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Transplantation is the gold-standard treatment for the failure of several solid organs,
including the kidneys, liver, heart, lung and small bowel. The use of tailored
immunosuppressive agents has improved graft and patient survival remarkably in early
post-transplant stages, but long-term outcomes are frequently unsatisfactory due to the
development of chronic graft rejection, which ultimately leads to transplant failure.
Moreover, prolonged immunosuppression entails severe side effects that severely
impact patient survival and quality of life. The achievement of tolerance, i.e., stable graft
function without the need for immunosuppression, is considered the Holy Grail of the field
of solid organ transplantation. However, spontaneous tolerance in solid allograft recipients
is a rare and unpredictable event. Several strategies that include peri-transplant
administration of non-hematopoietic immunomodulatory cells can safely and effectively
induce tolerance in pre-clinical models of solid organ transplantation. Mesenchymal
stromal cells (MSC), non-hematopoietic cells that can be obtained from several adult
and fetal tissues, are among the most promising candidates. In this review, we will focus
on current pre-clinical evidence of the immunomodulatory effect of MSC in solid organ
transplantation, and discuss the available evidence of their safety and efficacy in
clinical trials.
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INTRODUCTION

Solid organ transplantation has been established as the standard of care for end-stage disorders
affecting the kidneys, liver, heart, lungs and small bowel. Advances in our understanding of the
adaptive host-versus-graft immune response have led to the development of potent
immunosuppressive agents that have improved graft and patient survival in early post-transplant
stages substantially (1). Despite these breakthroughs, the current immunosuppressive regimen is
associated with detrimental side effects, such as cardiovascular diseases (2), metabolic complications
(3), cancer (4), and infections (5), which cause significant morbidity and mortality. Moreover,
immunosuppressants are ineffective in preventing the development of chronic rejection, which
causes 10% of kidney allograft loss every year (6) and affects 50% and 75% of lung transplant
recipients at 5 and 10 years post-transplant (7). Therefore, there is an urgent need for alternative
strategies to enable the minimization of immunosuppression and to improve long-term graft
org February 2021 | Volume 11 | Article 6182431
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survival. Among these, the use of live suppressor/regulatory cells
is emerging as the most promising tool. The use of mesenchymal
stromal cells (MSC) is gaining particular attention due to their
potential to inhibit the host-versus-graft immune response at the
different key steps involved in acute and chronic graft rejection.

In this review we provide a summary of the immunomodulatory
features of MSC in pre-clinical models of solid organ
transplantation and analyze the results of clinical studies using
MSC-based cell therapies in patients with kidney, liver, lung, and
small bowel transplantation.

Mesenchymal Stromal Cells
Mesenchymal stromal cells are plastic-adherent, non-
hematopoietic, fibroblast-like cells with the capability to
differentiate into osteoblasts, adipocytes and chondrocytes.
Traditionally, bone marrow (BM) was the main source of MSC
considered; however, alternative sources, such as adipose tissue
(8), the umbilical cord (9), or the placenta (10) are now widely
used as sources of MSC due to their higher yield and the less
invasive procurement strategies involved.

MSC are isolated and expanded in culture from whole cell
preparations by using their ability to adhere to cell culture plastic
and to proliferate for several weeks. This approach yields a
population of fibroblast-like cells that are relatively homogenous
morphologically, but it inevitably contains a heterogeneous
population of cells with distinct phenotypes and biological
properties. In 2006, the International Society for Cell & Gene
Therapy established a non-ambiguous and broadly accepted set
of minimal criteria for defining “mesenchymal stromal cells”:
plastic-adherence, expression of CD105, CD90, and CD73 surface
markers, negativity for CD45, CD19, and CD14 hematopoietic
antigens, and stimulus-induced tri-lineage differentiation in vitro
into osteoblasts, adipocytes and chondrocytes (11).

The lack of specific markers and the retrospective
characterization of MSC (which is still performed after long-
term culture) have long precluded a deeper understanding of
their native origin and physiological functions (12). Studies
conducted during the last decades showed that MSC represent
a fundamental component of the BM stroma, where they control
maintenance, self-renewal and differentiation of hematopoietic
stem cells (12, 13). Impaired functional, replicative, and
regenerative capacities of BM-MSC have been implicated in
development of hematological malignancies (14), such as
myelodysplastic syndromes (15, 16), leukemia (17), and
multiple myeloma as well as in BM failure syndromes (18, 19).
More recent evidence suggests that MSC reside in the vascular
niches, being either identical to or deriving from pericytes (20).
Here, MSC stabilize the vascular network, contribute to the
normal tissues and immune homeostasis, and modulate
osteoclast formation. In response to injury, MSC participate in
tissue repair and might inhibit overaggressive autoimmune
reaction against the injured tissue (21).

Despite arguments about heterogeneity and in vivo
counterparts (22), a wealth of data has provided irrefutable
evidence that MSC have unique and highly potent immune-
dampening, immune-regulatory, anti-inflammatory, and pro-
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reparative properties. This evidence, coupled with simple and
cost-effective cell production, have stimulated intense
investigation of MSC as a novel therapy for numerous clinical
indications (23), including solid organ transplantation (24).

Immunomodulatory Features of MSC on
Adaptive Immunity
One of the first pieces of evidence of the immunomodulatory
effect of MSC was provided—almost 20 years ago—in a baboon
skin allograft model (25). In this study, MSC were shown to
suppress allogeneic T-cell proliferation in a mixed lymphocyte
reaction and to delay skin allograft rejection (25). Since then,
numerous in vitro and in vivo studies have demonstrated the
capability of MSC to inhibit the activation and proliferation of
CD4+ T cells (26), preventing their differentiation into TH1 and
TH17 effector cells (27), and to reduce CD8

+ T-cell cytotoxicity in
response to allogeneic stimuli (28). MSC were shown to also
suppress the activation of memory T cells induced by cytokines
(29) or by alloantigens from both minor and major
histocompatibility complexes (30, 31).

Of particular interest, MSC exhibited a remarkably potent
ability to convert not only naïve (32, 33) but also effector/
memory CD4+ T (34, 35) and CD8+ T cells (36–38) toward a
regulatory phenotype. Indeed, in in vitro studies, human BM-
MSC expanded Tregs from CD3+CD45RO+ human memory T
cells (34) and from collagen-reactive human T cells, including
CD8+ T cells (36, 39). MSC-induced CD4+ Tregs maintained a
regulatory phenotype and function over time (34) and
suppressed the ex vivo proliferation of T cells from patients
with rheumatoid arthritis in an antigen-specific manner (39).
The mechanisms at the basis of this Treg-inducing capacity are
incompletely understood, but likely involve cell-to-cell contact
(40, 41), the release of soluble mediators such as Transforming
Growth Factor (TGF)-b1 (40, 41) and Prostaglandin E2 (PGE2)
(41), as well as the induction of regulatory phenotype in antigen
presenting cells (37, 41). PGE2 (35) and Hepatocyte Growth
Factor (HGF) (42) had a key role in the induction of a Treg
phenotype in differentiated Th17 cells, either after in vitro
polarization (42) or isolated from inflamed tissues from
patients with psoriasis vulgaris or active Crohn’s disease (35).
A very recent study described that the transfer of mitochondria
from MSC to CD4+ T cells may be a mechanism capable of
driving Treg differentiation by itself (43).

Regardless of the underlying mechanisms, Treg induction by
MSC has so far been observed consistently in several animal
models of immunological diseases (41), in different human
autoimmune disease conditions (44–46), as well as in acute
and chronic graft-versus-host disease (GVHD) (47, 48).

Recent studies in autoimmune disorders have identified
follicular T helper cells (TFH) as an additional target of MSC
immunomodulation. MSC downregulated the proliferation and
differentiation of TFH cells during in vitro polarizing
conditioning of CD4+ T cells isolated from patients with
rheumatoid arthritis (49) and Sjogren syndrome (50), or from
lupus-prone mice (51–53). Indoleamine 2,3-dioxygenase (IDO)
(49) and inducible Nitric Oxide Synthase (iNOS) (52) expression
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or cell-contact (51) have been reported as possible mechanisms.
MSC infusion in NZB/W (51) or MRL/lpr (52, 53) lupus-prone
mice or in mice with collagen-induced arthritis (CIA) (49)
attenuated disease severity, reduced autoantibody levels and
was associated with a decrease in the frequency of TFH cells. A
very recent study in a mouse model of chronic GVHD (54)
showed that extracellular vesicles isolated from human umbilical
cord (UC)-MSC alleviated disease manifestation by reducing
germinal center B cell and TFH cell number in the spleen (54).
Moreover, TFH cells isolated from UC-MSC treated CIA mice
inhibited ex vivo proliferation, differentiation and IgG
production from B cells (49). This evidence suggests that MSC
could indirectly regulated the B cell responses in autoimmune
diseases by exerting their inhibitory action on TFH cells.

Conflicting results have been reported on the direct effects of
MSC on B cells. Some groups found that MSC may inhibit in
vitro proliferation of B cells and their differentiation into plasma
cells (55), while other authors described an opposite effect (56).
These discrepancies can be explained by the different
experimental conditions used in these studies, such as the
starting B cell population—whether purified B cells or total
lymphocytes—as well as the type of stimuli used for activating
B cells, and the effects these stimuli could directly exert on MSC
(57). Nevertheless, recent findings indicate that MSC inhibit
proliferation of and IgG production of B cells in the presence of
activated by T cells (58) or inflammatory cytokines (59, 60). In
contrast, direct interaction between MSC and B cells mainly
affected B cell differentiation, resulting in reduced plasmablast
formation and increased generation of IL-10–secreting
regulatory B cells (59, 60).

The generation of Bregs by MSC have been confirmed in in
vivo studies. In mouse models of multiple sclerosis (61) and
lupus (62), treatment with MSC suppressed the severity of the
disease by increasing the frequency and activity of Bregs along
with an enhanced secretion of IL-10. In a clinical study, patients
with refractory chronic GVHD given MSC infusions had clinical
improvements associated with increased proliferation and IL-10
production by Bregs (63).

Overall, these studies indicate that MSC have a broad
immunomodulatory actions on cells of the adaptive immune
system, modulating effector functions and promoting
regulatory properties.

Immunomodulatory Features of MSC on
Innate Immunity
Another fundamental immunoregulatory property of MSC is
their effect on antigen-presenting cells.

In in vitro experiments, MSC impaired dendritic cell
maturation, downregulating their expression of MHC-II and
costimulatory molecules (64, 65) and preventing the secretion
of the pro-inflammatory cytokines IL-12, IFNg, and TNFa (66).
Consequently, DC exposed to MSC exhibited impaired
alloantigen presentation and inefficient effector T-cell
activation (65). These effects, coupled with enhanced secretion
of the anti-inflammatory cytokine IL-10, resulted in sustained
expansion of regulatory T cells (Tregs) (67). In addition, MSC
Frontiers in Immunology | www.frontiersin.org 3
inhibited in vivo DC migration toward lymphoid organs by
downregulating CCR7 expression (65).

Among the cells of the innate immune system, macrophages are
the main target of MSC immunoregulation, as highlighted by
several recent studies. MSC promote macrophage polarization
toward the anti- inflammatory M2 phenotype (68),
downregulating the secretion of pro-inflammatory cytokines while
upregulating phagocytic activities and the release of IL-10 (69).
MSC, either by inducing (70) or undergoing (71) apoptosis, enable
macrophages to produce TGFb and to promote the induction of
Tregs. In addition, by releasing trophic factors, MSC play an
important role in educating macrophages to promote tissue repair
and inflammation resolution (72).

The mechanisms through which MSC exert these effects on
the multiple adaptive and innate immune effector cells are
incompletely understood. However, paracrine effects mediated
by their plentiful secretome, which includes cytokines, growth
factor, and miRNA directly transferred to close target immune
cells or encapsulated in extracellular vesicles, appear to be among
the main mechanisms of MSC immunomodulation. Key mediators
include TGFb (73); HGF (39); PGE2 (69); IDO (74); iNOS (75);
leukemia inhibitor factor (LIF) (76); HLA-G1 (77); TNF-stimulated
gene 6 (TSG-6) (78); galectin-1, -3 and -9 (79); purinergic signals
(80), as well as miRNA targeting TLR-associated pathways and the
inflammasome (81) and mitochondrial transfer (82).

Overall, it is now clear that it would be impossible to identify a
single mechanism responsible for the effect of MSC: different
mediators released by MSC or surface molecules expressed on
these cells are likely to act in concert to inhibit the alloimmune
response at several crucial points, inducing the differentiation
and proliferation of Tregs, Bregs and immature DC and M2
macrophages to dominate the anti-graft immune response. The
establishment of a regulatory cell network could resolve the long-
standing conundrum of the long-term effects of MSC in spite of
their very short-term engraftment and in vivo survival (83).

Insights From Experimental Models of
Solid Organ Transplantation
MSC have been the subject of vigorous investigation as a
potential tolerogenic cell therapy in pre-clinical transplant
models of the kidney, heart, liver and lung (Figure 1).

Kidney Transplantation
In murine models of acute transplant rejection following kidney
transplantation, an intravenous injection of MSC derived from
either donor mice (84) or syngeneic recipient mice (85, 86)
induced graft tolerance, mediated by the generation of donor-
specific FOXP3+ Tregs (84–86) and tolerogenic dendritic cells
(84, 87). The main mediator involved appeared to be IDO, since
MSC from IDO knock-out mice failed to prolong graft survival
(84). These findings have been confirmed in a rabbit model of
kidney transplantation, where the induction of donor-specific
Tregs and graft tolerance mediated by bone marrow-derived
MSC (BM-MSC) were strengthened by transgenic IDO
overexpression (88). The Treg-inducing property was found
to be dependent on MSC localization in secondary lymphoid
February 2021 | Volume 11 | Article 618243
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organs, before (85) or at the beginning (86) of the immune
response, since MSC injection 2 days after transplant failed to
expand Tregs and to induce long-term graft acceptance
(85, 86).

Similarly, the administration of BM-MSC as multiple (89) or
single (90) intravenous injections in rats undergoing kidney
transplantation preserved renal function in the early post-
transplant and reduced graft mRNA levels of inflammatory
cytokines and the number of infiltrating macrophages and
dendritic cells, while increasing graft FOXP3+ Tregs. These
positive effects increased when BM-MSC were induced to
overexpress CXCR4, a procedure that upregulated the MSC
expression of anti-inflammatory factors (90).

MSC have also shown the potential to improve chronic
kidney graft damage (91–94). In rat models of chronic graft
injury, the administration of BM-MSC at both early (91, 93, 94)
Frontiers in Immunology | www.frontiersin.org 4
and late (92) post-transplant time points reduced T-cell and
macrophage graft infiltration, inhibited the mRNA expression of
inflammatory cytokines and prevented the development of
interstitial fibrosis, tubular atrophy and glomerulosclerosis, as
well as of donor-specific antibodies (91–94).

Despite these very promising results, a number of reports
have described severe complications following MSC infusion,
raising concerns about the safety of this cell therapy. We
observed that MSC infusion 2 days after kidney transplantation
was associated with transient graft dysfunction characterized by
increased complement C3 deposition and neutrophil infiltration.
In rat kidney transplant models, the injection of MSC from either
syngeneic bone marrow (95) or donor adipose tissue (96) was
associated with increased mortality of recipient rats due to
thrombotic microangiopathy, renal infarctions and infection
(95) or to premature graft loss (96).
FIGURE 1 | Summary of MSC effects in pre-clinical models of solid organ transplantation. Main findings of studies with MSC in experimental models of kidney,
heart, liver, and lung transplantation. The mediators involved in MSC-induced pro-tolerogenic effects and/or specifically overexpressed in selected MSC cell-lines
through genetic engineering are listed next to each arrow. Bregs, regulatory B cells; DCs, dendritic cells; DSA, donor-specific antibodies; HO-1, heme oxygenase-1;
IDO, indoleamine 2,3-dioxygenase; IF/TA, interstitial fibrosis/tubular atrophy; IL-, interleukin-; iNOS, inducible nitric oxide synthase; M2f, M2 macrophages; PD-L1,
programmed death-ligand 1; PGE2, prostaglandin E2; sFgl2, soluble fibrinogen-like protein 2; TGFb, transforming growth factor b; Tregs, regulatory T cells.
February 2021 | Volume 11 | Article 618243
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Heart Transplantation
In heterotopic heart transplant models, the administration of MSC
from bone marrow or adipose tissue, either of donor or recipient
origin, mildly but significantly prolonged heart graft survival (97–
100). The beneficial effect of MSC on graft survival prolongation
translated into long-term graft acceptance when cell infusion was
associated with a short post-transplant course of mycophenolate
mofetil (100, 101) or rapamycin (99, 102). The infusion of MSC
before transplantation achieved better results than post-transplant
administration, and the maintenance of MSC-mediated tolerance
was noticeably dependent on the generation of donor-specific
regulatory T cells (99, 102), as we first demonstrated in a semi-
allogeneic heart transplant model (103). The transfection of MSC
with IL-35 (104) or soluble fibrinogen-like protein 2 (105), two
molecules involved in Treg generation and function, was able to
boost the immunomodulatory effect of MSC in preventing acute
rejection. The increase in Treg cells following MSC administration
was also associated with the development of tolerogenic DC (99,
102) and regulatory B cells, effects that were mediated mainly by
programmed death-ligand 1 (PD-L1) expression (102) and an
increased proportion of graft M2 macrophages (105).

Liver Transplantation
MSC therapy has been tested extensively in pre-clinical liver
transplant models. All of the studies demonstrated that MSC,
isolated from the bone marrow of both donor and recipient
origin (106, 107), as well as from adipose tissue (108, 109), and
injected on the day of transplantation, can attenuate acute graft
rejection, prolong graft survival, inhibit TH1 activation and
reduce the release of pro-inflammatory cytokines while
promoting anti-inflammatory cytokine generation and the
emergence of FOXP3 regulatory T cells (106, 107, 109). MSC
were also found to be effective in a large animal model (108), and
in small-for-size (109) and non-heart beating donor (110) liver
transplant models.

The Treg-generating ability of MSC was also beneficial in
preventing—but not in reversing—the development of post-liver
transplant acute GVHD (111). Indeed, the administration of
either donor-derived or syngeneic BM-MSC into LEWxBNF1
recipients during the first 7 days after LEW liver transplant
prevented the onset of acute GVHD mediated by LEW
splenocytes injected post-operatively. The injection of MSC
between 8 and 14 days after transplantation failed to reverse
GVHD symptoms, suggesting, also in this setting, the
importance of the timing of cell administration in order to
fully take advantage of MSC immunomodulation (111).

In the setting of liver transplantation, different key
immunomodulatory molecules have been overexpressed in MSC
to enhance their tolerogenic properties and improve liver transplant
outcomes. MSC overexpressing IL-10 (112), PGE2 (113), TGFb
(114), and HO-1 (115, 116) increased the capability to skew the
Treg/TH17 balance (112, 116), to promote the development of
induced-Tregs (2) and to convert Kupffer cells toward an anti-
inflammatory phenotype (113). HO-1 overexpression conferred a
higher cytoprotective effect on MSC by promoting autophagy (117)
and by improving hepatic sinusoidal microcirculation and energy
metabolism (118). Notably, MSC transfected with PDL1-Ig were
Frontiers in Immunology | www.frontiersin.org 5
found to induce long-term graft tolerance in a rat model of liver
allotransplantation (119).

Lung Transplantation
In rat models of orthotopic left lung transplantation, human BM-
MSC given as a double injection of 3 × 106 cells via the left
pulmonary artery at day 0 and intravenously at day 3 post-
transplantation decreased lymphocytic infiltrates, edema and
hemorrhage at the histological examination 6 days after
transplant, even though the total acute rejection score was
reduced only mildly (120). A more remarkable effect was
achieved when MSC were associated with conventional
immunosuppression. The co-administration of MSC isolated
from autologous adipose tissue with tacrolimus significantly
reduced rejection scores at day 7 post-transplantation, and this
effect was associated with a reduced frequency of proliferating
cell nuclear antigen (PCNA)-positive cells in bronchus-
associated lymphoid tissue cells (121), suggesting that MSC
could inhibit the local early rejection process (122).

Similarly, the administration of IL-10 overexpressing-BM-MSC
together with CsA improved graft function and alleviated 5-day
acute rejection (123), an effect that could be reproduced through
the use of daily intratracheal injections of conditioned media from
unmanipulated BM-MSC (124), suggesting the MSC secretome
plays a major role in inhibiting the early phase of acute lung
allograft rejection.

Overall, these studies in pre-clinical transplant models have
demonstrated that MSC have a powerful capacity to skew the
host-versus-graft immune response toward a regulatory
phenotype, promoting a pro-tolerogenic environment
dominated by donor-specific Tregs (Figure 1). How MSC,
regardless of their origin (i.e., autologous, donor- or third
party-derived) can promote the expansion of donor-specific
Tregs and the development of tolerance is not completely
understood. Several studies showed that MSC potently induce
Tregs (41), mainly by converting conventional T cells into Tregs
(33, 40). This likely results in the expansion of a broad repertoire
of polyclonal T cells with different specificities. The leading
hypothesis is that the antigen pressure deriving from the graft
could lead to the selection of Tregs able to recognize donor
antigen, therefore receiving the correct TCR signaling for
survival advantage and long-term dominance. Moreover, MSC
can sense the microenvironment and, depending on the
prevailing immunological milieu they encounter in vivo, may
modulate both their phenotype and the function of immune cells
from the host. The timing of cell infusion and the degree of T-cell
activation are the most crucial factors in determining the
beneficial effect of MSC in the transplant setting. Highly
activated T cells and an inflammatory environment can
hamper MSC-mediated immunosuppression or even promote
their conversion into pro-inflammatory cells.

Clinical Studies
Kidney Transplantation
After encouraging results were obtained in animal models and
following reports of the efficacy ofMSC in treating graft-versus-host
disease in bone marrow transplant recipients (125), our group was
February 2021 | Volume 11 | Article 618243
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the first to translate MSC therapy to clinical trials in solid organ
transplantation (126). Since then, several research groups have tried
to determine the extent of the immunomodulatory effects that MSC
have in clinical settings. In renal transplantation, MSC have been
used with different aims: to induce operational tolerance to the
allograft, to treat subclinical rejection, thus preventing the
development of chronic tissue damage and renal function
deterioration, or to reduce the overall dose of induction and/or
maintenance immunosuppression.

In the pursuit of immune tolerance, our group designed a phase
1 clinical study to assess the safety and feasibility of MSC
administration in two recipients of living-donor kidney
transplants, whose preliminary results were first reported over ten
years ago. Autologous BM-MSC at a dose of 1 to 2 × 106 cells/kg
were infused seven days after transplantation, following induction
with low-dose anti-thymocyte globulins and basiliximab (126).
Immune monitoring revealed a progressive increase in the Treg
fraction and a marked reduction in the percentage of circulating
CD8+ memory T cells, coupled with reduced donor-specific T-cell
alloreactivity. However, due to the occurrence of transient renal
dysfunction without evidence of rejection in both patients, the MSC
infusion schedule was reconsidered; indeed, post-transplant MSC
administration was shown to be associated with MSC intra-graft
migration and pro-inflammatory polarization, resulting in severe
neutrophilic infiltration and C3 deposition. Consistent with studies
in animal models (85, 127), this engraftment syndrome was
completely abrogated by infusing MSC the day before renal
transplantation (128).

Long-term follow-up highlighted a sustained increase in the ratio
between Treg and CD8+ effector T cells in one of these patients,
which was associated with a B-cell profile consistent with the pro-
tolerogenic signature identified in other cohorts of spontaneously
tolerant kidney transplant recipients (129). This patient consented
to gradual tapering of immunosuppression, which was successfully
completed without any evidence of rejection (the patient has been
off immunosuppression for over two years), thus supporting the
hypothesis that a single administration of MSC may induce a long-
term, self-sustaining immunoregulatory process responsible for
tolerance induction (130). Other groups reported similar
immunomodulating effects after the administration of autologous
BM-MSC, which were safe and induced an increase in Treg
frequency and a reduction in T-cell proliferation (131);
nevertheless, so far immunosuppression withdrawal has not been
attempted in any other study on renal transplant recipients.

Delayed administration (i.e., over 4 weeks and up to 6 months
after transplantation) of autologous BM-derived MSC was
instead used by Reinders and colleagues to treat patients who
exhibited signs of subclinical rejection or interstitial fibrosis/
tubular atrophy on protocol biopsies (132). Most of these
recipients displayed donor-specific hypo-responsiveness in T-
cell proliferation assays, and the resolution of tubulitis was
reported in the two patients who underwent repeat renal biopsy.

Several investigators also exploited MSC immunomodulation
to safely reduce, but not completely withdraw, induction and/or
maintenance immunosuppression. The efficacy of peri- and post-
transplant infusion of autologous BM-derived MSC as a
Frontiers in Immunology | www.frontiersin.org 6
replacement of induction therapy with basiliximab was
assessed in a randomized controlled trial involving 159 patients
(133). Independent of the maintenance immunosuppression dose,
patients allocated to MSC had a significantly lower incidence of
acute rejection and renal function decline.

Similar results were obtained with the use of allogeneic,
donor-derived MSC, which reportedly allowed a 50% dose
reduction of calcineurin inhibitors without having an impact
on the incidence of rejection episodes, graft function or survival
(134, 135). Despite these results, these studies did not find any
difference in the immunophenotype of MSC recipients over time,
underscoring that a certain degree of variability in results due to
the heterogeneity of MSC preparations, timing of infusion,
concomitant immunosuppression and patient selection needs
to always be considered in these trials.

These initial experiences with non-autologous MSC paved the
way for the use of off-the-shelf third-party allogeneic MSC,
which have the invaluable advantage of prompt availability for
use in deceased-donor renal transplantation. Sun and colleagues
first reported that pre-transplant infusion of third-party
umbilical cord-derived MSC (UC-MSC) under standard
immunosuppressive therapy (including anti-thymocyte
globulins) was safe and well tolerated in deceased-donor renal
transplant recipients (136).

Early post-transplant administration of third-party BM-MSC
obtained consistent results, and immunophenotype monitoring
showed increased frequency of Treg compared to the control
group (137). However, the same study also indicated that 40% of
patients developed de novo donor-specific antibodies (DSA)
against MSC or shared graft-MSC HLA, whose long-term
relevance is still largely unknown.

Dreyer and colleagues recently reported the results of a
clinical trial assessing the safety of a single third-party BM-
MSC infusion 6 months after transplantation with a concomitant
reduction of maintenance immunosuppression (138). To reduce
the risk of sensitization against graft-relevant antigens, the
investigators designed an allocation strategy to avoid repeated
mismatches between the graft and the MSC product. At variance
with the aforementioned study, none of the patients developed de
novoDSA, possibly due to the more quiescent immunologic state
at the time of MSC infusion compared to the peri-transplant
period. Notably, no significant change in leukocyte subsets was
observed after MSC infusion, suggesting that delayed
administration may have limited immunomodulatory effects in
this setting.

Liver Transplantation
Similarly to renal transplantation, MSC immunomodulatory
properties were exploited for heterogeneous purposes in liver
graft recipients, including the induction of operational tolerance,
inhibition of acute rejection and treatment of ischemic
biliary lesions.

The safety and feasibility of early post-transplant infusion of
third-party BM-MSC (1.5–3.0 × 106 cells/kg) was assessed in ten
liver transplant recipients participating in a controlled, open-
label, non-randomized clinical trial (139). Within the limits of
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the short follow-up, MSC did not increase the risk of infection or
malignancy, and the rates of graft rejection, survival and
histologic analysis of 6-month protocol biopsies were similar
between patients who received MSC and controls. However,
MSC failed to induce changes in the immunophenotype, and
weaning MSC recipients off immunosuppression was
not successful.

Intriguing results were reported with the use of MSC for the
treatment of biopsy-proven acute liver allograft rejection.
Twenty-seven patients were randomly allocated to receive
conventional immunosuppression with or without UC-MSC
infusion. At the end of the 12-week follow-up, the patients
who received MSC exhibited lower liver enzyme levels,
increased frequency or circulating Treg and improved
histology compared to controls (140).

The therapeutic potential of six doses of UC-MSC (1.0 × 106/
kg each) was also assessed in 12 liver transplant recipients with
ischemic-type biliary lesions (141). Compared to a group of
patients treated with a traditional protocol, those who received
MSC had a significantly lower need for interventional
therapeutic procedures, lower mortality and higher graft survival.

Lung Transplantation
In lung transplant recipients the use of MSC has focused on
treating chronic allograft dysfunction, the main limitation to
long-term graft and patient survival in this setting. A single-arm,
phase 1 trial assessed the safety and feasibility of four infusions of
allogeneic third-party BM-MSC (2 × 106 cells/kg) in 10 patients
with progressive chronic lung allograft dysfunction (142). The
therapy was well tolerated, and no adverse events involving
hemodynamics or gas exchanges were reported. The authors
observed a trend toward a slower rate of decline in forced
expiratory volume in one second in MSC-treated patients.
Nonetheless, two patients died during follow-up due to
progressive graft dysfunction, suggesting that the effect of MSC
may be heterogeneous in this context as well.

The therapeutic potential of a single infusion of third-party
BM-MSC was also assessed by Keller and colleagues in a dose-
escalation trial that enrolled a relatively homogenous cohort of 9
patients with moderate chronic lung allograft dysfunction (143,
144). Gas exchanges and pulmonary function tests did not
change significantly immediately after infusion or during the
first month of follow-up. However, lung function parameters
stabilized after MSC infusion and did not significantly decline at
one year of follow-up, a finding consistent with a possible
beneficial effect of MSC on the progression of chronic lung
allograft dysfunction.

Small Bowel Transplantation
The properties of MSC have also been assessed in a few cases of
small bowel transplantation. A preliminary report described the
case of an HLA-matched small bowel graft recipient who
developed severe refractory bowel dysfunction (145). The
patient was treated with a single infusion of allogeneic BM-
MSC (1 × 106 cells/kg) as rescue therapy with the dual intent of
providing immunosuppression and support for tissue
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regeneration. An early, marked functional and histological
improvement was noted in the first two weeks after treatment,
and the patient remained stable up until 2 months of follow-up.

Peri- and post-transplant intra-graft administrations of
autologous BM-MSC (three doses, 1 × 106 cells/kg each) were
also employed in a case series of 6 patients who underwent small
bowel transplantation (146). Half of these patients experienced
severe acute rejection, an event rate that is similar to other
patient series of small bowel transplantation (147), and died due
to complications within 3 months of surgery. The results of this
study indicate that MSC are safe in small bowel transplantation
as well, but the small number of patients treated so far mandates
further studies before definitive conclusions on their effects can
be drawn.
OPEN ISSUES AND FUTURE
PERSPECTIVES

Pre-clinical studies have clearly demonstrated the potential of
MSC to substantially improve outcomes in solid organ
transplantation. On the other hand, the clinical studies
conducted so far were mainly phase 1 trials, which were
designed to assess the feasibility and safety of MSC therapy.

In our opinion, original concerns regarding a potentially
higher risk of infections and malignancy in MSC recipients
have been progressively debunked by these trials. Indeed, one
of the first studies in kidney transplant recipients raised the issue
of increased incidence of opportunistic infections in patients who
received MSC (132), but these results were not confirmed by
other studies (133, 137, 148). Similarly, human MSC did not
demonstrate any potential of malignant transformation, even
after long-term in vitro expansion, and no association between
MSC and cancer has been reported in any of the trials conducted
so far (149, 150). Overall, this provides a strong signal regarding
MSC safety, even in this context, but long-term surveillance still
needs to be implemented, as most of these trials reported results
during a limited follow-up period.

Despite the inherent design limitations of phase I studies,
MSC have shown some degree of efficacy in protecting the graft
from chronic rejection and in promoting a pro-tolerogenic
environment, even in this setting. Nonetheless, these effects are
not as robust as those demonstrated in pre-clinical studies.

Several factors are at the basis of the limited success of MSC
therapy in humans. First, despite decades of intense research, the
precise mechanism through which MSC interact with the host
immune system has not been completely understood yet. An
improved understanding of the mechanism of action of MSC will
be crucial in allowing the set-up of assays for selecting the most
effective cell preparation a priori, in enabling the standardization
of cell manufacturing processes in cell factories, and in
establishing the appropriate dose, timing, source and
concomitant immunosuppressive therapy to favor the
beneficial effects of MSC. Identifying the most important
mediator(s) of MSC-induced immunomodulation will also
February 2021 | Volume 11 | Article 618243
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make it possible to clarify whether engineering MSC could
provide additional benefits in vivo compared to standard
preparations, or whether MSC secretome could replace live
cells for cell-free tolerogenic therapy.

Research should also aim to develop methods to identify
biomarkers of response to MSC therapy in transplant patients.
This will make it possible to identify factors that can influence
MSC therapeutic efficacy in vivo, such as recipient age, medical
history, underlying diseases and type of solid organ transplant.
These factors would enable the selection of candidates who
would benefit from MSC therapy and the tailoring of MSC
therapy to each solid organ transplant recipient.

Once these outstanding challenges are addressed adequately,
we might finally be able to make a major breakthrough in the
induction of tolerance to solid organ transplantation.
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mesenchymal stem cells: biological properties and their role in
hematopoiesis and hematopoietic stem cell transplantation. Stem Cell Rev
Rep (2011) 7:569–89. doi: 10.1007/s12015-011-9228-8

14. Cominal JG, da Costa Cacemiro M, Pinto-Simões B, Kolb H-J, Malmegrim
KCR, de Castro FA. Emerging Role of Mesenchymal Stromal Cell-Derived
Extracellular Vesicles in Pathogenesis of Haematological Malignancies. Stem
Cells Int (2019). doi: 10.1155/2019/6854080

15. Kastrinaki M-C, Pontikoglou C, Klaus M, Stavroulaki E, Pavlaki K, Papadaki
HA. Biologic characteristics of bone marrow mesenchymal stem cells in
myelodysplastic syndromes. Curr Stem Cell Res Ther (2011) 6:122–30.
doi: 10.2174/157488811795495422

16. Mattiucci D, Maurizi G, Leoni P, Poloni A. Aging- and Senescence-
associated Changes of Mesenchymal Stromal Cells in Myelodysplastic
Syndromes. Cell Transplant (2018) 27:754–64. doi : 10.1177/
0963689717745890

17. Ciciarello M, Corradi G, Loscocco F, Visani G, Monaco F, Cavo M, et al. The
Yin and Yang of the Bone Marrow Microenvironment: Pros and Cons of
Mesenchymal Stromal Cells in Acute Myeloid Leukemia. Front Oncol (2019)
9:1135. doi: 10.3389/fonc.2019.01135

18. Kastrinaki M-C, Pavlaki K, Batsali AK, Kouvidi E, Mavroudi I, Pontikoglou
C, et al. Mesenchymal stem cells in immune-mediated bone marrow failure
syndromes. Clin Dev Immunol (2013) 2013:265608. doi: 10.1155/2013/
265608

19. Kassen D, Moore S, Percy L, Herledan G, Bounds D, Rodriguez-Justo M,
et al. The bone marrow stromal compartment in multiple myeloma patients
retains capability for osteogenic differentiation in vitro: defining the stromal
defect in myeloma. Br J Haematol (2014) 167:194–206. doi: 10.1111/
bjh.13020

20. Murray IR, West CC, Hardy WR, James AW, Park TS, Nguyen A, et al.
Natural history of mesenchymal stem cells, from vessel walls to culture
vessels. Cell Mol Life Sci (2014) 71:1353–74. doi: 10.1007/s00018-013-1462-6

21. Caplan AI. Adult Mesenchymal Stem Cells: When, Where, and How. Stem
Cells Int (2015) 2015:628767. doi: 10.1155/2015/628767

22. Sipp D, Robey PG, Turner L. Clear up this stem-cell mess. Nature (2018)
561:455–7. doi: 10.1038/d41586-018-06756-9
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