study confirms the previously reported
detrimental effect of non-permissive HLA-DPB1 mismatches
according to the TCE3 model in a large cohort of patients
having been treated with unrelated HSCT in German
transplant centers between 2000 and 2014. This effect was
similarly present in 10/10 and 9/10 HLA- matched
transplantations. The results of our combined assessment of
distinct DP mismatch alloreactivity models indicate that the
effect mediated by rs9277534 may be independent from the
immunogenicity model underlying the TCE3 model.
Furthermore, an additional dose effect of mismatched HLA-
DPB1 allotypes in GvH direction is implied, at least for aGvHD
and relapse incidence. The aforementioned findings support an
extension of the TCE3 model for refined donor selection
avoiding the putatively detrimental combinations of non-
permissive DP mismatches with overall 2 DP mismatches as
well as with a high expressed mismatched patient allotype
(rs9277534-G). Larger future studies are anticipated to offer a
clearer insight into the multifaceted immunogenicity features of
HLA-DPB1 mismatches addressed in this study.
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