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LAG3 is an important immune checkpoint with relevance in cancer, infectious disease and
autoimmunity. However, despite LAG3’s role in immune exhaustion and the great
potential of LAG3 inhibition as treatment, much remains unknown about its biology,
particularly its mechanism of action. This review describes the knowns, unknowns and
controversies surrounding LAG3. This includes examination of how LAGS is regulated
transcriptionally and post-translationally by endocytosis and proteolytic cleavage. We also
discuss the interactions of LAG3 with its ligands and the purpose thereof. Finally, we
review LAG3’s mechanism of action, including the roles of LAG3 intracellular motifs and
the lack of a role for CD4 competition. Overall, understanding the biology of LAG3 can
provide greater insight on LAGS function, which may broaden the appreciation for LAG3’s
role in disease and potentially aid in the development of targeted therapies.

Keywords: LAG3, immune checkpoint, immune exhaustion, checkpoint inhibition, mechanism of action,
Lymphocyte activation gene-3, immune checkpoint inhibitors

INTRODUCTION

Immune cells are chronically activated during cancer, chronic infection, autoimmune disease and
graft versus host disease. In response to this persistent activation, immune cells become exhausted,
losing the ability to produce cytokines or proliferate. This immune exhaustion is mediated, in part,
by the expression of inhibitory co-receptors known as immune checkpoints (ICs). Immune
exhaustion likely evolved to reduce the severity of autoimmune disease and deviant immune
activation. However, when immune activation is a result of serious infection or cancer, a weaker
immune response can be harmful. Inhibiting ICs can bolster the immune response against tumors
and greatly improve survival in cancer patients (1). This translational potential has prompted a
flurry of research into IC inhibition as treatment, such that our knowledge of IC biology and
mechanism of action now lags. This is especially true for the IC-lymphocyte activation gene-
3 (LAG3).

LAGS3 is a member of the immunoglobulin superfamily and a CD4 ancestral homolog, resulting
from a gene duplication event (2). Like CD4, LAG3 binds MHC class II (MHCII), but also FGL-1,
o-synuclein fibrils (0-syn) and the lectins galectin-3 (Gal-3) and lymph node sinusoidal endothelial
cell C-type lectin (LSECtin) (Figure 1) (3-6). As an immune checkpoint, LAG3 inhibits the
activation of its host cell and generally promotes a more suppressive immune response. For
example, on T cells, LAG3 reduces cytokine and granzyme production and proliferation while
encouraging differentiation into T regulatory cells (7).
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FIGURE 1 | LAG3 transcription is upregulated following activation through the T cell Receptor (TCR) or from certain cytokines. Once translated, LAG3 resides in late
endosomes for subsequent trafficking to the cell surface.There, LAG3 exists as an oligomer or monomer. While seemingly necessary for MHCII binding, LAG3
oligomerization may or may not be required for interaction with other LAG3 ligands (ct-syn, Gal-3, L-SECtin or FGL-1). Upon ligand binding, LAG3 inhibits early steps
of the TCR pathway in a manner dependent on LAG3’s cytoplasmic domain. This prevents activation of transcription factors, including NFAT, thereby decreasing
cytokine production and proliferation. LAG3 surface expression is regulated by metalloproteases ADAM10/17 that proteolytically cleave LAGS, releasing it in soluble
form (sLAG-3). LAG3 surface expression may also be regulated by endocytosis, which can be accelerated by ligand binding.

LAG3 is perhaps the third most advanced IC regarding clinical
trial investigation, behind PD-1 and CTLA-4. Preliminary results of
LAG3 blockade in melanoma and other cancers are very promising,
particularly in combination with other IC blockade and/or for
refractory cases (8). But despite the potential importance of LAG3in
immunotherapy, and the fact that LAG3 was identified in 1990,
many knowledge gaps remain (listed in Table 1), perhaps the most
glaring being its mechanisms of action. Understanding LAG3
mechanisms is important for identifying its yet unknown impacts
and developing therapeutics that better inhibit or replicate LAG3
function. Here, we review mechanisms of LAG3 expression, ligand
binding and function and identify major gaps in knowledge.

EXPRESSION

Cellular Distribution

LAGS3 is mostly studied on conventional T cells and T regulatory
cells, but is also expressed on unconventional T cells (i.e., y8T cells,
mucosal-associated invariant T (MAIT) cells, invariant natural
killer T (iNKT) cells), NK cells, B cells, plasmacytoid dendritic
cells (pDCs) and neurons (5, 9-11). Innate T cells express very high

levels of LAG3 after activation, implying a potentially important
role on these cells (10, 12, 13). The impact of LAG3-targeted
immunotherapy on these and non-T cells is largely unstudied but
important, as it could significantly impact their function and
therapeutic efficacy.

Transcriptional Regulation

LAGS3 expression is induced by activation through the TCR or by
cytokines (particularly interleukin-12 (IL-12), IL-27, IL-15, IL-2,
and IL-7) (14-19). LAG3 transcription is regulated by complex
interactions with many possible regulatory and inducer elements
including several potential transcription factor binding sites (16).
Several transcription factors known to correlate with immune
exhaustion, or induce expression of ICs also induce LAG3
expression, including TOX and NFAT (20, 21). Furthermore,
LAGS3 is inversely correlated with T-bet (a T-box transcription
factor) (7, 22, 23). T-bet guides differentiation of cytotoxic T cells
and has been reported as an important transcription factor in
regulating immune exhaustion (22). Interestingly, the inverse
correlation between LAG3 and T-bet is bidirectionally causal
(i.e., deletion of either T-bet or LAG3 increases the expression of
the other) on murine T cells, suggesting that LAG3 promotes
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TABLE 1 | Unknowns of LAG3 Biology.

Description of knowledge gap

Expression e What are LAG3 expression levels on innate T cells, B cells and
pDCs during autoimmunity, cancer or infectious disease?
e \What regulates LAG3 endocytosis?
e How does LAG3 RNA level correspond to surface expression?

o Intracellular stores, endocytosis, and cleavage from cell
surface complicate inferences of surface expression from RNA
expression.

e Does endocytosed LAG3 maintain function?

*  What % of intracellular LAGS is de novo vs endocytosed?
Function e What is the role of LAG3 on NK cells, B cells, pDCs and

neurons?

e Can LAG3 inhibit signaling through BCR, cytokine receptors,

TLR?

o Can blockade of LAG3 reverse these effects?

e What is the impact of LAG3 blockade on innate T cells?

e How does interaction with each of the five LAG3 ligands impact

LAG3 activity?

o What is the relative strength of each receptor?

o Does this differ based on context?
® |s sLAG3 non-functional?

e Do LSECtin and Gal-3 bind to glycosylated regions of LAG3?
e Does endocytosed LAG3 still function if bound to ligand in
endosome?

Mechanism e s dimerization necessary to bind to all ligands?
e |s dimerization necessary for LAG3 function?
* s LAGS colocalization with the TCR necessary for LAG3
function?

o If so, how do non-MHCI! ligands facilitate this?

e How does LAGS inhibit activation following other stimuli (e.g.,
cytokines)?

o Does it act through a similar pathway as for TCR stimulation?
e What protein(s) bind to LAG3 intracellular domain to facilitate its
function?

o LAP s currently the only known interacting protein, but it
cannot explain LAG3 function. Since ligand binding seems
necessary for LAG3 function, it may be needed during screening for
proteins that participate in LAG3 function through direct interaction.
* What cytoplasmic motif(s) are involved in LAG3 function and
what is their role?

o Are different motifs involved in different aspects of LAG3
function?

e |f LAGS inhibits activity of some kinase, as is currently
suspected, what kinase does it inhibit and how?

o Does LAG3 inhibit general activation by acting early in the
pathway or does it act stronger on a particular pathway?

exhaustion and vice-versa (7, 22, 23). Methylation, particularly of
the LAG3 promoter, appears to tightly regulate LAG3 expression
(24, 25).

Soluble LAG3

As with other ICs, a soluble form of LAG3 is found in sera. Soluble
ICs are produced by expression of splice variants or proteolytic
cleavage of ICs, and can inhibit IC activity (e.g., soluble PD-1
occupies binding site on PD-L1/2) or maintain IC activity (e.g.,
soluble CTLA-4 competitively inhibits CD28 binding to CD80/86)
(26). Three LAG3 splice variants are proposed to exist, two of which
create a soluble form of the protein (27). However, the evidence for
splice variants is limited. Instead, soluble LAG3 (sLAG3) is most
likely from proteolytic cleavage of surface LAG3. Indeed, LAG3 is
cleaved by a disintegrin and metalloproteinase (ADAM)10 and

ADAM17 at the 20-aa connecting peptide between D4 and the
transmembrane domain. In vitro, this cleavage results in a rise of
sLAG3 in supernatants, implicating it as a major source of SLAG3
(28-30). T cells are not a major contributor to SLAG3, meaning
other cells (especially pDCs) produce the bulk (29, 31). Some
researchers have proposed that SLAG3 may function similarly to
a synthetic LAG3 fusion protein (sLAG3-Ig), which binds to
MHCII, thereby inhibiting the binding of LAG3 and its inhibitory
function while inducing dendritic cell maturation (27). However,
there is no published evidence of sSLAG3 function nor its binding to
MHCII (28). Instead, the purpose of cleavage is post-translational
regulation of LAG3 as demonstrated in mice where non-cleavable
LAGS3 or metalloproteinase inhibitor impairs T cell immunity and
in human cancer patients where a higher LAG3:ADAM10 ratio is
associated with disease progression and poor prognosis (28, 30).
Therefore, in regulating LAG3 surface expression, cleavage
produces sSLAG3 as a likely inert by-product.

Intracellular Stores

Not all membrane embedded LAG3 resides on the cell surface. Even
after cellular activation, approximately half of all LAG3 resides in
late endosomes (32). Intracellular storage of LAG3 is thought to
facilitate rapid trafficking to the cell surface (32), but may also
represent previously surface expressed LAG3 that has been
endocytosed. Endocytosis of LAG3 occurs following interaction
with oi-syn but has not been investigated for other LAG3 ligands (5).
It is also unknown what proportion of intracellular LAG3 results
from endocytosis versus de novo expression and whether LAG3
maintains inhibitory function following endocytosis. These factors
complicate accurate assessment of surface expression through
measurement of LAG3 transcript. Therefore, techniques that
measure surface expression directly, such as flow cytometry or
immunofluorescence, are preferred.

LIGAND BINDING
MHC Binding

LAGS3 is a 70kDa transmembrane protein with four extracellular
glycosylation sites. As a CD4 ancestral homolog, LAG3 shares
similar structure but only 20% amino acid similarity (33). Like
CD4, LAG3 is comprised of 4 extracellular domains, named D1-D4,
with D4 located closest to the cell surface and D1 being most distal.
Both D1 and D2 are necessary and sufficient for LAG3 binding to
MHCII (34). While it is unclear how large the binding domain is, a
30 amino acid extra loop on the distal side of D1 is involved, perhaps
containing the entire binding site. Point mutations in this region can
enhance or reduce binding to MHCII, while deletion abolishes
binding (34). Furthermore, this loop is the epitope for an antibody
known to block the LAG3:MHCII interaction (clone 17B4) (6, 34).

Notably, mutations in another region of D1 also abolish MHCII
binding. Huard et al. proposed that these mutations may prohibit
MHCII binding by precluding oligomerization of LAG3, as these
mutations disrupt even wild-type LAG3’s interaction with MHCII
when co-expressed. It was later shown that LAG3 does indeed
weakly oligomerize as a dimer and larger oligomer complex on the
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cell surface in a D1-dependent manner (29). Moreover, while
dimeric sLAG3-Ig binds MHCII, monomeric sSLAG3 cannot (28,
34-39). Together, this suggests that oligomerization is facilitated by
a group of amino acids in D1, and that oligomerization is necessary
for optimal LAG3 binding to MHCII.

Importantly, LAG3 does not bind all MHCII equally. Maruhashi
et al. demonstrated that strong affinity of antigenic peptide for
MHCII and expression of MHCII accessory molecules substantially
increase LAG3 binding to MHCII. As the authors note, this
indicates that LAG3 function is dependent on APC properties,
the presented peptides and MHC haplotypes, bestowing a target
selectivity that is unique among immune checkpoints (35, 40).

Other Ligand Binding

It is important to note that while MHCII is a major ligand of LAGS3,
four other ligands have been discovered: FGL-1, Gal-3, LSECtin and
o-syn. While o-syn’s impact on LAG3 inhibitory function remains
unstudied, FGL-1, Gal-3 and LSECtin have each been shown to
induce LAG3-mediated inhibition of T cell activation. Gal-3 and
LSECtin are both lectins with carbohydrate-recognition domains
(which maybind to glycosylated sites of LAG3) and oligomerization
domains that facilitate LAG3 cross-linking (41, 42). Like MHCII, o
syn binds to the region of LAG3 D1 containing the extra loop and
surrounding amino acids, with some dependence on D2, D3 or
intracellular domain (5). Again, as with MHCII, LAG3 D1 and D2
are both necessary and sufficient for binding to the fibrinogen-like
domain of FGL-1. However, the Y73F mutation in mice (Y77F in
humans) that abolishes LAG3’s binding to MHCII, did not impact
FGL-1 binding, illustrating that FGL-1 binds a different set of amino
acids. This is also implied by the ability of the C9B7W antibody to
block LAG3 interaction with FGL-1, but not MHCII.

MECHANISM OF ACTION

Functional Role of Ligand Binding
Once bound to its ligand, LAG3 can inhibit T cell activation.
While engagement of LAG3 to its ligand is crucial for LAG3
function, the role of ligand interaction is unclear.

One role may be to bring LAG3 in proximity with the TCR. To
support this role for ligand binding, the P111A mutation, that
prevents LAG3 binding MHCII, does not lead to colocalization with
the immune synapse (35); nor does T cell activation via unstable
pMHCI]I, to which LAG3 is incapable of binding. Indeed, LAG3
ligation to non-cognate pMHCII during simultaneous activation by
cognate pMHCI or unstable pMHCI], to which LAG3 does not
bind, leads to a roughly two-third reduction in LAG3-mediated
inhibition of IL-2 (35). In this model, LAG3 activity was lowest at
higher peptide concentration. This may be explained as higher
peptide concentration promoting clustering of pMHCI and TCR at
the immune synapse, which crowds out LAG3 or reduces the ratio
of LAG3 to signaling TCR complexes at the immune synapse.
Further support for the necessity of LAG3 colocalization with the
immune synapse to exert its function is given by a study that
employs antibody-mediated cross-linking to activate T cells and
engage LAG3. While cross-linking LAG3 and CD3 together inhibit

T cell activation compared with CD3 cross-linking alone, cross-
linking LAG3 and CD3 separately, but still simultaneously, does not
(43). Other studies demonstrate that independent cross-linking of
CD3 or TCR recruits LAG3 to the site of cross-linking (43, 44),
which suggests that some colocalization may occur without ligand
binding. However, the degree of colocalization may be insufficient
for LAG3 activity. Together, these studies support the notion that
LAG3 colocalization with the immune synapse is necessary
for LAG3 function, and, therefore, may be the main role for
LAG3 ligand binding.

The apparent importance of LAG3 colocalization with the
immune synapse implies that LAG3 acts early in the TCR
signaling pathway. This is further supported by a recent study
that used a LAG3-expressing Jurkat T cell line to gain insight into
the LAG3 mechanism. In these cells, LAG3 blockade significantly
increased cytokine production and NFAT activity following
activation. This effect was not impacted by PKC6/8 inhibitor
or stimulant, calcineurin inhibitor or a general kinase inhibitor,
suggesting that LAG3 acts early in the TCR signaling cascade
(27) and thereby further supporting the importance of LAG3
colocalization with the immune synapse.

However, it is not clear that binding of LAG3 to its alternative
ligands would facilitate colocalization with the immune synapse, or
how colocalization would inhibit activation by IL-7, as LAG3 has
been shown to do (45). Therefore, while colocalization with the
immune synapse may be important for inhibition of TCR signaling,
this alone does not fully explain the role of LAG3 ligand binding.

Another role for ligand binding may be to enhance
dimerization/oligomerization of LAG3, which may be necessary
for LAG3 intracellular signaling. However, while this explanation
is consistent with the literature, there is little evidence directly
supporting this role, and thus remains speculative.

Overall, LAG3 ligand binding is crucial for its inhibitory
function, potentially serving to colocalize LAG3 with signaling
molecules and/or facilitate stable oligomerization.

Competitive Inhibition of CD4 Is Not a
Major Mechanism

Some have suggested that LAG3 inhibitory function is a result of
competitive inhibition of CD4 due to its shared evolutionary
origin and the fact that it binds MHCII with far greater affinity
(35, 39, 40, 46). However, no evidence suggests LAG3 inhibits
CD4-ligand interaction during T cell activation. In contrast,
strong evidence shows that competitive inhibition of CD4 is
not a major mechanism of LAG3-mediated inhibition.

LAG3 Does Not Block CD4:MHCII
interaction

One way to test for competition is by determining whether a
LAGS3 fusion protein blocks CD4 binding to MHCII. Using this
method, one group found that LAG3 inhibits CD4 interaction
with MHCII, but only when TCR is not engaged (39). The
authors theorize that TCR engagement may either enhance CD4
affinity to MHCII, or change the binding to MHCII such that no
competition with LAG3 occurs. A similar experimental model
supported this assertion using three different cell lines (35).
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LAG3 Inhibits T Cells Independently of CD4

Furthermore, several studies have demonstrated that LAG3 relies
completely on its intracellular domain for its inhibitory function
(35, 47-49). Specifically, the existence of intracellular motifs that
are necessary for LAG3 function (discussed below) implies a role
for intracellular signaling and negates the necessity for receptor
competition (46, 48-50). This is further supported by studies
showing that the crosslinking of LAG3 induces LAG3 inhibitory
function, even in the absence of MHCII (43, 51).

Further evidence of LAG3’s functional independence from
CD4 is the existence of alternative LAG3 ligands that do not bind
CD4 (3, 4, 42). Also, the fact that LAG3 inhibits activation of
CD8" T cells (4, 35, 52), on which it is expressed at higher levels
than on CD4" T cells, shows that LAG3 can function even in the
absence of CD4.

Intracellular Domain

When LAG3 binds its ligand, it transmits an inhibitory signal
that prevents T cell activation, but how this signal is transmitted
is largely unknown. Immune checkpoints typically inhibit T cell
activation through cytoplasmic inhibitory domains such as ITIM
or ITSM. These domains counteract TCR activation signals
transmitted through kinases by recruiting phosphatases that
contain SH2 binding domains to the immune synapse. LAG3
is unique among ICs in possessing no known inhibitory domain
nor the C-X-X-C p56lck binding motif of CD4. Instead, the 54
amino acid long cytoplasmic domain of LAG3 has three regions
that are conserved between mice and humans: a RRESALE motif,
a KIEELE motif and an EX/EP repeat motif on the C-terminus.

The KIEELE motif, in particular the lysine residue in this motif,
was demonstrated as essential for LAG3-mediated inhibition in
three murine studies, both in vivo and in vitro, by Workman et al.
(47-49). However, the importance of this motif has not been
replicated by others. In fact, one study found that deletion of the
KIEELE motifhad no impact on LAG3 function. Instead they found
amino acids in the RRFSALE region were necessary (50). One may
suspect that the serine residue in this region would be the most likely
to play a role in LAG3 signaling, since serine phosphorylation can
activate proteins. However, point mutation of this serine to alanine
did not impact LAG3 function (47, 50). Instead, mutating either the
phenylalanine or leucine (or both) to alanine in this region reduced
LAG3-mediated inhibition of IL-2 production by half; the authors
call this motif the FxxL motif. Pairing these mutations with deletion
of the EX repeat motif (an expanded EP motif including part of the
KIEELE motif) nearly doubled IL-2 production, seemingly turning
LAG3 intoa positive co-receptor (50). Interestingly, this behavior of
LAGS3 acting as a positive co-receptor has been shown before on
CD4-3A9 cells with LAG3 lacking the cytoplasmic domain (47). Itis
unclear why the study by Maeda et al. did not show this positive co-
receptor activity with the cytoplasmic domain deletion mutant.
Interestingly, deletion of the EP or EX repeat motif alone does not
impact LAG3 inhibition during MHCII engagement (47, 50)

The roles of FxxL or KIEELE motifs in LAG3 function remain
uncharacterized; however, the existence of a 45kDa LAG3
associated protein (LAP), which directly binds the EP motif,
invites speculation on its role. LAP shares 99.8% amino acid
sequence identity with the C-terminal end of CENPJ, a protein

mostly involved in centrosome and microtubule organization
during cell division that can also augment STAT5 and NF-xB
signaling (53, 54). This identity suggests it may serve in clustering
LAG3 into lipid rafts or in trafficking of LAG3 from the microtubule
organizing centre, where it is intracellularly localized in endosomes,
to the cell surface; however, deletion of the EP motif does not impact
LAG3 expression on the cell surface, nor does tubulin
polymerization inhibitor, suggesting that LAG3 traffics through
other means. One potential, yet unproven, role for the EP motif of
LAG3 is to sequester LAP from participating in its potential
coactivator roles for STAT5 and NF-kB, since LAG3 can inhibit
STAT5 and Akt phosphorylation in response to IL-7 (45) or peptide
(7) stimulation. This could help explain how LAGS3 facilitates cell
cycle arrest (13, 55, 56).

Overall, while LAG3 lacks classical inhibitory motifs, it
nonetheless requires its intracellular domain to inhibit T cell
activation. Regarding individual motifs, there is conflicting
evidence on the importance of the KIEELE motif, one study
demonstrating importance of the FxxL motif, and a consistently
reported secondary role for the EP motif in LAG3 inhibitory
function. It is important to note that to date, all analysis of LAG3
motifs and signaling have been performed on T cells activated with
pMHCII, and mostly in mice. Greater attention to LAG3 function
and mechanism on unconventional T cells, or other lymphocytes
is warranted.

CONCLUSION

Immune checkpoint blockade is revolutionizing the treatment of
immunogenic cancers. While PD-1 and CTLA-4 are the only
checkpoints approved for use in the clinic, antibody blockade of
several others are in clinical trials. At the forefront of this line is
LAG3. LAG3 blockade has demonstrated the ability to enhance the
efficacy of PD-1 blockade in many models, including in a clinical
trial (8). However, despite its incredible potential in treatment of
cancer, autoimmunity, and infectious disease, much remains
unknown about how LAG3 functions. Ultimately, determining
LAG3’s mechanism of action and the impact of LAG3 blockade
on cells other than conventional T cells would advance optimal use
of LAG3 blockade and related therapies.
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