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gd T cells are the unique T cell subgroup with their T cell receptors composed of g chain
and d chain. Unlike ab T cells, gd T cells are non-MHC-restricted in recognizing tumor
antigens, and therefore defined as innate immune cells. Activated gd T cells can promote
the anti-tumor function of adaptive immune cells. They are considered as a bridge
between adaptive immunity and innate immunity. However, several other studies have
shown that gd T cells can also promote tumor progression by inhibiting anti-tumor
response. Therefore, gd T cells may have both anti-tumor and tumor-promoting effects.
In order to clarify this contradiction, in this review, we summarized the functions of the
main subsets of human gd T cells in how they exhibit their respective anti-tumor or pro-
tumor effects in cancer. Then, we reviewed recent gd T cell-based anti-tumor
immunotherapy. Finally, we summarized the existing problems and prospect of
this immunotherapy.
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INTRODUCTION

gd T cells are the non-classical cell subgroup characterized by expression of gd heterodimeric T
cell receptor (TCRgd) on cell surface. They only account for 1% to 5% of T lymphocytes in
peripheral blood circulation and lymphatic circulation, and predominantly reside in the
mucosal tissues such as skin, intestine, lung, and uterus (1–3). gd T cells are the intermediate
group of cells between innate and adaptive immune cells, serving as a bridge between innate
immunity and adaptive immune response (4, 5). They play important roles in tumor immunity.
Depending on the microenvironment, different gd T cell subgroups can have anti-tumor or pro-
tumor activities.

Compare with ab T cells, gd T cells have different antigen recognition mechanisms and
capabilities without the histocompatibility complex (MHC) and the second signal (CD28 and
CD80/86) (6). They can use TCRgd and natural killer cell receptors (NKR) to recognize a variety of
tumor-associated antigens (TAA), including non-peptidic prenyl-pyrophosphate antigens (PAg)
and stress proteins (7). The PAg are products of isoprenoid biosynthesis pathways, such as isoprene
pyrophosphate (IPP) from mammalian cells and (E)-4-Hydroxy-3-Methylbut-2-Enyl Diphosphate
(HMBPP, the strongest stimulant of gd T cells) from pathogenic microorganisms (8–12). Besides,
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the stress proteins will up-regulate or ectopically express under
the stress conditions, such as apolipoprotein A1-F1-ATPase
complex (F1-ATPase Apo A1) (13), MHC-like molecules
MICA/B, UL16 Binding protein (ULBP) (14–18), endothelial
cell protein C receptor (EPCR) (19, 20), heat shock protein (21–
23) and human MutS homolog 2 (24–26). These antigens can
activate gd T cells to secrete interferon g (IFN-g) and tumor
necrosis factor a (TNF-a) (6), or kill tumor cells through Fas/
FasL and antibody-dependent cell-mediated cytotoxicity
(ADCC) (27–30). Moreover, gd T cells can also enhance the
anti-tumor ability of other immune cells by secreting cytokines
or expressing costimulatory molecules. For example, human gd T
cells can stimulate the cytotoxicity of NK cells through expressed
the costimulatory molecule CD137L (31). gd T cells have been
used in clinic for the treatment of non-small cell lung cancer and
breast cancer. Such gd T-based immunotherapy appeared to be
safe and well-tolerated in patients (32–35).

However, it was reported that gd T cells could also promote
cancer development (36). For example, as one of the main
sources of interleukin-17 (IL-17), tumor-infiltrating gd T cells
were shown to promote tumor development and metastasis by
enhancing angiogenesis and recruiting inhibitory cells (37–40).
Tumor-infiltrating gd T cells could also directly induce the
apoptosis of anti-tumor immune cells (41).

In this review, we introduced the classification of human gd T
cells and summarized how gd T cell subsets play different roles in
tumorigenesis. We further discussed the gd T cell-based anti-
tumor immunotherapy which has been widely used in clinic.
Finally, we briefly summarized the current limitation and caveats
associated with such therapy, and proposed new approach for
optimization. We believe that the summary of biological
functions of different gd T cells can help us improve our
understanding of tumor microenvironment, and provide novel
insights for anti-tumor immunity.
CLASSIFICATION OF gd T CELLS

Human gd T cells can be classified into different groups based on
the expression of TCRg chains or TCRd chains, and they can be
further classified by the expression of different CD molecules
(42, 43).

Classification Based on the Expression
of TCRg Chain or TCRd Chain
Different TCRg chains (Vg2/3/4/5/8/9) and TCRd chains (Vd1/2/
3/5) can be combined to form different types of gd T
cells. Interestingly, each TCRd chain usually forms with one or
several dominant TCRg chains a fixed combination pattern,
rather than with random combinations (44–47).

Different gd T cells have diversified distribution and
functions. Vd1 chain can interact with different g chains to
form various gd T cells. They are mainly distributed in the
skin, intestine, liver, spleen and mucosal tissues. The role of Vd1
T cells is controversial. In certain situations, they have been
shown to have strong anti-tumor effects in colorectal cancer,
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multiple myeloma, chronic lymphocytic leukemia (48–50). On
the other hand, tumor-infiltrating Vd1 T cells often demonstrate
strong immunosuppressive effects. They secreted IL-17 and
transforming growth factor-b (TGF-b) (51), expressed
programmed cell death 1 ligand 1 (PD-L1), and inhibited the
activation of other immune cells (41).

The Vd2 chain only combines with the Vg9 chain to form the
Vg9Vd2 T cells, which mainly exist in peripheral blood. Given
that the Vg9Vd2 T cells have strong anti-tumor effects in various
types of tumors, they were widely used in clinics (52–55). In
addition, they have also been shown to kill the cancer stem cells
(CSC) in various tumors including colon cancer, ovarian cancer,
and neuroblastoma (56, 57).

The Vd3 chain mainly interacts with the Vg2 and Vg3 chains.
Vd3 T cells mainly exist in the liver, and also in a small amount
in the peripheral blood of patients with chronic lymphocytic
leukemia. The functions of Vd3 T cells in tumors have not been
elucidated in depth (58–61).

The Vd5 chain usually combines with the Vg4 chain to form
the Vg4Vd5 T cells. They mainly exist in peripheral blood. The
TCR of Vg4Vd5 T cells could directly bind to the endothelial
protein C receptor (EPCR) to recognize epithelial tumor cells.
Like Vd3 T cells, they were rarely studied for their tumor-related
functions (19, 62) (Table 1).

Classifications Based on the Phenotype
of CD Molecules
Human gd T cells can be classified based on the expression of
CD27 and CD45RA. The naive type (Tnaive, CD27

+CD45RA+)
and the central-memory phenotype (TCM, CD27

+CD45RA-),
mainly exist in the secondary lymphoid organs. TCM can
maintain immune memory for a long time and quickly
mediate immune response after receiving antigen stimulation.
The effector-memory type (TEM, CD27-CD45RA-) and
terminally-differentiated type (TEMRA, CD27

-CD45RA+) mainly
exist at the site of inflammation and exert instant effects, namely
secreting cytokines and exerting cytotoxicity (63, 64).

Classification of gd T Cells According
to Their Cellular Function
Based on their varied functions, gd T cells can be divided into
several subtypes. Similar to ab T cells, effector gd T cells can exert
an anti-tumor effect through various pathways. Regulatory gd T
cells (CD4+CD25+Foxp3+) or inhibitory gd T cells can regulate
the immune balance and maintain immune tolerance (17, 51). In
addition, gd T17 cells can produce IL-17 to promote tumor
development (6, 36, 41).
TABLE 1 | Subsets of human gd T cells.

Subset Paired TCRg chains Cellular localization

Vd1 Vg2, Vg3, Vg4, Vg5, Vg8 and
Vg9

Skin, intestine, liver, spleen and mucosal
tissues

Vd2 Vg9 Peripheral blood
Vd3 Vg2, Vg3 Liver and peripheral blood
Vd5 Vg4 Peripheral blood
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gd T CELLS PLAY A DIRECT ANTI-TUMOR
ROLE

The Tumor-Associated Antigens
Recognition by gd T Cells
Vg9Vd2 T cells recognizes TAA through TCRgd and NKR and
Vg9Vd2TCR can recognize PAg. This type of antigen was a product
of isoprenoid biosynthesis pathway in eukaryotic cells, such as IPP
and the adenylated, thymidylated, and uridylated triphosphate
derivatives. In tumor cells, the isoprenoid biosynthetic pathway is
enhanced to ensure energy supply and PAg accumulation,
prompting recognition by the Vg9Vd2 T cells (65–68).
Vg9Vd2TCR requires the help of Butyrophilin (BTN) 3A1 to
recognize tumor cells. BTN3A1 is an immunoglobulin-like
molecule with immunomodulatory function, which could mediate
the interaction between gd T cells and PAg, and could also be
directly recognized by Vg9Vd2TCR (69–71). There were two
theories on how BTN3A1 helps Vg9Vd2TCR recognize PAg. The
first proposed mechanism was that BTN3A1 is a sensor that senses
the level of PAg inside the cell. The intracellular B30.2 domain of the
BTN3A1 molecule is a positively charged pocket that could directly
bind to PAg, lead to changes in the structure of the extracellular
dimer of BTN3A1 that can be recognized by Vg9Vd2TCR, and then
activate the gd T cells (72–77). The second proposed mechanism
was that BTN3A1 formed a BTN3A1-PAg complex with PAg,
presented PAg to the outside of the cell, and directly bound to
Vg9Vd2TCR to activate gd T cells (78). The latest study found that
BTN2A1, which was in the same family as BTN3A1, was also a
ligand for Vg9Vd2TCR and necessary for Vg9Vd2 T cells to
recognize PAg. BTN2A1 and BTN3A1 can be found on the
surface of tumor cells and recognized by two sites of
Vg9Vd2TCR. BTN2A1 is recognized by the Vg9 area, and
BTN3A1 is recognized by the Vd2 area (79, 80). In addition,
Vg9Vd2TCR could recognize the F1-ATPaseApoA1 complex.
This complex are normally expressed in the inner membrane of
mitochondria, but some tumor cells, such as human leukemia
(K562) cells and lymphoma (Raji) cells, could ectopic express it
on the cell membrane. ApoA1 in the complex could not directly
activate Vg9Vd2 T cells, instead it plays a function in stabilizing the
interaction between Vg9Vd2TCR and F1-ATPase (13, 81).

Vg9Vd2 T cells could also recognize TAA through NKR, such as
the natural killer 2D receptor (NKG2D) and DNAX accessory
molecule 1 (DNAM-1). NKG2D is a lectin-type activation receptor,
expressed on most natural killer cells (NK) and natural killer T
(NKT) cells and partly expressed on gd T cells and antigen-activated
CD8+ T cells (82). When gd T cells contacted by the tumor cells,
Vg9+ subpopulations rapidly proliferated, and gd T cells up-
regulated their NKG2D expression (83). NKG2D ligands on
tumor cells include MICA, MICB and ULBP1~4 (84, 85). They
could be recognized by NKG2D and enable gd T cells to exert anti-
tumor function (82). DNAM-1 is expressed on the gd T cells and
believed to promote the secretion of cytokines and enhance the
cytotoxicity of immune cells. Vg9Vd2 T cells used DNAM-1 to
recognize Nectin-2 and PVR, which were widely expressed on the
tumor cells (86–88). Shielding DNAM-1 from the surface of gd T
cells could significantly inhibit its ability to kill tumor cells (89). It
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was shown that DNAM-1 is one of the important factors mediating
gd T cells to recognize tumor cells.

Vd1 T cells also recognize tumor cells through TCRgd and NKR.
Vd1TCR could recognize MHC-like molecule CD1d and the lipid
antigen presented by it (90, 91). CD1d is expressed on a variety of
cancers, such as myeloma, breast cancer and prostate cancer (92–
94). The decrease of CD1d molecules on the primitive
neuroectodermal tumor cells would cause these cells to evade
immune recognition (95). In addition, Vd1TCR could recognize
tumor cells through MICA, but the MICA bindings by Vd1TCR
and NKG2D were mutually exclusive (96). Vd1 T cells also express
NKR. These cells recognize ULBP3 which is expressed on chronic
lymphocytic leukemia of B-cell type (B-CLL) through NKR (97).
They recognize human breast cancer cells through NKG2D,
significantly preventing the disease progression (35). In addition
to NKG2D and DNAM-1, Vd1 T cells stimulated by IL-2 or IL-15
also express NKp30, NKp44 and NKp46 (48, 98), and have strong
IFN-g secretion ability (99, 100). Moreover, it has been confirmed
that in acute myeloid leukemia, the ligand of NKp30 is B7-H6, a
member of the B7 family (101).

Other studies have also confirmed that Vg4Vd5TCR can
recognize EPCR, which is expressed on the epithelial tumor
cells (19, 20) (Figure 1).

Anti-Tumor Mechanism of gd T Cells
First, gd T cells could kill tumor cells directly through secreting
perforin and granzyme B (82). gd T cells recognize tumor cells and
release perforin and granzyme B into the synaptic space. They
could further activate caspases to break DNA of tumor cells and
lead to tumor cell death (102–105). gd T cells could kill the human
squamous cell carcinoma through perforin and granzyme B (106).
Perforin and granzyme B inhibitor significantly reduce the ability
of Vg9Vd2 T cells to lyse breast cancer cells in vitro (107).
Moreover, in patients with renal carcinoma, activated Vg9Vd2 T
cells showed a strong cytotoxicity to autologous tumor cells
through perforin and granzyme B (108).

Second, gd T cells kill tumor cells through ADCC. The Fab
and Fc segment of antibody could bind to the TAA and gd T
cells, respectively. Then gd T cells are activated to kill the tumor
cells. Upon interaction with tumor cells, the expression of CD16
(FcgRIIIA) could be up-regulated on gd T cells to induce tumor
death through ADCC (82, 109, 110). In chronic lymphocytic
leukemia and breast cancer patients, the cytotoxicity of Vg9Vd2
T cells is significantly enhanced after treatment with monoclonal
antibodies including rituximab, trastuzumab and alemtuzumab
(111–113).

Third, gd T cells kill tumors through the Fas/FasL pathway
and TRAIL (106). FasL expressed on gd T cells could bind to Fas,
and formed Fas trimer, which lead to the binding of the death
effector domain (DED) to Fas-associated death domain–
containing protein (FADD), and then activate caspases to
induced the apoptosis of target cells (114–116). Similar to Fas/
FasL, TRAIL also activates caspases through FADD, and then
leads to apoptosis of tumor cells (117–124). In addition, IFN-g
could enhance the cytotoxicity of gd T cells by up-regulating the
expression of Fas on osteosarcoma cells (125, 126).
February 2021 | Volume 11 | Article 619954
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Similar to Vg9Vd2 T cells, Vd1 T cells could kill tumor cells
through the perforin-granzyme B, Fas/FasL and TRAIL
pathway (49, 50, 98, 101). For example, human skin Vd1 T
cells could secrete perforin to kill melanoma cells (127).
Granzyme B+ Vd1 T cells and TRAIL+ Vd1 T cells showed
strong cytotoxicity to lymphoma cells and chronic lymphocytic
leukemia (128–130). Beyond that, ex vivo expanded Vd1 T cells
highly express FasL, and have strong cytotoxicity on colon
cancer cells (131).
gd T CELLS ENHANCE THE ANTI-TUMOR
ABILITY OF OTHER IMMUNE CELLS

gd T cells share similar functions as antigen presenting cells (APC),
which could activate CD8+T cells (132, 133). When co-cultured
with chronic myeloid leukemia (CML) cell lysates, the expression
of co-stimulatory molecules (CD40, CD80 and CD86) and
antigen-presenting molecule HLA-DR on Vg9Vd2 T cells could
be strongly up-regulated. When these gd T cells were co-cultured
with CD8+ T cells, the proliferation rate of CD8+ T cells became 3
times faster than that of the control group (134, 135). Tumor cell
fragments activate MAPK signaling pathways through
Vg9Vd2TCR, up-regulate the expression of scavenger receptor
CD36, enhance antigen uptake and processing of Vg9Vd2 T cells,
and then induced tumor antigen-specific CD8+T cell response
(136). Furthermore, gd T cells toned to interact with cell surface-
bound antibodies to acquire the ability of APC (137).

In addition, activated gd T cells could secrete IFN-g, which
stimulates CSC to up-regulate the expression of MHC I
molecules and CD54, and enhance the killing effect of CD8+T
cells on tumor cells (138). Activated gd T cells could also express
CD137L to stimulate NK cells that upon proliferation exhibit
strong anti-tumor activity through cell-to-cell contact (31).
Frontiers in Immunology | www.frontiersin.org 4
The interaction between gd T cells and dendritic cells (DC) is
mutual. gd T cells promote the maturation of DC, and mature
DC induces the activation and proliferation of gd T cells, which
yield enhanced anti-tumor effect (139, 140). For example,
activated Vg9Vd2 T cells could secrete IFN-g and TNF-a to
promote DC maturation and increase the expression of CD86
and MHC-I molecules on DC (141, 142). Mature DC could
activate gd T cells through presenting IPP, which synergizes with
ATP-binding cassette transporter A1 (ABCA1), ApoA1 and
BTN3A1 (143) (Figure 2).
TUMOR-INFILTRATING gd T CELLS
PROMOTE TUMOR DEVELOPMENT
BY SECRETING IL-17

Interestingly, patients with increased number of tumor-
infiltrating gd T cells have higher recurrence rates and
likelihood of metastasis (144–146). Among the tumor-
infiltrating gd T cells, Vd1 T cells are present as the main
population and secrete IL-17 to promote tumor development.
IL-17 can promote the proliferation of tumor cells by activating
IL-6/STAT3 and NF-kB pathways. In addition, it can also
stimulate tumor cells to secrete vascular endothelial growth
factor (VEGF) and matrix metalloproteinases (MMP) to
further help tumor metastasis. High levels of IL-17 have been
found in patients with advanced tumor or metastasized tumors
(64, 147, 148). For example, in patients with solid tumors, Vd1 T
cells account for a large proportion of tumor-infiltrating gd T
cells; unlike Vd1 T cells in adjacent non-tumor tissues, tumor-
infiltrating gd T cells do not express granzyme B, perforin, IFN-g,
FasL, TRAIL and NKR, but secrete IL-17 (149–154). Majority of
the tumor-infiltrating Vd1 T cells were TEM phenotype, while
most of the Vd1 T cells in healthy subjects were TCM phenotype
FIGURE 1 | Recognition of tumor-associated antigens (TAA) by different gd T cells. Vd1TCR could recognize MICA or the complexes of CD1d and TAA; NKR+
(NKG2D and NKp30) Vd1 T cells could recognize ULBP3 and B7-H6. Besides, Vg9Vd2 T cells could also recognize and kill tumors by CD16-mediated antibody-
dependent cell-mediated cytotoxicity (ADCC). Notably, Vg4Vd5TCR could recognize the antigen of epithelial tumor cells, EPCR.
February 2021 | Volume 11 | Article 619954
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(64). Similarly and compared with healthy people, cancer
patients have a larger proportion of Vd1 T cells and higher IL-
17 levels in their peripheral blood (155, 156).
TUMOR-INFILTRATING gd T CELLS
INHIBIT THE ANTI-TUMOR FUNCTION
OF OTHER IMMUNE CELLS

IL-17, secreted by tumor-infiltrating Vd1 T cells not only acts on
tumor cells directly, but can also recruit myeloid-derived
suppressor cells (MDSC) to tumor (147, 148, 150). MDSC
inhibits the activation of CD8+ T cells by expressing high levels
of ARG1, which decomposes arginine in the tumor
microenvironment (157–160).

In addition, tumor-infiltrating gd T cells could significantly
inhibit the maturation of CD4+ T cells (155). Studies in breast
cancer settings showed that tumor-infiltrating gd T cells could
inhibit the maturation of CD4+ or CD8+ T cells and change their
functions by arresting cell cycle in G0/G1 phase and increasing
the expression of p53, P21, and P16. Through secreting IL-10
and TGF- b1, these suppressed T cells further amplified the
inhibitory effect (161, 162). Beyond that, these cells express high
levels of PD-L1 to promote the apoptosis of CD8+ T cells in
cancer patients (41).

Vd1 T cells could also inhibit the maturation of DC, reduce
the expression of CD80/86 and HLA-DR on DC, attenuate the
secretion of pro-inflammatory cytokines TNF- a, and up-
Frontiers in Immunology | www.frontiersin.org 5
regulate the expression of PD-L1 on the surface of DC (161,
163) (Figure 3).
ANTI-TUMOR IMMUNOTHERAPY WITH
gd T CELLS

The unique antigen recognition mechanism of gd T cells renders
them the ability to kill various types of tumors. Therefore, gd T
cell-based therapies have been widely used in clinical as anti-
tumor immunotherapies and achieved good results (Table 2). At
present, the most routine method in these therapies is to activate
the anti-tumor activity of natural gd T cells and the Vg9Vd2 T
cells, which as the most abundant subtype in peripheral blood are
often selected and utilized through transferring back to cancer
patient after stimulation in vitro or direct activation in vivo.

The most widely used stimulants for expanding Vg9Vd2 T cells
in vitro are zoledronic acid (ZOL) and IL-2. As a kind of
bisphosphate, ZOL could specifically inhibit farnesyl
pyrophosphate synthase (FPPS) in isoprene biosynthesis pathway,
thus causing the accumulation of endogenous PAg in cells and
promoting the activation of Vg9Vd2 T cells (65). This method
could effectively expand and activate Vg9Vd2 T cells from patients
or healthy people in vitro (52). In addition, another kind of PAg, 2-
methyl-3-butenyl-1-pyrophosphate(2M3B1-PP) could also
effectively stimulate and expand Vg9Vd2 T cells (164, 165). The
activated immune cells are transferred back into the patients to
produce anti-tumor effects. In order to track the activated Vg9Vd2
FIGURE 2 | gd T cells enhance the anti-tumor ability of other immune cells. On the one hand, activated gd T cells can activate natural killer cells (NK) and dendritic
cells (DC), activated DC can further activate gd T cells. On the other hand, activated gd T cells can up-regulate the expression of CD36 and enhance their antigen
uptake ability after uptake of tumor cell lysates. At the same time, through contact with tumor cells with antibodies, the ability of antigen-presenting cells (APC) is
obtained and CD8+T cells are activated. In addition, IFN- g secreted by gd T cells can up-regulate the expression of CD54 and MHC I molecules in tumor cells, and
further enhance the anti-tumor effect of CD8+T cells.
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TABLE 2 | Clinical trials of gd T cell-based immunotherapy.

Cell
types

Cell source Stimulation method Disease Number of
patients

Phase Ref.

Vg9Vd2 T Peripheral blood of healthy
people

ZOL+ a variety of interleukins (Patent
pending)

Cholangio-carcinoma 1 IV (52)

Vg9Vd2 T Peripheral blood ZM3B1PP+IL-2 Advanced renal cell carcinoma 7 Pilot
study

(164)

Vg9Vd2 T Peripheral blood 2M3B1PP+ZOL+IL-2 Advanced renal cell carcinoma 11 I/II (165)
Vg9Vd2 T Peripheral blood ZOL+IL-2 Several solid tumors 18 I (166)
Vg9Vd2 T Peripheral blood ZOL+IL-2 Multiple myeloma 6 I (167)
Vg9Vd2 T Peripheral blood IPH1101+IL-2 Metastatic renal cell carcinoma 10 I (168)
Vg9Vd2 T Peripheral blood ZOL+IL-2 Recurrent non-small-cell lung

cancer
10 I (169)

Vg9Vd2 T Peripheral blood ZOL+IL-2 Advanced non-small lung cancer 15 I (170)
Vg9Vd2 T Peripheral blood ZOL+IL-2 Malignant ascites (gastic cancer) 7 Pilot

study
(171)

Vg9Vd2 T Peripheral blood ZOL+IL-2 Refractory renal cell carcinoma 12 Pilot
study

(172)

Injection ZOL+IL-2 Neuroblastoma 4 I (173)
Injection ZOL+IL-2 Several advanced tumors 21 I/II (174)
Injection ZOL+IL-2 Lymphoid malignacies 19 Pilot

study
(175)

Injection IPH 1101+IL-2 Several solid tumors 28 I (176)

Li et al. gd T Cells Immunotherapy
T cells, they are typically labeled with indium111. Studies have
confirmed that these cells mainly metastasize to the lung, liver and
spleen, as well as to the tumor sites (166). In the treatment of
patients with multiple myeloma, the stimulated Vg9Vd2 T cells
expressed high levels of NKG2D and IFN-g, but not IL-17. After
treatment, the number of Vg9Vd2 T cells in the tumor
Frontiers in Immunology | www.frontiersin.org 6
microenvironment increased, lasting as long as 4 weeks (167). In
patients with renal cell carcinoma and non-small cell lung cancer,
repeated injections of IL-2 has demonstrated good safety (168),
enhanced the cytotoxicity of Vg9Vd2 T cells. As results, the
deterioration of tumor was alleviated with patients’ condition
stabilized, and the survival time was pro-longed (164, 165, 169,
FIGURE 3 | Tumor-infiltrating gd T cells promote the development of tumor. Tumor-infiltrating gd T cells secrete IL-17 promote the proliferation and metastasis of
tumor cells, and recruit myeloid-derived suppressor cells (MDSC) to inhibit the function of CD8+T cells. Moreover, tumor-infiltrating gd T cells directly impaired the
function of CD4+/CD8+T cells and dendritic cells (DC), the aging DC further inhibited CD4+/CD8+T cells.
February 2021 | Volume 11 | Article 619954
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170). In the clinical study of malignant ascites, after transferring
back the activated Vg9Vd2 T cells, the number of tumor cells in
ascites decreased significantly and the level of IFN-g in ascites
increased. During the course of treatment, there were no significant
adverse effects and the amounts of ascites decreased significantly
(171). In addition to the direct anti-tumor effect of Vg9Vd2 T cells,
the numbers of CD4+ T and CD8+ T cells could also get increased
after the allogeneic Vg9Vd2 T cells were transferred into the
patients, as shown in another study of cholangio-carcinoma (52).

Vg9Vd2 T cells could also be activated in vivo. Injection of ZOL
and IL-2 could directly activate these cells in cancer patients. Serval
clinical trials have demonstrated that, upon injection and activation
of Vg9Vd2 T cells in vivo, IFN-g was strongly induced and the
deterioration of the tumor was controlled (53, 172–175). Besides
ZOL, Vg9Vd2 T cells could also be activated by synthetic PAg or
bromohydrin pyrophosphate (BrHPP, IPH1101) with good safety
tolerability in patients (176).
OPTIMIZATION OF gd T CELL-BASED
IMMUNOTHERAPY

In clinic, repeated use of ZOLand IL-2 carry the liability in inhibiting
the proliferation of Vg9Vd2 T cells (172), which could be alleviated
by vitamin C (VC) and L-ascorbic acid 2-phosphate (pVC). VC has
the ability to reduce the apoptosis of gd T cells during stimulation,
and pVC may enhance the expansion of gd T cells. Therefore, VC
andpVChave beenutilized to improve the efficacy of the gdTcells in
anti-tumor immunotherapy (177). In addition, cytotoxicity of
Vg9Vd2 T cells could be improved by adding IL-21, IL-15, or IL-
33 in vitro (55, 178–182). Anti-cancer drug Gemcitabine or anti-
epileptic drug Valproic acid (VPA) in combination with ZOL could
also enhance the anti-tumor ability of gd T cells (183, 184).

In recent years, chitosan nanoparticles (CSNPs) and
antibodies have been developed as potential anti-tumor
therapies. CSNPs have been shown to regulate gd T cells by
up-regulating the expression of NKG2D, CD56 and FasL, and
enhancing their anti-tumor functions (185). TIM-3 could also
inhibit the killing effect of Vg9Vd2 T cells on tumor by reducing
the expression of perforin and granzyme B. PD-1 and TIM-3
antibodies could protect anti-tumor activity of Vg9Vd2 T cells
(186–188). Beyond these, the application of bispecific antibodies
can also promote gd T cells to inhibit tumor development. For
example, in the study of hepatoblastoma and pediatric
hepatocellular carcinoma, the application of EpCAM/CD3-
bispecific BiTE antibody (MT110) enhanced the anti-tumor
ability of gd T cells; similarly, in epithelial ovarian cancer and
pancreatic ductal adenocarcinoma, bispecific antibody
[HER2xCD3] and [(HER2)2xVg9] (tribody format) could also
effectively enhance the cytotoxicity of gd T cells (189–193).

Finally, chimeric antigen receptor engineered gd T (CAR-gd T)
technology is another new direction in immunotherapy. CAR- gd T
cells could target GD2, a TAA on the surface of neuroblastoma cells,
and effectively kill tumors. This kind of CAR-gd T cells need to
recognize GD2 to become activated. Such mechanism ensures the
specificity of these cells in killing tumor cells and offering lower
Frontiers in Immunology | www.frontiersin.org 7
toxicities and side effects (194, 195).On thehand,Vg9Vd2TCRcould
alsobe transduced intoabTcells.TheseCAR-Tcells arecalledTEGs,
which carry not only the extensive recognition ability of gdT cells but
also and the memory ability of ab T cells (196–199).
SUMMARY

Taken together, we described in this review that Vd1 T cells and
Vg9Vd2 T cells are the two most important subgroups of human gd
T cells. Peripheral Vd1 T cells and Vg9Vd2 T cells could recognize
tumor cells through TCRgd and NKR, and kill them through
perforin-granzyme B, Fas/FasL and TRAIL. Activated Vg9Vd2 T
cells could perform the function of APC, and furthermore, they
could activate NK cells and DC directly. On the contrary, tumor-
infiltrating Vd1 T cells promoted tumor development by secreting
IL-17 and inhibiting the maturation of CD4+/CD8+ T cells and DC.
In immunotherapy, ZOL, 2M3B1-PP or IPH1101 has been
commonly used to activate Vg9Vd2 T cells to achieve anti-tumor
effect. The failure caused by repeated application of this method can
be solved by adding VC or replacing cytokines. In addition, new
classes of drugs such as CSNPs, were also applied to gd T cell-based
anti-tumor immunotherapy.

It is noteworthy to mention that although Vd1 T cells account
for the majority of tumor-infiltrating gd T cells, the definition of gd
T cell subsets still rely on their profile in cytokine production (32,
64, 149). Secondly, the interaction mechanism between gd T cells
and the environment or other immune cells remains to be further
elucidated. For example, Vg9Vd2 T cells could ingest LDL-
cholesterol upon activation and lead to reduced function,
suggesting that obesity may inhibit the anti-tumor activity of gd
T cells (200). Another myth exists in how exactly soluble molecules
mediate the inhibition of gd T cells in tumor microenvironment
(161, 163). In addition, gd T cell-based immunotherapy needs to be
further optimized, with emphasis on how to carry out personalized
therapy according to the actual situation of individual patient.

In summary, a more comprehensive understanding of the
biological characteristics of gd T cells, an important group of
lymphocytes, will guide the improvement of their clinical
application methods and provide new strategies to fight against
human cancers.
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