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Cancer immunotherapy by immune checkpoint blockade has been effective in the
treatment of certain tumors. However, the association between immune checkpoints
and autoimmune diseases remains elusive and requires urgent investigation. Primary
immune thrombocytopenia (ITP), characterized by reduced platelet count and a
consequent increased risk of bleeding, is an autoimmune disorder with a hyper-
activated T cell response. Here, we investigated the contribution of immune
checkpoint-related single-nucleotide polymorphisms (SNPs), including CD28, ICOS,
PD1, TNFSF4, DNAM1, TIM3, CTLA4, and LAG3 to the susceptibility and therapeutic
effects of ITP. In this case-control study, 307 ITP patients and 295 age-matched healthy
participants were recruited. We used the MassARRAY system for genotyping immune
checkpoint-related SNPs. Our results revealed that rs1980422 in CD28 was associated
with an increased risk of ITP after false discovery rate correction (codominant, CT vs. TT,
OR = 1.788, 95% CI = 1.178–2.713, p = 0.006). In addition, CD28 expression at both the
mRNA and protein levels was significantly higher in patients with CT than in those with the
TT genotype (p = 0.028 and p = 0.001, respectively). Furthermore, the T allele of PD1
rs36084323 was a risk factor for ITP severity and the T allele of DNAM1 rs763361 for
corticosteroid-resistance. In contrast, the T allele of LAG3 rs870849 was a protective
factor for ITP severity, and the T allele of ICOS rs6726035 was protective against
corticosteroid-resistance. The TT/CT genotypes of PD1 rs36084323 also showed an
8.889-fold increase in the risk of developing refractory ITP. This study indicates that
immune checkpoint-related SNPs, especially CD28 rs1980422, may be genetic factors
associated with the development and treatment of ITP patients. Our results shed new light
on prognosis prediction, disease severity, and discovering new therapeutic targets.
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INTRODUCTION

Primary immune thrombocytopenia (ITP), one of the most
common bleeding disorders, is characterized by reduced
platelet count and an increased risk of bleeding (1, 2). ITP is
an acquired autoimmune disease, in which platelets are
opsonized by auto-antibodies and destroyed by phagocytic cells
(3–6). ITP pathogenesis involves a hyper-activated T cell
response, which is important for cell-mediated cytotoxicity and
IgG production (7–10). Therefore, investigating T cell
abnormalities in ITP patients may reveal the mechanism of
pathogenesis and development of ITP.

Immune checkpoints, including co-stimulation and co-
inhibition signal pathways, are among the central mechanisms
that regulate T-cell mediated immune responses (11, 12). Co-
stimulation and co-inhibition signals, also termed “second
signals,” modify the “first signal” provided by the T cell
receptor (TCR) and MHC recognition, and determine the
outcome of adaptive T cell immunity synergistically (13–16).
As the repertoire of the TCR is generated randomly, the TCR can
recognize and eliminate numerous antigens, including self-
antigens (17). Thus, co-stimulation and co-inhibition signals
are pivotal for maintaining self-tolerance. Aberrant expression of
costimulatory molecules and co-inhibitory molecules may
promote the generation of self-reactive T cells or cause evasion
of self-reactive T cells from central and peripheral tolerance,
contributing to autoimmunity (18, 19).

The costimulatory molecules of T cells consist of CD28,
inducible costimulatory (ICOS), TNF superfamily member 4
(TNFSF4), and DNAM1 (CD226), and the co-inhibitory
molecules contain TIM3, cytotoxic T-lymphocyte associated
protein 4 (CTLA4), programmed death-1 (PD1), and
lymphocyte activating 3 (LAG3) (20–24). Among these, CD28
and CTLA4 represent the best-studied costimulatory pathways.
CD28 and CTLA4 interact with two ligands (CD80 and CD86)
on the surface of antigen-presenting cells (APCs), introducing a
positive stimulatory and a negative inhibitory signal into T cells,
respectively (25). CD28, constitutively expressed on the surface
of T cells, is important for T cell survival, proliferation, and
effector function. Alternatively, CTLA4, which is highly
expressed after T cell activation, acts as a competitor of CD28
and induces a state of T cell unresponsiveness and anergy (26–
28). PD1, a novel co-inhibitory member of the B7/CD28
family, is engaged by PD-L1 to inhibit T cell activation (29–
31). The PD1 inhibitor has been used in the clinical treatment of
cancer to cancel the limitation on T cell-mediated anti-cancer
responses (32–34). Thus, co-stimulation and co-inhibition
signals may contribute to the hyper-active state of T cells in
autoimmune diseases.

Single-nucleotide polymorphisms (SNPs) are the most
common type of genetic variation among humans. Genetic
studies have revealed that multiple polymorphisms in the genes
encoding immune checkpoint molecules are associated with
susceptibility to several autoimmune diseases. The CD28
rs1980422 CC genotype is associated with both rheumatoid
factor (RF) and anti-citrullinated protein antibodies (ACPA) in
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rheumatoid arthritis (RA) (35, 36), while polymorphisms in ICOS
rs6726035, PD1 rs36084323, DNAM1 rs763361, and TIM3
rs10515746 also act as related factors in RA development (37–
40). The TT genotype of rs231779 in the CTLA4 gene increases
one’s risk of Graves’ disease (41). In addition, there was a different
distribution of the TT genotype in LAG3 rs870849 in multiple
sclerosis (MS) patients compared to healthy controls (42). In
systemic lupus erythematosus (SLE), the frequency of minor T
alleles of TNFSF4 rs2205960 is associated with autoantibody
production and is important in Chinese and Indian patients
(43). As these SNPs are related to autoimmune diseases, few
studies have focused on SNPs of immune checkpoint genes in ITP.
Whether immune checkpoint gene polymorphisms are protective
or risk factors in ITP and whether these SNPs are associated with
susceptibility, severity, corticosteroid-sensitivity, or refractoriness
of ITP are still largely unknown.

In this study, we hypothesized that these autoimmune
disease-related SNPs in immune checkpoint genes may be
associated with ITP. We explored the genetic variants in eight
immune checkpoint genes using data from 602 genomes and
performed a case-control association analysis with selected
tagging SNPs in Chinese populations. Furthermore, CD28
expression was analyzed in ITP cases with different genotypes.
MATERIALS AND METHODS

Patients and Controls
We recruited 307 patients with primary ITP between May 2016
and May 2020 from the Department of Hematology, Qilu
Hospital, Cheeloo College of Medicine, Shandong University.

The diagnostic criteria were consistent with the International
ITP guidelines (44). Specifically, the clinical diagnostic details
included: (1) platelet count of peripheral blood <100 × 109/L on
at least two consecutive routine blood tests, (2) normal or
increased megakaryocyte count in bone marrow, and (3) no
other diseases or conditions related to thrombocytopenia.
Inclusion in the study required the absence of other causes of
secondary thrombocytopenia based on patient history, physical
examination, clinical manifestations, and laboratory tests.
Patients with other autoimmune or hemorrhagic diseases (e.g.,
SLE, severe anemia), or thrombocytopenia due to pregnancy,
viruses (e.g., hepatitis C virus, human immunodeficiency virus),
active infections, vaccinations, or drugs (e.g., heparin) were not
included in this study.

Based on disease progression and treatment response, patients
were further stratified by the following three indicators: severity,
refractoriness, and corticosteroid sensitivity. Severe ITP describes
patients with a platelet count <10 × 109/L and active bleeding, or
with bleeding symptoms sufficient to require treatment or
additional intervention, such as a dose increase or the use of
another platelet-enhancing drug to relieve thrombocytopenia.
Refractory ITP describes patients who have had a splenectomy
that was not effective or with postoperative recurrence, and
patients with severe ITP or bleeding trends that require
January 2021 | Volume 11 | Article 615941
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intervention. Corticosteroid therapy is a first-line treatment for
ITP, including high-dose dexamethasone 40 mg/d for 4 d (patients
who did not respond could repeat one cycle within two weeks) or
prednisone 1.0 mg/kg/d for 4 weeks. Corticosteroid-sensitive
described patients with a platelet count no less than 30 × 109/L
with at least a 2-fold increase compared with the baseline count
and no bleeding after intervention. Patients were considered
corticosteroid-resistant if they required additional treatment.

We recruited 295 age-matched healthy participants as the
control group. We randomly recruited healthy participants from
a group of healthy volunteers with no active infection or other
autoimmune diseases, and no symptoms of thrombocytopenia.
In this study, all patients and controls were Chinese, and no
genetic associations were found among participants.

The Medical Ethics Committee of Qilu Hospital, Cheeloo
College of Medicine, Shandong University reviewed and
approved this study. Informed consent was obtained from all
patients and controls in accordance with the Declaration
of Helsinki.

DNA Extraction and Genotyping
Peripheral venous blood was collected from all participants
(5 ml) and peripheral blood mononuclear cells (PBMCs) were
isolated by Ficoll density gradient centrifugation. Genomic DNA
was extracted from PBMCs using a commercial DNA extraction
kit (TianGen, China). We used a spectrophotometer to detect the
concentration and purity of the DNA extraction. Before
genotyping, we stored extracted DNA at −80°C. We selected
SNPs associated with T-cell immune checkpoints (summarized
in Table 1) . The time-of-fl ight mass spectrometry
(MassARRAY) system (BGI Tech., China) was used to detect
the genotype of selected SNPs. We performed genotyping via
PCR amplification, shrimp alkaline phosphatase enzyme
treatment, single base extension, resin desalination purification,
and mass spectrometry.

Flow Cytometry
The phenotypes of PBMCs were analyzed for cell surface
markers CD3, CD4, and CD28. Cells were incubated with anti-
CD3, anti-CD4, and anti-CD28 mAbs (Biolegend, USA; 30 min,
4°C, dark). Data were acquired using a Gallios Flow Cytometer
(Beckman Coulter Inc., USA). A total of 200,000 events per tube
were analyzed using Kaluza Flow Cytometry Analysis Software
(Beckman Coulter Inc.).
Frontiers in Immunology | www.frontiersin.org 3
RNA Extraction and Real Time RT-PCR
CD4+ T cells were separated from PBMCs of patients who were
admitted to the hospital without receiving any ITP-specific
treatments (corticosteroids, IVIG, rituximab, and TPO-RA)
within 3 months, using a CD4+ T cell isolation kit (Miltenyi
Biotec, Germany). The purity of CD4+ cells was >98% according
to flow cytometry. Total RNA was extracted from CD4+ T cells
using TRIzol reagent (Invitrogen Life Technologies, USA), and
RNA was converted into cDNA using the PrimeScript RT
Reagent Kit Perfect Real Time (Takara Bio, Japan).
Quantitative PCR was performed on the LightCycler 480II
Real-Time PCR system (Roche, Switzerland) according to the
standard protocol. The primers used are listed below.

• CD28 forward: CTATTTCCCGGACCTTCTAAGCC
• CD28 reverse: GCGGGGAGTCATGTTCATGTA
• GAPDH forward: GCTCTCTGCTCCTCCTGTT
• GAPDH reverse: GTTGACTCCGACCTTCACCT

Quantitative PCR included a 20 ml volume composed of 0.5 ml
of the forward and reverse primers, 5 ml cDNA, 4.5 ml ddH2O,
and 10 ml SYBR Green Real-time PCR Master Mix. We
normalized the expression of target genes (CD28) to that of
the internal standard gene (GAPDH), and mRNA expression
was analyzed using the 2−DDCt method.

Statistical Analysis
We used the calculator on the Helmholtz Centre website in Munich
to calculate the p value of the Hardy Weinberg equilibrium. We
analyzed genotyping data using four models, including the
dominant, recessive, codominant, and allelic frequency models.
For preliminary screening, we used Fisher’s exact test or the chi-
squared (c2) test to analyze the relationships between SNPs and the
susceptibility, severity, refractoriness, and corticosteroid sensitivity
of ITP. Odds ratios (ORs) and adjusted p-values were analyzed by
univariate and multivariate binary logistic regression analyses with
95% confidence intervals (95% CIs). SPSS 26.0 statistical software
(SPSS, Inc., USA) was used for statistical analyses. In addition,
generalized multifactor dimensionality reduction (GMDR) was
performed to detect gene-gene interactions with GMDR 0.9
software. Statistically significant differences were defined as those
with a p-value <0.05 or a false discovery rate (FDR) q value <0.05.
RESULTS

Study Population
Participant details are shown in Table 2, including demographic
and clinical characteristics. All eight SNPs were in accordance
with Hardy Weinberg equilibrium in the control group (p > 0.24,
Supplementary Table 1).

Polymorphisms Associated With Immune
Thrombocytopenia Susceptibility
We used four genetic models to analyze the relationship between
eight immune checkpoint-related SNPs and ITP susceptibility.
We performed preliminary screening to analyze the association
TABLE 1 | Selected genes and SNPs.

Genes SNPs

TIM3 rs10515746
CD28 rs1980422
TNFSF4 rs2205960
CTLA4 rs231779
PD1 rs36084323
ICOS rs6726035
DNAM1 rs763361
LAG3 rs870849
SNP, single-nucleotide polymorphism.
January 2021 | Volume 11 | Article 615941
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between each SNP and ITP susceptibility. The data are detailed
in Supplementary Table 1. Under codominant, dominant, and
allele models, allelic and genotypic frequencies of TIM3
rs10515746 were significantly related to ITP susceptibility (p <
0.05). The different distributions of rs1980422 polymorphism in
CD28 under codominant and dominant models showed a
relationship with ITP susceptibility (p < 0.05), which was also
related to ITP susceptibility after FDR correction. In addition,
the allele and recessive models indicated an association between
ICOS rs6726035 and ITP susceptibility (p < 0.05).

The CA genotype and allele A in place of C of rs10515746 in
TIM3 was significantly related to ITP susceptibility after adjusting
for sex and age (p = 0.027 and p = 0.029, respectively; Table 3).
Regarding rs1980422 in CD28, under codominant and dominant
models, the CT and CC/CT genotypes were associated with ITP
susceptibility (p = 0.006 and p = 0.016, respectively; Table 3).
Moreover, the T allele and TT genotype of ICOS rs6726035 showed
a significant association with ITP susceptibility (p = 0.023 and p =
0.032, respectively; Table 3). Notably, all three of these
polymorphisms revealed an increased susceptibility to ITP (OR >
Frontiers in Immunology | www.frontiersin.org 4
1, p < 0.05, Table 3). However, after FDR correction, only CD28
rs1980422 was significantly associated with ITP susceptibility in
univariate logistic regression analysis.

Thereafter, combined analysis under the codominant model by
multivariate logistic regression analysis revealed that the
heterozygous genotypes of TIM3 rs10515746 and CD28
rs1980422 played a significant role in increased risk of ITP (OR =
3.509, 95% CI = 1.128–10.914, p = 0.03; OR = 1.788, 95% CI =
1.178–2.713, p = 0.006, respectively, Table 4). In addition, analysis
using the dominant model showed that the CA/AA genotypes of
TIM3 rs10515746 and CC/CT genotypes of CD28 rs1980422
significantly increased the ITP risk compared with homozygous
major alleles (OR = 3.617, 95% CI = 1.170–11.185, p = 0.026 and
OR = 1.645, 95% CI = 1.093–2.475, p = 0.017, respectively,Table 4).
The allelic distribution of TIM3 rs10515746 and ICOS rs6726035
was also related to ITP susceptibility after combined analysis (OR =
3.218, 95% CI = 1.043–9.924, p = 0.042 and OR = 1.276, 95% CI =
1.015–1.605, p = 0.037, respectively; Table 4).

High-order interactions were further investigated for ITP
susceptibility using the GMDR method. Based on the above
results, TIM3 rs10515746, CD28 rs1980422, and ICOS rs6726035
were included as variables in GMDR analysis. The data showed that
the three-locus model was the optimal model, with the best cross-
validation consistencies of 10/10 and p = 0.001 (Figure 1). These
results indicated that these three SNPs exhibited interactive effects
on ITP susceptibility.

Polymorphisms Associated With Immune
Thrombocytopenia Severity
We divided ITP patients into non-severe and severe groups to
examine the association between selected immune checkpoint-
related SNPs and ITP severity. Allelic and genotypic frequencies
of PD1 rs36084323 under the four models and LAG3 rs870849
under the allele model were statistically different between non-
severe and severe groups (p < 0.05, Supplementary Table 2).
TABLE 2 | Demographic and clinical characteristics.

ITP patients Controls

No. 307 295
Age, mean ± SD 44.92 ± 14.02 47.61 ± 16.93
Sex (M/F) 117/190 134/161
ITP severity, n (%)
Severe ITP 137 (44.6) N/A
Non-severe ITP 170 (55.4) N/A

Treatment, n (%)
No use of corticosteroid 63 (20.5) N/A
Corticosteroid-sensitive 107 (34.9) N/A
Corticosteroid-resistant 137 (44.6) N/A
Refractory ITP 27 (8.8) N/A
Non-refractory ITP 280 (91.2) N/A
F, female; ITP, immune thrombocytopenia; M, male; N/A, not applicable.
TABLE 3 | Selected SNPs associated with ITP risk.

Gene SNP Model Genotype/allele Control ITP OR (95% CI) Adjusted
p value

Count % Count %

TIM3 rs10515746 Codominant CC 291 98.6 293 95.4 1.000
AA 0 0.0 0 0.0 _ _
CA 4 1.4 14 4.6 3.572 (1.153–11.064) 0.027

Dominant CC 291 98.6 293 95.4 1.000
CA/AA 4 1.4 14 4.6 3.628 (1.175–11.200) 0.025

Allele C 586 99.3 600 97.7 1.000
A 4 0.7 14 2.3 3.509 (1.140–10.798) 0.029

CD28 rs1980422 Codominant TT 246 83.4 233 75.9 1.000
CC 4 1.4 0 0.0 _ 0.999
CT 45 15.2 74 24.1 1.798 (1.181–2.711) 0.006

Dominant TT 246 83.4 233 75.9 1.000
CC/CT 49 16.6 74 24.1 1.646 (1.095–2.472) 0.016

ICOS rs6726035 Recessive TT 62 21.0 89 29.0 1.000
CC/CT 233 79.0 218 71.0 1.510 (1.037–2.198) 0.032

Allele C 320 54.2 292 47.6 1.000
T 270 45.8 322 52.4 1.303 (1.037–1.637) 0.023
Janua
ry 2021 | Volume 11 | Artic
CI, confidence interval; ITP, immune thrombocytopenia; OR, odds ratio; SNP, single-nucleotide polymorphism. Adjusted p value calculated with univariate logistic regression. Bold
highlights p < 0.05.
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Following adjustment for age and sex, the TT genotype and T
allele of PD1 rs36084323 were significantly associated with ITP
severity in the four models (p = 0.008, p = 0.029, p = 0.039 and
p = 0.012, respectively; Table 5). Under the allele model, the T
allele of LAG3 rs870849 showed a statistical relationship with
ITP severity (p = 0.022, Table 5). Combined analysis with the
allele model revealed that the minor alleles of PD1 rs36084323
and LAG3 rs870849 play different roles regarding ITP severity.
Specifically, ITP patients carrying the T allele of PD1 rs36084323
showed a 1.649-fold increased risk of developing severe ITP
(OR = 1.649, 95% CI = 1.186–2.291, p = 0.003, Table 5). In
contrast, patients with the T allele of LAG3 rs870849 showed a
0.506-fold decreased risk of severe ITP (OR = 0.506, 95% CI =
0.312–0.818, p = 0.005, Table 5).
Frontiers in Immunology | www.frontiersin.org 5
Polymorphisms Associated With
Corticosteroid Sensitivity
Thereafter, we explored the association between immune
checkpoint-related SNPs and response to ITP treatment,
especially corticosteroid therapy. Similarly, we used four
models to study corticosteroid sensitivity and resistance
among ITP patients. The patients who were administered
corticosteroid therapy were stratified into the corticosteroid-
sensitive group and corticosteroid-resistant group (n = 107 and
n = 137, respectively).

Statistical analysis under the four models revealed a different
distribution of genotypic and allelic frequencies of DNAM1
rs763361, indicating that it was significantly associated with
corticosteroid-sensitivity (p < 0.05, Supplementary Table 3). ICOS
TABLE 4 | Selected SNPs associated with ITP risk by multivariate logistic regression analysis.

Gene SNP Model Genotype/allele Controls ITP patients OR (95% CI) Adjusted
p value

Count % Count %

TIM3 rs10515746 Codominant CC 291 98.6 293 95.4 1.000
AA 0 0.0 0 0.0 _ _
CA 4 1.4 14 4.6 3.509 (1.128–10.914) 0.030

Dominant CC 291 98.6 293 95.4 1.000
CA/AA 4 1.4 14 4.6 3.617 (1.170–11.185) 0.026

Allele C 586 99.3 600 97.7 1.000
A 4 0.7 14 2.3 3.218 (1.043–9.924) 0.042

CD28 rs1980422 Codominant TT 246 83.4 233 75.9 1.000
CC 4 1.4 0 0.0 _ 0.999
CT 45 15.2 74 24.1 1.788 (1.178–2.713) 0.006

Dominant TT 246 83.4 233 75.9 1.000
CC/CT 49 16.6 74 24.1 1.645 (1.093–2.475) 0.017

ICOS rs6726035 Allele C 320 54.2 292 47.6 1.000
T 270 45.8 322 52.4 1.276 (1.015–1.605) 0.037
Janua
ry 2021 | Volume 11 | Artic
CI, confidence interval; ITP, immune thrombocytopenia; OR, odds ratio; SNP, single-nucleotide polymorphism. Adjusted p value calculated with multivariate logistic regression. Bold
highlights p < 0.05.
FIGURE 1 | Distribution of high-risk genotypes and protective genotypes in the GMDR model. High risk genotypes (dark gray) and protective genotypes (light gray)
combinations are presented. Patterns of high-risk genotypes and protective genotypes differ across different multi-locus dimensions; this is evidence of epistasis or
gene–gene interaction.
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rs6726035 under the allele model was also related to corticosteroid-
sensitivity of ITP patients (p < 0.05, Supplementary Table 3).

For DNAM1 rs763361, after adjusting for sex and age, minor
allele homozygotes rather than heterozygotes were significantly
associated with corticosteroid-sensitivity in the codominant and
recessive models (p = 0.016 and p = 0.030, respectively, Table 6).
Allelic frequencies of ICOS rs6726035 were significantly different
under the allele model between corticosteroid-sensitive and
-resistant groups (p = 0.015, Table 6).

Results under the allele model revealed statistical associations
between DNAM1 rs763361, ICOS rs6726035, and corticosteroid
sensitivity determined using multivariate logistic regression
analysis (p = 0.002 and p = 0.002, respectively; Table 6). The T
allele of DNAM1 rs763361 was associated with a 1.939-fold
increased risk of corticosteroid-resistance (OR = 1.939, 95% CI =
Frontiers in Immunology | www.frontiersin.org 6
1.278–2.942, p = 0.002, Table 6). Conversely, the T allele of ICOS
rs6726035 had a protective effect (OR = 0.538, 95% CI = 0.366–
0.791, p = 0.002, Table 6).

Polymorphisms Associated With Immune
Thrombocytopenia Refractoriness
ITP patients were further divided into refractory and non-refractory
groups to study the influence of polymorphisms on ITP
refractoriness. We compared the distribution of alleles and
genotypes between both groups using Fisher’s exact test or the c2

test. The genotypic distribution of PD1 rs36084323 was significantly
associated with ITP refractoriness (p < 0.05, Supplementary Table 4).

Following adjustment for age and sex, the genotypic
distribution of PD1 rs36084323 under the codominant and
dominant models was statistically different between both
TABLE 5 | Selected SNPs associated with ITP severity.

Gene, SNP Model Genotype/allele Non-severe Severe OR (95% CI)# Adjusted p value# OR (95% CI)* Adjusted
p value*

Count % Count %

PD1, rs36084323 Codominant CC 48 28.2 24 17.5 1.000
TT 28 16.5 36 26.3 2.558

(1.274–5.138)
0.008

CT 94 55.3 77 56.2 1.640
(0.922–2.919)

0.093

Dominant CC 48 28.2 24 17.5 1.000
TT/CT 122 71.8 113 82.5 1.851

(1.064–3.221)
0.029

Recessive TT 28 16.5 36 26.3 1.000
CC/CT 142 83.5 101 73.7 1.797

(1.029–3.138)
0.039

Allele C 190 55.9 125 45.6 1.000 1.000
T 150 44.1 149 54.4 1.507

(1.093–2.076)
0.012 1.649

(1.186–2.291)
0.003

LAG3, rs870849 Allele C 280 82.4 243 88.7 1.000 1.000
T 60 17.6 31 11.3 0.579

(0.362–0.925)
0.022 0.506

(0.312–0.818)
0.005
January 2021 |
 Volume 11 | Artic
CI, confidence interval; ITP, immune thrombocytopenia; OR, odds ratio; SNP, single-nucleotide polymorphism. Calculated with #univariate or *multivariate logistic regression under allele
model. Bold highlights p < 0.05.
TABLE 6 | Association between selected SNPs and corticosteroid-sensitivity of ITP patients.

Gene, SNP Model Genotype/allele Corticosteroid-
sensitive

Corticosteroid-resistant OR (95% CI)# Adjusted p value# OR (95% CI)* Adjusted
p value*

Count % Count %

DNAM1, rs763361 Codominant CC 56 52.3 54 39.4 1.000
TT 5 4.7 18 13.1 3.719

(1.276–10.838)
0.016

TC 46 43.0 65 47.5 1.413
(0.825–2.421)

0.208

Recessive TT 5 4.7 18 13.1 1.000
CC/TC 102 95.3 119 86.9 3.151

(1.116–8.892)
0.030

Allele C 158 73.8 173 63.1 1.000 1.000
T 56 26.2 101 36.9 1.623

(1.092–2.412)
0.017 1.939

(1.278–2.942)
0.002

ICOS, rs6726035 Allele C 89 41.6 143 52.2 1.000 1.000
T 125 58.4 131 47.8 0.634

(0.439–0.914)
0.015 0.538

(0.366–0.791)
0.002
CI, confidence interval; ITP, immune thrombocytopenia; OR, odds ratio; SNP, single-nucleotide polymorphism. Calculated with #univariate or *multivariate logistic regression under allele model.
Bold highlights p < 0.05.
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groups (p = 0.030 and p = 0.034, respectively; Table 7). In
addition, the TT/CT genotypes of rs36084323 showed an 8.889-
fold increased risk of developing refractory ITP compared to the
CC genotype under the dominant model (OR = 8.889, 95% CI =
1.183–66.771, p = 0.034, Table 7).

CD28 rs1980422 Polymorphism Associated
With CD28 Expression
The pathogenesis and development of ITP involves a hyper-
activated T cell response, which includes the production of
immunological effector proteins (45). To explore the relationship
between the gene polymorphism and CD28 expression, we
examined CD28 gene expression at the mRNA level by RT-PCR
and at the protein level by flow cytometry. This was done
considering that flow cytometry could be used to show the
expression of the CD28 protein on the cell membrane of living
CD4+ T cells, and real time PCR is the gold standard for detecting
mRNA expression and is widely used in multiple studies.

We collected peripheral blood of ITP patients with the CT
genotype or TT genotype of CD28 rs1980422. According to the
analysis of the mean fluorescence intensity (MFI) of CD28, ITP
patients with the CT genotype showed a higher level of CD28
protein expression than patients with the TT genotype (p = 0.006,
Figures 2A, B), although the percentages of CD28+ cells in CD4+ T
cells were all greater than 83% and showed no significant difference
between the two groups (p > 0.05, Supplementary Figure 1). The
MFI of CD28 and the percentages of CD28+ cells in CD4+ T cells
are detailed in Supplementary Figure 2. The CT genotype was also
associated with increased CD28 mRNA levels compared to the TT
genotype (p = 0.028, Figure 2C). The results indicate that the CT
genotype of CD28 rs1980422 is a risk factor for ITP.
DISCUSSION

In this study, we examined the associations between CD28, CTLA4,
DNAM1, ICOS, LAG3, PD1, TIM3, and TNFSF4 gene
polymorphisms and ITP. We observed increased frequencies of
heterozygous minor genotypes of TIM3 rs10515746, CD28
rs1980422, and the homozygous minor allele of ICOS rs6726035 in
ITP patients compared with healthy controls, while only CD28
rs1980422 remained significant under the codominant model after
FDR correction (p = 0.002). Moreover, the combination of TIM3
rs10515746, CD28 rs1980422, and ICOS rs6726035 best predicted a
high risk of ITP. In addition, the T allele of PD1 rs36084323
Frontiers in Immunology | www.frontiersin.org 7
corresponded to an increased risk of developing severe ITP, while
the T allele of LAG3 rs870849 corresponded to a decreased risk of
severe ITP. The PD1 rs36084323 polymorphismwas also a risk factor
for ITP refractoriness under the dominant and codominant models.
Regarding corticosteroid sensitivity, individuals carrying TT
genotypes of DNAM1 rs763361 had an increased risk of
corticosteroid resistance in ITP. However, neither allelic nor
genotypic frequencies of CTLA4 rs231779 and TNFSF4 rs2205960
were significantly associated with the susceptibility, severity,
refractoriness, or corticosteroid sensitivity of ITP (p > 0.05,
Supplementary Tables 1–4). Our results suggest that checkpoint
molecules may be involved in the pathogenesis and development of
ITP, and provide potential immune indicators for clinical treatment.

In autoimmunity, the implications of immune checkpoint
molecules have been demonstrated in several autoimmune diseases,
including SLE, RA, MS, and type 1 diabetes. CD28 blockade or
deficiency delays and diminishes symptoms in an SLE mouse model
(26, 46). The B7-CD28 costimulatory signal also promotes priming of
auto-reactive T cells during the development of experimental
autoimmune encephalomyelitis (EAE) (19). In contrast, blockade of
CTLA4 accelerates EAE development, and PD1 deficiency in mice
triggers a lupus-like disease (47, 48). In ITP, PD1 expression increased
in CD4+ T cells and CD8+ T cells, while PD-L1 expression on
monocyte-derived DCs was lower in patients with active ITP than in
healthy controls (49, 50). A single high-dose dexamethasone
treatment limited CD28 expression and enhanced CTLA4
expression in ITP patients (51). These studies have revealed that
immune checkpoints may contribute to the immunopathogenesis of
ITP. Our research investigated multiple autoimmune disease-related
SNPs in checkpoint molecules and found that CD28 rs1980422 is a
risk factor for ITP susceptibility, which provides new evidence of the
impact of immune checkpoints on ITP.

The CD28 rs1980422 polymorphism has been investigated in
multiple autoimmune diseases. These studies found that the
minor allele of CD28 rs1980422 was not associated with lupus
susceptibility in the Egyptian population or RA susceptibility in
the Polish population (52, 53). However, association results in
the Egyptian population revealed a strong association between
CD28 and RA at both the genotypic and allelic levels (54). Our
results suggest that individuals with the CT genotype on the
CD28 rs1980422 locus showed high levels of susceptibility to ITP
in the Chinese population, which confers the importance of
CD28 rs1980422 in susceptibility to autoimmune diseases.

Several studies have focused on the association between
genetic polymorphisms and ITP. In the Egyptian population, the
TABLE 7 | Selected SNPs associated with ITP refractoriness.

Gene, SNP Model Genotype Non-refractory ITP Refractory ITP OR (95% CI) Adjusted
p value

Count % Count %

PD1, rs36084323 Codominant CC 71 25.4 1 3.7 1.000
TT 58 20.7 6 22.2 7.314 (0.854–62.612) 0.069
CT 151 53.9 20 74.1 9.500 (1.249-72.289) 0.030

Dominant CC 71 25.4 1 3.7 1.000
TT/CT 209 74.6 26 96.3 8.889 (1.183–66.771) 0.034
Janu
ary 2021 | Volume 11 | Artic
CI, confidence interval; ITP, immune thrombocytopenia; OR, odds ratio; SNP, single-nucleotide polymorphism.
Adjusted p value calculated with univariate logistic regression. Bold highlights p < 0.05.
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T-G haplotype of the CD40 gene SNP rs1883832 is associated with
an increased risk of ITP development (55), which also suggested
that the immune checkpoint pathway may be involved in the
pathogenesis and development of ITP. In addition, a case-control
association analysis of 277 Chinese children revealed that abnormal
expression, instead of genetic polymorphisms of CTLA4, may be
correlated with susceptibility to ITP (56). Here, we found that
mRNA and protein levels of CD28 in the CT genotype were higher
than those in TT genotype in T cells of ITP patients, suggesting that
heterozygotes of CD28 rs1980422 play an important role in
increased expression of CD28 in ITP. Given that the rs1980422
SNP is located approximately 10 kb away from the 3′ untranslated
region of CD28 and approximately 100 kb away from the 5′
untranslated region of CTLA4 (46), and the intergenetic sequence
has been reported to regulate the transcription level of the genes
nearby (57–59), it is also possible that the rs1980422 SNP is involved
in the balance between CD28 and CTLA4 expression.

We have previously reported that TNFAIP3 rs10499194 and
CARD9 rs4077515 are important susceptibility-related SNPs for
ITP (60, 61). TNFAIP3 is important for the survival of CD4+ T
cells, and downregulated expression of TNFAIP3 may contribute
to T cell dysfunction in SLE (62, 63). CARD9 is important for the
activation of dendritic cells, mediating naïve T cells to IL-17
Frontiers in Immunology | www.frontiersin.org 8
producing Th17 cells (64). These results suggest the core role of
dysregulated T cell function in ITP.

In summary, we have found that immune checkpoint-related
SNPs, especially CD28 rs1980422, may be genetic factors
associated with the development and treatment of ITP. Our
results provide new clues for the identification of therapeutic
targets and prognosis prediction in ITP.
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