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and Hermann Einsele

Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany

In the last few years, monoclonal antibodies (mAbs) such as elotuzumab and daratutumab
have brought the treatment of multiple myeloma (MM) into the new era of immunotherapy.
More recently, chimeric antigen receptor (CAR) modified T cell, a novel cellular
immunotherapy, has been developed for treatment of relapsed/refractory (RR) MM, and
early phase clinical trials have shown promising efficacy of CAR T cell therapy. Many
patients with end stage RRMM regard CAR T cell therapy as their “last chance” and a
“hope of cure”. However, severe adverse events (AEs) and even toxic death related to
CAR T cell therapy have been observed. The management of AEs related to CAR T cell
therapy represents a new challenge, as the pathophysiology is not fully understood and
there is still no well-established standard of management. With regard to CAR T cell
associated toxicities in MM, in this review, we will provide an overview of experience from
clinical trials, pathophysiology, and management strategies.
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INTRODUCTION

Multiple myeloma (MM), a plasma cell neoplasm, is characterized by uncontrolled proliferation of
clonal, malignant plasma cells in the bone marrow (1). Worldwide, MM accounts for approximately
10% of all hematological malignancies, and represents the second most common malignant
hematological disease in adults with the majority of the patients being male and elder than 60
years of age (2–4). The survival outcome of patients with MM has been improved dramatically in
the last few decades with the introduction of new treatments such as proteasome inhibitors (PIs),
immunomodulatory drugs (IMiDs), and high-dose melphalan with autologous stem cell transplant
(SCT) (5, 6). However, MM is still an incurable malignant disease as the majority of the patients
with MM relapse in the course of the disease (7).

In the last few years, monoclonal antibodies (mAbs) such as elotuzumab and daratumumab have
brought the management of MM into the new era of immunotherapy. So far, mAb containing
therapy regimens have become the standard of care in patients with relapsed/refractory (RR) or
newly diagnosed (ND) MM (8). More recently, immunotherapeutic strategies utilizing patients’
org December 2020 | Volume 11 | Article 6203121
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endogeneous T cells, such as bispecific antibodies (bsAbs) and
chimeric antigen receptor (CAR) modified T cell therapy have
shown promising efficacy in patients with RRMM in diverse
clinical trials (9, 10). Preliminary results of some B cell
maturation antigen (BCMA) targeted CAR T cell therapy trials
have even demonstrated an overall response rate (ORR) of up to
100% in RRMM patients (11–13). For this reason, many patients
with end stage RRMM regard CAR T cell therapy as their “last
chance” and a “hope of cure”. Consequently, competitive
enrollment and limited number of available slots represent
major limitations of current CAR T cell trials for RRMM at
many centers. In brief, CAR T cell therapy is highly effective and
seems to be an attractive therapy option for MM patients.
However, severe treatment–related adverse events (AEs) and
even toxic death have also been observed in patients who have
received CAR T cell therapy (14). The CAR T cell–related
toxicity has posed a great challenge, as the mechanism is not
fully understood and there is still no well-established standard of
management strategy.

With respect to toxicities related to CAR T cell therapy in
MM patients, this review will provide an overview of experience
from clinical trials, pathophysiology, and management strategies.
OVERVIEW OF CAR T CELL THERAPY
FOR MULTIPLE MYELOMA

Mechanism of action, CAR targets, preclinical and clinical data
on CAR T cell therapy for MM have been extensively discussed
in previous review articles (15–17), and these issues are not the
main topic of our current review. Here, we will just provide a
brief overview.

T cells is an important element in adaptive immune system
against tumor cells and external pathogens. The concept of CAR
T cell therapy is to facilitate an interaction between tumor cell
and patient’s own T cell. Using viral vector or electroporation,
the CAR gene can be transmitted and integrated into the genome
of autologous T cells, resulting in CAR expression on the cell
surface (18). A CAR consists of an extracellular domain that can
recognize tumor specific surface antigens and intracellular signaling
(i.e., CD3z) or costimulatory domains (e.g., CD28 and/or 4-1BB),
which promote T cell activation and proliferation (19, 20). In
August 2017, the United States Food and Drug Administration
(FDA) has approved the first CAR T cell therapy “Tisagenlecleucel”,
a CD19 specific CAR construct, for the treatment of patients with
RR B cell precursor acute lymphoblastic leukemia (ALL) (21). At
present, diverse CAR T cell products for MM patients are under
investigation within clinical trials.

CAR T cell is not an off-the-shelf product. Patients’
autologous T cells must be collected by leukapheresis and
genetically modified to express CARs. As the currently
available CAR T cell therapy trials include only patients with
RRMM, a bridging therapy is usually needed to avert fulminant
disease progression during the period between leukapheresis
and CAR T cell infusion (22). The patients then receive
lymphodepleting conditioning (LDC) to build up a favorable
Frontiers in Immunology | www.frontiersin.org 2
environment for CAR T cell activation, proliferation and
survival, by multiple mechanisms including elimination of
immunosuppressive cells and homeostatic cytokine sinks (23–
25). Thirty to sixty minutes before CAR T cell infusion, pre-
medication with acetaminophen and diphenhydramine should
be given (26). CAR T cells bind to the target antigen shortly after
the infusion, which leads to rapid in vivo activation and
proliferation of CAR T cells (27). These cells show their
cytotoxic activity by releasing cytotoxic granules containing
perforin and granzyme, activation of the Fas and Fas ligand
pathway, and production of multiple cytokines (28) (Figure 1).

Currently, BCMA represents the most commonly used CAR
target in clinical trials investigating CAR T cell therapy for MM.
BCMA, a transmembrane glycoprotein also referred to as CD269 or
tumor necrosis factor receptor superfamily 17 (TNFRSF17), is highly
expressed by malignant plasma cells (29, 30). More importantly,
BCMA is almost absent in other cell lineages and normal human
tissues (9). The expression of BCMA can promote myeloma growth
and protect MM cells from apoptosis (31–33). A recent updated
meta-analysis of 20 studies demonstrated a pooled ORR of 84%
with 43% complete remission (CR) in patients with heavily
pretreated RRMM who had received BCMA directed CAR T cell
(10). Importantly, even the heavily pretreated patients with
extramedullary disease (EMD), a high risk feature, presented a
high ORR of 78%, which could not be achieved by
conventional combination chemotherapies such as “VDT-PACE”
(bortezomib, dexamethasone, thalidomide, cisplatin, doxorubicin,
cyclophosphamide, and etoposide) (34), “DexaBEAM”
(dexamethasone, carmustine, etoposide, cytarabine, and melphalan)
(35), daratumumab (36) or carfilzomib containing treatments (37).
However, as reported by Gagelmann et al., synthesized results of five
full publications from China or the United States (38–42) yielded a
relapse rate of 45% at the last follow up, and the median progression-
free survival (PFS) was only 10 months (10).

In principle, other antigens, which are presented by malignant
plasma cells, can likewise be selected as CAR T cell target for MM
patients. CAR T constructs targeting alternative antigens such as
CD138 (syndecan-1) (43), CD19 (44), CD38 (45), kappa light
chain (46), signaling lymphocyte activation molecule family 7
(SLAMF7, CS1, or CD319) (47), G protein coupled receptor
family C group 5 member D (GPRC5D) (48), CD44v6 (49), and
natural killer group 2D (NKG2D) (50) also have been explored in
preclinical settings and are presently under clinical investigation.
Besides these, some other clinical trials evaluating multi-specific
CAR T cell therapy targeting BCMA and an additional antigen,
e.g., CD38 (51), SLAMF7 (52), transmembrane activator and
calcium modulator and cyclophilin ligand interactor (TACI)
(53), and CD19 (54), are ongoing. Preliminary results from the
phase 1 trial at the Wuhan Union Hospital, China, demonstrated
a high ORR of 87.5% (14/16) in heavily pretreated RRMM
patients who received BCMA/CD38 bispecific CAR T cells, with
all five patients with EMD responding to this therapy (54). We
summarize the currently available clinical data on CAR T cell
therapy in RRMM in Table 1.

In brief, the currently available data suggest, even in patients
with high-risk features, a superior efficacy of CAR T cell therapy
December 2020 | Volume 11 | Article 620312
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in RRMM compared with already approved highly potent novel
agents including carfilzomib, pomalidomide, and daratumumab.
These results encourage further development and investigation
of CAR T cell therapy in MM. CAR T cell therapy has the
potential to become a new backbone of MMmanagement and to
be incorporated into the standard frontline treatment.
CAR T CELL–RELATED TOXICITY IN
MULTIPLE MYELOMA:
PATHOPHYSIOLOGY AND CLINICAL
PRESENTATION

CAR T cell therapy is often associated with a prolonged
cytopenia phase and excessive cytokine production (71, 72). In
general, the severity of CAR T cell therapy associated toxicity is
related to tumor burden, dose of CAR T cells, as well as the
antigen that has been targeted. In MM patients, with BCMA
being the most commonly used target antigen, clinical data on
CAR T cell–related toxicity are mainly based on these studies.
The most common toxicities include cytokine release syndrome
(CRS), immune effector cell associated neurotoxicity syndrome
(ICANS), and cytopenia-related complications, which have also
been reported in studies investigating anti-CD19 CAR T cell
therapy in B cell leukemia and/or non-Hodgkin’s lymphoma
(NHL) (21, 72–76). However, severe CRS and/or ICANS are less
Frontiers in Immunology | www.frontiersin.org 3
common in MM than that in ALL or NHL, probably due to
reduced T cell fitness in these heavily pretreated patients with
RRMM. In addition, awareness of other on-target off-tumor side
effects is also important in the clinical practice.

Cytokine Release Syndrome
CRS is characterized by hyper-inflammatory immune response
following CAR T cell infusion. The pathophysiology of CRS is
not yet fully understood. Some potential mechanisms of CRS
have been illustrated in Figure 1. After CAR T cell infusion, the
immune interaction between CAR T and MM cells leads to
CAR T cell activation and expansion, which subsequently causes
massive cytokine production from CAR T cells, e.g., interferon-g
(IFN-g), tumor necrosis factor a (TNF-a), and granulocyte/
macrophage colony stimulating factor (GM-CSF) (77, 78). These
T cell effector cytokines, in turn, result in activation of other
immune or non-immune cells, e.g., the monocyte/macrophage
system (79). In CRS, the macrophage is considered as the main
source of the pro-inflammatory cytokines and/or mediators such
as interleukin-1 (IL-1), interleukin-6 (IL-6), interleukin-10 (IL-
10), IFN-g, macrophage inflammatory proteins (MIP), monocyte
chemoattractant protein-1 (MCP-1), as well as inducible nitric
oxide synthase (iNOS), etc (80). Moreover, macrophage can also
secrete catecholamines, which can in turn enhance the hyper-
inflammatory immune response (81–83). Furthermore,
experience with anti-CD19 CAR T cell therapy in B cell ALL
has suggested that the cytokine storm can also result in
A B

C

FIGURE 1 | Pathophysiology of chimeric antigen receptor modified (CAR) T cell toxicities. CAR T cells are activated upon antigen recognition, and induce apoptosis
of multiple myeloma cells by activation of Fas/FasL-pathway and releasing cytotoxic granules containing perforin and granzyme. In turn, CAR T cells activate other
immune cells such as macrophages, which produce multiple cytokines simultaneously with activated CAR T cells themselves. (A) Cytokine release syndrome (CRS):
The diverse cytokines cause activation of vascular endothelium. The endothelial activation plays a major role in cytokine release syndrome with fever, hypotension,
and hypoxia. (B) Immune effector cell associated neurotoxicity syndrome (ICANS): The endothelial activation by multiple cytokines in blood stream results in
disruption of blood-brain barrier. Subsequently, the central nervous system (CNS) is directly exposed to the cytokines in high concentrations, leading to local
inflammation and secondary cytokine production by CNS itself, e.g., microglia. (C) On-target off-tumor toxicity: Healthy tissue and some other hematopoietic cells
such as B cells also express the target antigen of CAR T cells. Hence, on-target off-tumor toxicities might occur, and are dependent on the selected CAR T cell
target. All organ systems could be affected. BBB, blood-brain barrier; CAR T cell, chimeric antigen receptor modified T cell; CRS, cytokine release syndrome; ICANS,
immune effector cell associated neurotoxicity syndrome; IL, interleukin; IFN, interferon; MCP, monocyte chemoattractant protein; MIPs, macrophage inflammatory
proteins; MM, multiple myeloma; TNF, tumor necrosis factor.
December 2020 | Volume 11 | Article 620312
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TABLE 1 | Selected clinical trials of CAR T cell therapy in relapsed/refractory multiple myeloma (published as manuscript or abstract).

ity Management of CAR T cell
therapy

associated toxicities

Ref

,
5 pts,

tocilizumab in 5 pts,
corticosteroids in 4 pts (38)

2 pts, tocilizumab in 2 pts
(55)

, tocilizumab
in 6 pts,
siltuximab in 1 pt

(41)

85%,
,

tocilizumab in 7 pts,
corticosteroids in 4 pts (39)

30%,
,

tocilizumab in 26 pts
(42)

,
G5)
82%

tocilizumab in 10 pts (with
additional etanercept in 2 pts) (40)

,

5) = 1 pt

tocilizumab in 1 pt,
corticosteroids in 1 pt (56)

4%,

tocilizumab and/or
corticosteroids in 40 pts,
anakinra in 7 pts

(57)

,
T (G2) = 10%

tocilizumab in 3 pts
(58)

NR
(13)

, NR
(59)

G2,1G3),
2,1G3,1G4)

tocilizumab and/or
corticosteroids (60)

= 100%, CRS =
1G5),
G3)

NR
(61)

97%,
5G3,1G4,1G5),

NR
(62)

NR
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Target Identifier Product Phase N LDC Dose (cells/kg) Prior lines
of therapy

ORR Median
PFS

Toxi

BCMA NCT02215967 CAR-BCMA 1 24 Cy/Flu 0.3–9 × 106 9.5 81%# 31
weeks

CRS (≥G3) = 6 pts
CRS (G1–2) = 7 pt
cytopenia (≥G3) =
severe NT = 1 pt

1 12 Cy/Flu 0.3–9 × 106 7 100%# NR cytopenia (≥G3) =
CRS (all Gs) = 6 pt

NCT02546167 CART-BCMA 1 25 Cy or none cohorts 1 and 3: 1–5 × 108,
cohort 2: 1–5 × 107

7 cohort
1: 44%,
cohort
2: 20%,
cohort
3: 64%

cohort 1:
65 days,
cohort 2:
57 days,
cohort 3:
125
days

CRS (all Gs) = 88%
NT = 32%

NCT02658929 bb2121 1 33 Cy/Flu 50×, 150×, 450×, or
800×106

7–8 85% 11.8
months

neutropenia (≥G3)
CRS (all Gs) = 76%
CRS (≥G3) = 6%,
NT (all Gs) = 42%,
NT (G4) = 3%

NCT03090659 LCAR-B38M 1 57 Cy 0.07–2.1 × 106 3 88% 15
months

leukopenia (≥G3) =
CRS (all Gs) = 90%
CRS (≥G3) = 7%,
NT (G1) = 2%

1 17 Cy/Flu or Cy 0.21–1.52 × 106 4 88% 12
months

CRS (G1–2) = 59%
CRS (≥G3) = 41%(
cytopenias (all Gs)

NCT03430011 JCARH125 1/2 19 Cy/Flu 50 × 106 or 150 × 106 10 100% NR CRS (G1–2) = 6 pt
N T(all Gs) = 3 pts,
sepsis after LDC (G

1/2 51 Cy/Flu 300×, 450×, or 600×106 6 91% NR CRS (G ≥ 3) = 2%,
NT (G ≥ 3) = 4%,
infection (G ≥ 3) =

NCT03070327 MCARH171 1 11 Cy/Flu or
Cy

72×, 137×, 475×, or 818 × 106 6 64% NR CRS (G1–2) = 40%
CRS (G3) = 20%, N

NCT03338972 FCARH143 1 7 Cy/Flu 5× or 15 × 107 8 100% NR CRS (G1–2) = 86%

NCT03288493 P-BCMA-101 1/2 25 Cy/Flu 0.5–5 × 108 7 48% NR CRS (G ≥ 3) = 32%
NT (G ≥ 3) = 12%

NCT03274219 bb21217 1 22 Cy/Flu 150, 450, 800, or 1200 × 106 7 83% NR CRS = 59% (5G1,
NT = 23% (1G1, 2

NCT03548207 JNJ-
68284528

1b/2 29 Cy/Flu median 0.73 × 106 5 100% NR neutropenia (G ≥ 3
93% (25G1–2,1G3
NT = 14% (3G1–2,

NCT03361748 bb2121 2 128 Cy/Flu 150–450 × 106 6 73% 8.6
months

cytopenias(all Gs) =
CRS(all Gs) = 84%
NT(G3) = 18%

NCT03661554 NR 1 16 Cy/Flu 2–10 × 106 NR 100% NR
c

,
s
1

1
s
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1
=
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G
)
,
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TABLE 1 | Continued

Toxicity Management of CAR T cell
therapy

associated toxicities

Ref

–4) = 2 pts,
–2) = 14 pts (63)
–2) = 22.7%,
) = 6.8%

NR
(64)

ia (G ≥ 3) = 87.5%,
2) = 62.5% (3G1,12G2),
5% (2G1,1G3),
ic infection (G5) = 1 pt

tocilizumab in 8 pts
(65)

) = 80% NR
(66)

) = 1 pt,
3) = 1 pt,
(G3) = 1 pt

NR
(67)

no NT,
ent related toxicity (G ≥ 3)

NR
(50)

NR
(46)

–2) = 19 pts,
) = 7 pts,
) = 2 pts,
1 pt,

NR
(68)

–2) = 31 pts,
) = 1 pt

tocilizumab in 1 pt
(69)

–2) = 18 pts,
3) = 1 pt,
s (all Gs) = 20 pts,
) = 2 pts,
emorrhage (G5) = 1 pt

NR
(70)

–2) = 10 pts,
3) = 4 pts

tocilizumab in 4 pts
(51)

) = 3 pts NR
(54)

≥ 3) = 82%,
nia (G ≥ 3) = 73%,
1) = 45%

tocilizumab in 3 pts
(53)

nisone; CRS, cytokine release syndrome; Cy, cyclophosphamide; Flu,
yclophosphamide, dexamethasone; PFS, progression-free survival; pt,
doxorubicin, dexamethasone; VGPR, very good partial remission.
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Target Identifier Product Phase N LDC Dose (cells/kg) Prior lines
of therapy

ORR Median
PFS

CRS (G3
CRS (G0

NCT03093168 NR 1 46 Cy/Flu 9 × 106 NR 79.6% 15
months

CRS (G1
CRS (G3

NCT03716856
NCT03302403
NCT03380039

CT053 1 24 Cy/Flu 1.5×, 0.5×, 1×, or 1.8 × 108 4.5 87.5% NR leukopen
CRS(G1
NT = 12
neutrope

CD138 NCT01886976 CART-138 1/2 5 PCD/CP/
VAD

median 0.756 × 107 10 0% NR fever (G3

CD19 NCT02135406 CTL019 1 10 Mel +
ASCT

1–5 × 107 6 90% 200
days

CRS (G1
GvHD (G
mucositi

NKG2D NCT02203825 CM-CS1 1 5 None 1 × 106–3 × 107 ≥5 0% NR no CRS,
no treatm

kappa
light
chain

NCT00881920 k.CART 1 7 Cy or none 0.92–1.9 × 108/m2 4 0% NR no CRS

BCMA
and
CD19*

NCT03196414 NR 1/2 28 Cy/Flu BCMA: 2–6.8 × 107,
CD19: 1 × 107

3 92.6% 8
months

CRS (G1
CRS (G3
CRS (G4
NT (G4)

BCMA
and
CD19*

NCT03455972 NR 1/2 32 BuCy or
Mel +
ASCT

CD19: 1 × 107,
BCMA: NR

NR 100% NR CRS (G1
CRS (G3

BCMA
and
CD19*

ChiCTR-OIC-
17011272

NR 2 22 Cy/Flu CD19: 1 × 106,
BCMA: 1 × 106

6 95% VGPR:
243
days,
sCR:
268
days

CRS (G1
CRS (G
cytopeni
NT (all G
cerebral

BCMA/
CD38ǂ

ChiCTR18
0001814

BM38 1 16 Cy/Flu 0.5×, 1.0×, 2.0×, 3.0× or
4.0× 106

NR 87.5% NR CRS (G1
CRS G ≥

BCMA/
CD19ǂ

NR NR NR 5 Cy/Flu 1.0×106 or 2.0×106 3 100% NR CRS (G1

BCMA/
TACIǂ

NCT03287804 AUTO2 1/2 12 Cy/Flu 15×, 75×, 225×, 600× or
900× 106

5 43% NR anemia (
neutrope
CRS (all

ASCT, autologous stem cell transplant; BCMA, B cell maturation antigen; Bu, busulfan; CAR T cell, chimeric antigen receptor modified T cell; CP, chlorambucil, pre
fludarabine; G, grade; LDC, lymphodepleting conditioning; Mel, melphalan; NR, not reported; NT, neurotoxicity; ORR, overall response rate; PCD, pomalidomide, c
patient; Ref, reference; sCR, stringent complete remission; TACI, transmembrane activator and calcium modulator and cyclophilin ligand interactor; VAD, vincristine,
#In patients with the highest dose.
*The patients received both BCMA and CD19 directed CAR T cells.
ǂBispecific CAR T cells.
–

.
n

s

=

≥

a
s
h

G

G

d

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zhou et al. CAR T Toxicities in MM
endothelial activation, which is characterized by elevation of
angiopoietin-2 (Ang-2) and von Willebrand factor (vWF)
released from Weibel-Palade bodies of endothelium upon
activation (71, 84). However, it is not always possible to
measure the levels of all the involved cytokines in the clinical
practice. In the routine laboratory examination, some serum
biomarkers, e.g., C reactive protein (CRP) and ferritin are usually
elevated in patients suffering from CRS (85). Although these
laboratory markers are often unspecific, they could be used as
surrogate markers to monitor the development of CRS and to
evaluate the response to pharmacologic intervention (18).

Similar to ALL and/or NHL patients, CRS is also the most
common AE in MM patients treated with CAR T cell therapy. As
mentioned above, CRS incidence and severity are related with
CAR T target. In MM, the patients receiving BCMA directed
CAR T cells have shown a very high CRS rate of >80% (39–42),
and toxic death due to severe CRS has also been observed in
some BCMA CAR T cell trials (40, 61, 62). Similarly, in a CD138
targeted CAR T cell therapy study, Guo et al. reported that 80%
(4/5) of the patients developed fever >39°C, which could also be
interpreted as CRS (66). By contrast, CD19, NKG2D or kappa
light chain targeted CAR T cells have shown a low CRS incidence
or even no therapy-related toxicity at all, with these treatments
being less effective than BCMA CAR T cells (46, 50, 67). In MM
patients simultaneously receiving two different CAR T
constructs, i.e., anti-BCMA and anti-CD19 CAR T cells, the
CRS incidence is comparable to that of BCMA directed product
cell alone (68–70). More recently, published data on BCMA/
CD38 or BCMA/CD19 bispecific CAR T cell therapies have
demonstrated a CRS rate similar to that in unispecific BCMA
directed products, and the ORRs were >80% in these studies (51,
54). On the other hand, BCMA/TACI-targeted bispecific CAR T
cells have yielded a low CRS rate of 45%, with the ORR being
merely 43%. This trial is terminated, as preliminary efficacy has
been determined as not sufficient to warrant further investigation
(53). The currently available data of CRS in CAR T cell therapy
in MM are shown in Table 1.

The onset time points and durations of CRS differ widely
among the patients receiving different CAR T cell products. CRS
usually occurs in the first week after the CAR T cell infusion, and
can last a couple of days (86). Therefore, a close monitoring is
mandatory during this period. As CRS is a systemic immune
reaction, all organ systems could be affected. Typical early signs
of CRS include fever ≥38°C, flu like symptoms, arthralgia,
myalgia, and fatigue, which are mainly caused by INF-g
and TNF-a production by CAR T cells themselves (78,
87). Additionally, hypoxia, hypotension, and end organ
damages such as liver function abnormalities, coagulopathy,
decompensated heart failure, cardiac injury, and arrhythmia
have already been reported in severe CRS, and CRS could
develop into a life-threatening situation (42, 55). As previously
mentioned, the excessive cytokine release from CAR T cells and/
or other immune cells might cause endothelial activation,
and might subsequently contribute to severe CRS with
hemodynamic instability, capillary leak, and consumptive
coagulopathy (71, 84). Since activated macrophages are
Frontiers in Immunology | www.frontiersin.org 6
considered as the main source of pro-inflammatory cytokines,
secondary hemophagocytic lymphohistocytosis/macrophage
activation syndrome (HLH/MAS) could be an accompanying
event during CRS (88, 89). Indeed, some patients with CRS do
meet the HLH-2004 diagnostic criteria (90).

In previous studies, CRS was assessed using different grading
systems, e.g., Penn grading scale (91), Lee criteria (92), and CAR
T cell therapy associated TOXicity Working Group (CARTOX)
system (93) and, therefore, the incidence and severity of
CRS cannot be directly compared among these studies (94).
More recently, to solve this issue, the American Society for
Transplantation and Cellular Therapy (ASTCT) developed a
standardized CRS grading system, which was also recommended
by the European Society for Blood and Marrow Transplantation
(EBMT) (22, 95). In the ASTCT scale, CRS grading is based on
presence of fever, hypoxia, and hypotension, with fever ≥38°C
being present in all grades (95). We summarize the ASTCT
grading system for CRS in Table 2.

Immune Effector Cell-Associated
Neurotoxicity Syndrome
ICANS, formerly CAR T cell–related encephalopathy syndrome
(CRES), is another common AE related to CAR T cell therapy.
As the name suggests, ICANS is a central nervous system (CNS)
toxicity associated with immune cell activation. Presently, the
mechanism of ICANS is not fully understood. There are some
hypotheses based on data from anti-CD19 CAR T cell trials in B
cell ALL (Figure 1). Previous studies have demonstrated a clear
correlation of ICANS with the presence and severity of CRS (96,
97). As discussed above, upon CAR T cell activation, multiple
cytokines such as IL-6, IFN-g, and TNF-a released from CAR T
cells and other immune cells might in turn induce endothelial
activation (71, 84). Recent studies with anti-CD19 CAR T cells in
ALL patients have suggested that blood-brain barrier (BBB)
disruption following activation of vascular endothelium might
play a major role in ICANS (96, 97). For instance, Santomasso
et al. have reported that patients with ICANS have significantly
increased cerebrospinal fluid (CSF) protein levels and CSF/
serum albumin quotients after anti-CD19 CAR T cell
treatment, probably due to BBB disruption, and CSF protein
concentration correlated with the severity of ICANS. These
findings support the hypothesis that BBB dysfunction might
promote the development of ICANS (96). In this case, CSF and
CNS are directly exposed to the excessive cytokine production in
the blood stream (88). This is in line with the findings of Gust
et al. that the concentrations of multiple cytokines such as IFN-g,
TNF-a, and IL-6 are comparable between serum and CSF in
patients suffering from acute ICANS, with a cytokine gradient
between CSF and serum being observed at baseline prior to LDC
(97). Moreover, CNS cells like microglia can also be activated by
the diverse cytokines migrated to CSF, triggering secondary CNS
production of cytokines such as IL-6, interleukin-8 (IL-8), IFN-g
induced protein 10 (IP-10), and MCP-1, and consequently local
inflammation (96). Furthermore, Santomasso et al. have also
observed increased levels of endogenous excitatory N-methyl-D-
aspartate (NMDA) receptor agonists quinolinic acid and
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glutamate in CSF during ICANS, probably contributing to
excitotoxicity such as myoclonus or seizure (96). Altogether,
ICANS is a multifactorial event, and further studies are needed to
elucidate the underlying pathophysiology of ICANS.

Generally, ICANS is less common than CRS, and the vast
majority of the patients with ICANS also present a CRS (98).
Evidence of ICANS in MM patients is mainly based on clinical
trials investigating BCMA targeted CAR T cells. Overall, data on
ICANS incidence are very heterogeneous among the currently
available clinical trials, with some studies reporting even no
neurotoxicity (13, 26, 51). Ordinarily, ICANS appears
simultaneously with CRS or shortly after its peak, while
delayed ICANS onset after CRS resolution has also been
observed (39, 71, 96, 97). ICANS is mostly reversible, and the
duration of ICANS ranges from a couple of hours to a few weeks
(39, 55, 56, 58, 62). Therefore, the patients need close monitoring
for ICANS during the entire course of CAR T cell therapy. The
treating physicians should be vigilant that late onset
neurotoxicity might occur. On the other hand, MM patients
treated with non-BCMA directed CAR T cells such as CD138,
CD19, NKG2D, and kappa light chain have not shown any
severe ICANS after the treatment, probably because these
products can only achieve limited CAR T cell activation and
clinical efficacy (46, 50, 66, 67). At present, experience with
bispecific CAR T cell therapy in MM is still very limited, and the
published data of BCMA/CD38, BCMA/TACI and BCMA/
CD19 targeted CAR T cell studies have not demonstrated any
treatment associated neurotoxicity (51, 53, 54). Further
investigations of bispecific CAR T cell therapy in MM are
needed at this point. We summarize the clinical data on
ICANS in MM patients in Table 1.

The clinical presentation of ICANS is highly variable. In MM
patients treated with anti-BCMA CAR T cells, typical signs of
ICANS include confusion (38, 41), delirium (38, 55), transient
aphasia (41, 42), encephalopathy (38, 41, 60, 70), bradyphrenia
(39), agitation (42), hallucination (39), obtundation (41), seizure
(41, 42, 68), mild cerebral edema in magnetic resonance imaging
(MRI) (41), polyneuropathy/polymyopathy (38), tremor (39),
Frontiers in Immunology | www.frontiersin.org 7
dizziness (39, 60), and vertigo (60). Notably, the majority of
patients have shown a mild neurotoxicity and, as of now, toxic
death due to ICANS has not been reported in BCMA CAR T cell
trials in patients with MM. In a study of Yan et al., one patient
had received both anti-BCMA and anti-CD19 CAR T cells, and
this patient died of thrombocytopenia-related cerebral
hemorrhage, which was not classified as treatment-related
neurotoxicity by the investigators (70). By contrast, extensive
neurological defects and even toxic death due to cerebral edema
were observed in anti-CD19 CAR T cell trials in leukemia and/or
NHL (99–102). Importantly, it has been observed that ICANS is
enriched in patients with a high tumor burden such as EMD and
plasma cell leukemia (PCL) (39, 41, 56). Often, severe
neurotoxicity is associated with elevated prothrombin time
(PT), activated partial thromboplastin time (aPTT), D-dimer,
and low fibrinogen (88). Taken together, ICANS in MM is
mainly observed in patients treated with anti-BCMA CAR T
cells, and has a similar symptom spectrum with less severity
compared to that in anti-CD19 CAR T cell therapies for
leukemia and/or NHL.

Previously, ICANS was graded according to Common
Terminology Criteria for Adverse Events (CTCAE) criteria
(103). In 2017, the CAR T cell therapy associated toxicity 10-
point neurological assessment (CARTOX-10) score has been
developed specifically for grading CAR T cell–related
neurotoxicity (93). More recently, the ASTCT has published an
ICANS grading system based on immune effector cell associated
encephalopathy (ICE) score, depressed level of consciousness,
presence of seizure, motor findings, and presence of elevated
intracranial pressure (ICP) or cerebral edema, which represents
the currently most commonly used tool for assessment of ICANS
(95). We summarize the ASTCT criteria in Table 3. In brief,
ICANS is primarily a clinical diagnosis, while neuroimaging and
electroencephalography (EEG) should be performed to evaluate
cerebral edema and seizure, respectively.

Lately, Rubin et al. developed a model for predicting
neurotoxicity after anti-CD19 CAR T cell therapy with
axicabtagene ciloleucel for RR NHL. In this scoring system, the
TABLE 2 | The American Society for Transplantation and Cellular Therapy (ASTCT) grading system and management strategy for cytokine release syndrome (CRS)
[Table adapted from Yakoub-Agha et al. (22)].

Grade 1 Grade 2 Grade 3 Grade 4

Fever ≥38°C Yes Yes Yes Yes
Hypotension No Yes, but does not require

vasopressor
Yes, and requires
vasopressor

Yes, and requires more than one vasopressors (excluding
vasopressin)

Hypoxia No Yes, and requires only low-
flow O2 ≤ 6 L/min (nasal
cannula)

Yes, and requires high-
flow O2 > 6 L/min (face
mask, non-rebreather
mask, venturi mask)

Yes, and requires positive pressure (CPAP, BiPAP, intubation, and
mechanical ventilation)

ICU Not required Alert ICU Transfer to ICU Transfer to ICU
Investigations Diagnostic tests for infections, e.g., blood cultures, laboratory examinations, and imaging
Management Symptomatic measures, anti-infective treatment as per institutional standards

Consider tocilizumab IV
8mg/kg, if the symptoms
persist ≥3 days

Repeat tocilizumab or switch
to siltuximab IV 11 mg/kg

Repeat tocilizumab or
switch to siltuximab IV
11 mg/kg, and
dexamethasone IV 10
mg every 6 h

Repeat tocilizumab or switch to siltuximab IV 11 mg/kg, and
dexamethasone IV 20 mg every 6 h or methylprednisolone 1,000
mg/d. Consider other experimental salvage therapy options
BiPAP, Biphasic Positive Airway Pressure; CPAP, continuous positive airway pressure; ICU, intensive care unit; IV, intravenous.
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following factors were considered: age (≥52 versus <52 years),
maximum CRP (≥8.95 versus <8.95 mg/dl), maximum ferritin
(≥641 versus <641 ng/ml), minimum white blood cell (WBC)
count (<790 versus ≥790/ml), time point of CRS onset (prior to
versus after day 3), histologic subtype of lymphoma (aggressive
versus indolent), temperature (≥38.5°C versus <38.5°C),
presence of CRS of any grade, and use of tocilizumab prior to
day 5 (105). This is a valuable instrument for triaging and
resource allocation, and development of such a predictive
model for MM patients is highly warranted.

Cytopenia-Related Adverse Events and
Other On-Target Off-Tumor Toxicities
In the most of the CAR T cell trials, patients receive LDC prior to
CAR T cell infusion to create a favorable environment for CAR T
cells (23–25). However, LDC is also associated with more frequent
and more severe CRS and/or ICANS (89). Additionally, cytopenias,
i.e., anemia, thrombocytopenia, leukopenia, and neutropenia,
following LDC and/or CAR T cell infusion occur in the vast
majority of the patients (Table 1). In MM patients who received
anti-BCMACART cells, toxic death due to neutropenic infection or
cerebral hemorrhage was already reported (65, 70). There was also a
patient who died of sepsis after LDC and, therefore, could not
receive the CAR T cell infusion (56). Moreover, persisting cytopenia
and even secondary myelodysplastic syndrome (MDS) have been
observed in patients with RR ALL and/or NHL treated with anti-
CD19 CAR T cells (106). At present, long-term follow up data in
MM patients following CAR T cell therapy is still pending. MM
patients who receive CAR T cell therapy are often heavily pretreated
with tandem autologous SCT and/or multiple intensive
immunochemotherapies, which can cause preexisting bone
Frontiers in Immunology | www.frontiersin.org 8
marrow toxicities as risk factor for sustained cytopenia. In
summary, the treating physicians should be aware of acute
cytopenia-related AEs such as infection and bleeding as well as
delayed cytopenia and secondary hematological malignancies.

Another major issue of CAR T cell therapy is the so-called
“on-target off-tumor” toxicity (Figure 1). As the CAR target
might also present in other hematopoietic cells and healthy
tissue, it is important to select a tumor-restricted antigen as
CAR target (107). As previously discussed, BCMA is the most
widely used target for cellular immunotherapy. It is highly
expressed by mature B cells including plasma cells, and is
almost absent in other cell lineages (32, 108, 109). However,
the presence of BCMA on healthy plasma cells might lead to
secondary hypogammaglobulinemia, since the healthy plasma
cells can also be affected by CAR T cells. Similarly, anti-CD19
CAR T cell therapy can cause B cell aplasia through depletion of
CD19 positive B cell progenitors (110). Moreover, CD38,
another immune target for plasma cells, is also expressed in
gastrointestinal tract, cerebellar Purkinje cells or even T cells
themselves (111–113). Although the currently available BCMA/
CD38 bispecific CAR T cell therapy has shown a similar safety
profile as seen in BCMA directed products without any
unexpected events (51), on-target off-tumor toxicity and
fratricide cytotoxicity should be taken into account when
targeting CD38 with CAR T cells. The same holds true for
alternative CAR targets for MM, e.g., SLAMF7, CD138, and
CD44v6, etc (114).. Furthermore, on-target off-tumor toxicity
has also been considered as a potential mechanism of ICANS.
Autopsy studies in patients, who were treated with anti-CD19
CAR T cells and died due to severe ICANS, revealed a significant
CAR T cell infiltrate in the brain parenchyma and CSF, yielding
TABLE 3 | The American Society for Transplantation and Cellular Therapy (ASTCT) grading system and management strategy for immune effector cell associated
neurotoxicity syndrome (ICANS) for adults [Table adapted from Yakoub-Agha et al. (22) and Neill et al. (104)].

Grade 1 Grade 2 Grade 3 Grade 4

ICE score* 7–9 3–6 0–2 Unable to perform
Depressed
level of
consciousness

Awakens
spontaneously

Awakens to voice Awakens only to tactile stimulus Unarousable or requires vigorous or repetitive tactile stimuli to arouse.
Stupor or coma

Seizure No No Any clinical seizure that resolves
rapidly or non-convulsive
seizures on EEG that resolve with
intervention

Life-threatening prolonged seizure (>5 min) or repetitive clinical or
electrical seizures without return to baseline in between

Motor findings No No No Deep focal motor weakness such as hemiparesis or paraparesis
Elevated ICP/
cerebral
edema

No No Focal/local edema on
neuroimaging

Diffuse cerebral edema on neuroimaging; decerebrate or decorticate
posturing; or cranial nerve VI palsy; or papilledema; or Cushing’s triad#

ICU Alert ICU Transfer to ICU Transfer to ICU Transfer to ICU
Investigations Neurological examinations including fundoscopy to exclude papilledema, EEG, MRI, and lumbar puncture in absence of contraindications
Management Alert neurologist, elevate the head of the patient’s bed to 30°, management of CRS if concurrent

Close
monitoring

Dexamethasone IV 10
mg every 6 h, and
consider levetiracetam
750 mg bid as
prophylaxis for seizures

Dexamethasone IV 20 mg every
6 h. If seizure, clonazepam IV
1mg or other benzodiazepines to
terminate it, then loading with
levetiracetam

Management of seizure as per grade 3. If papilledema, start
acetazolamide IV 1,000 mg followed by 250–1,000 mg bid. If elevated
ICP/cerebral edema, consider hyperosmolar therapy with mannitol and
hyperventilation. Methylprednisolone IV 1,000 mg/d. Evaluation of other
experimental salvage options
CRS, cytokine release syndrome; EEG, electroencephalography; ICE, immune effector cell associated encephalopathy; ICP, intracranial pressure; ICU, intensive care unit; IV, intravenous;
MRI, magnetic resonance imaging.
*Orientation to year, month, city, hospital: 4 points; Ability to name 3 objects: 3 points; Ability to follow simple commands: 1 point; Ability to write a standard sentence: 1 point; Ability to
count backward from 100 by 10: 1 point.
#Irregular, decreased respirations, Bradycardia, Systolic hypertension.
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the hypothesis that direct cell-cell interaction between CNS and
CAR T cells might also have a role in the pathogenesis of ICANS
(97). Indeed, on-target off-tumor toxicity poses a major concern
in the development of CAR T cell therapy. The treating
physicians should be aware of this potential toxicity in the
clinical practice.
MANAGEMENT OF CAR T CELL–RELATED
TOXICITY

CAR T cell–related toxicity requires a multidisciplinary
management, involving hematologist, neurologist, radiologist
as well as intensive care unit (ICU). The currently available
evidences of the toxicity management are mainly obtained from
previous trials of CD19 targeted CAR T cells in B cell ALL or
NHL, and are also applicable for patients with MM. Overall, the
management of CAR T cell–related toxicity is dependent on its
severity according to the ASTCT grading system (22, 95).

General Management Strategies
Prior to CAR T cell therapy, the patients should be thoroughly
screened as per clinical study protocols and/or local guidelines
(93). The baseline characteristics may also have impact on the
safety profile. CAR T cell therapy should only be given in patients
with Eastern Cooperative Oncology Group (ECOG)
performance score (PS) ≤ 2, close to normal end organ
function, and acceptable blood count, and without any active
bacterial, fungal, or viral infections (22, 85). In addition, high
disease burden at baseline correlates with increased risk for CAR
T cell–related toxicities such as CRS and ICANS (107).
Therefore, a bridging therapy prior to CAR T cell infusion
should be considered in these patients with the aim to
“debulk” the tumor burden and to diminish the potential
toxicities (115). Moreover, high CAR T cell dose can also
increase the risk of toxicities (97). Split dose may be a strategy
to circumvent this issue, especially in patients with high-risk
features like EMD and PCL (115). Furthermore, preexisting
neurological comorbidities may be risk factors for ICANS, and
these patients need close neurological monitoring after CAR T
cell infusion (26). To date, CNS involvement with MM is always
an exclusion criterion in CAR T cell trials such that the safety
data in this patient group are still missing (85).

The EMBT recommends a hospitalization of at least 14 days
for the CAR T cell therapy. This facilitates a close monitoring of
the patients after the treatment and, in case of necessity, a rapid
medical intervention. However, shorter hospitalization or even
outpatient management could also be considered, if specialist
inpatient care was available for the patients within 30 min (22).
ICU admission should be evaluated when the patients develop
signs of ≥grade 2 CRS or any grade ICANS. The treating
hematologist should also alert the referral neurologist, if the
patients present neurological symptoms (87). Cytopenia
following CAR T cell therapy can be managed using
hematopoietic growth factors and transfusion of erythrocytes
or thrombocytes. After the CAR T cell therapy, the patients
Frontiers in Immunology | www.frontiersin.org 9
should receive prophylaxis for Pneumocystis jirovecii and herpes
virus according to the institutional practice for at least 6 and 12
months, respectively (116). In addition, antifungal and
antibacterial prophylaxes can be considered in patients with
prolonged cytopenia. At present, the role of antiviral
prophylaxis for hepatitis B virus (HBV) or hepatitis C virus
(HCV) in CAR T cell therapy remains unknown since these
patients have been excluded from the currently available CAR T
cell trials (22). However, if CAR T cell therapy would be
integrated into the standard of care, this issue should be taken
into account, as LDC and CAR T cells may potentially lead to
HBV and/or HCV reactivation similar to that in patients treated
with B cell depleting agent rituximab (117–119).

Management of Cytokine Release
Syndrome
Overall, supportive care is one of the major components in the
management of CRS, as many cases of CRS are self-limiting and
do not require any specific pharmacologic interventions (18).
The patients should primarily be treated with antipyretics,
oxygen, and intravenous fluids. Circulatory and/or respiratory
support is indicated, when the patient shows hypotension and/or
hypoxia, respectively (120). Moreover, the clinical and laboratory
findings in CRS can overlap with that in sepsis caused by severe
infections (121). Therefore, diagnostic tests such as laboratory
examinations, imaging, blood and urine cultures etc. should be
performed to identify or exclude an infection. Since CRS can
mimic the clinical picture of neutropenic fever, a life-threatening
emergency, prompt initiation of empiric broad-spectrum
antibiotics is strongly recommended (22).

While supportive care is often sufficient for low grade CRS,
patients with persistent or severe CRS do require specific
pharmacologic interventions. The general concept of the
specific CRS therapy is to neutralize the major cytokines and
their receptors, or to reduce the cytokine production from CAR
T cells or other immune cells. In August 2017, the IL-6 receptor
(IL-6R) antagonist tocilizumab has been approved by the
FDA for treatment of CRS. In a retrospective analysis of
pooled data from nine clinical trials of anti-CD19 CAR T cell
therapies in ALL or NHL, 69% of the patients showed CRS
resolution within 14 days after the first dose of tocilizumab (122).
At present, tocilizumab represents the first-line therapy for
CAR T cell induced CRS. According to the current EBMT
recommendations, tocilizumab should be given if fever ≥38°C
persists three days, or if the patient exhibits hypoxia and/or
hypotension. Usually, tocilizumab is administered intravenously
at a dose of 8 mg/kg (maximum dose 800 mg), and can be
repeated, if no improvement could be achieved after 8 h (22). Of
note, Alvi et al. have reported that early administration of
tocilizumab can reduce the risk of cardiovascular events
following CAR T cell therapy (123). Importantly, tocilizumab
does not increase the risk of clinically significant infections or
infection density within 100 days (124). In patients who do not
respond to tocilizumab, the second-line therapy with siltuximab,
an IL-6 directed mAb, could be considered. However, there is
only limited evidence for siltuximab therapy in (tocilizumab-
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refractory) CRS (41, 99, 125). Presently, a head-to-head
comparison of tocilizumab and siltuximab is still missing.
Another backbone of the CRS management is corticosteroid,
which strongly diminishes the production and action of most
cytokines (126). In the current EBMT guidelines, corticosteroids
are recommended for patients with higher grade CRS, and are
contraindicated in the absence of life-threatening events due to
the potential CAR T cell suppression by them (22). By contrast,
recent data from clinical trials of anti-CD19 or anti-CD22 CAR T
cells in ALL have demonstrated that corticosteroids may mitigate
the CAR T cell–related toxicities without influence on the
efficacy (127). In addition, patients treated with corticosteroids
have even shown significantly higher CAR T cell count in
peripheral blood compared to the non-steroid group,
suggesting that corticosteroids do not impair the CAR T cell
expansion in vivo (128). In fact, the indication criteria for
corticosteroid use in CRS vary widely among different centers.
There are some other agents have been successfully applied in
CRS patients, e.g., anti-IL-1 mAb anakinra (57) and TNF-a
blocker etanercept (40). Tyrosine kinase inhibitors ruxolitinib
and ibrutinib might also prevent CRS after CAR T cell therapy as
suggested in preclinical studies (129, 130). However, robust data
on their efficacy and safety in CRS is presently still pending.
These treatment options could be considered as experimental
salvage therapy for refractory CRS. We summarize the currently
recommended management strategy for CRS in Table 2 (22).

Management of Immune Effector Cell-
Associated Neurotoxicity Syndrome
As previously mentioned, there is a clear association between
ICANS and CRS (98). The cytokine storm in CSF might be one of
the major contributing factors to ICANS following CAR T cell
therapy (97). Thus, the management strategy for ICANS is
similar to that of CRS and, additionally, some specific
neurologic issues should be noted.

ICANS is primarily managed with close monitoring and
supportive care (87). The ICE score is a valuable tool to assess
and monitor the patient’s neurologic status, which should be
evaluated at least four times a day after the CAR T cell infusion
(95). If the patients show any neurologic deficits regardless of
grades, the treating physician should timely alert the referral
neurologist and the local ICU. The head of the patient’s bed
should be elevated to at least 30° to ensure a sufficient cerebral
venous flow. Oral medication or nutrition should be switched to
intravenous administration to avert aspiration (22).

It should be emphasized that the most of the patients are
highly immunosuppressed and present thrombocytopenia after
the CAR T cell therapy, indicating a markedly increased risk of
atypical CNS infection and bleeding events (104). These are
important differential diagnoses for ICANS. Indeed, progressive
multifocal leukoencephalopathy (PML) caused by JC virus and
fatal cerebral hemorrhage have already been observed in patients
treated with CAR T cells (70, 131). Therefore, to identify or
exclude other causes in patients with suspected ICANS, the
patients should receive a neuroimaging, ideally MRI, and a
diagnostic lumbar puncture for opening pressure and infection
Frontiers in Immunology | www.frontiersin.org 10
tests (22). In MRI of patients with ICANS, there are some
characteristic patterns such as reversible T2 hyperintensities
and focal cerebral edema in the bilateral thalami, external
capsule, pons, and medulla (132). However, findings in
neuroimaging are often nonspecific (133), or even normal in
some cases (134). In addition, due to increased intracranial
pressure and/or thrombocytopenia in some of the patients,
lumbar puncture cannot be performed (104). Nonetheless, the
treating physician should be aware of the aforementioned
differential diagnoses as well as EMD progression of CNS or
drug toxicity, which can likewise be life threatening. In addition
to the above-discussed measures, if available, fundoscopy is
recommended to exclude a papilledema. In patients with
papilledema, acetazolamide could be considered (22). As
papilledema is often a sign of increased ICP, hyperosmolar
therapy with mannitol and/or hyperventilation are advised in
these patients (22, 135).

Another major issue in ICANS is the management of seizure.
After CAR T cell therapy, EEG is essential for the monitoring of
patients with suspected ICANS, regardless of severity and
presence of clinical seizure (22). The most common findings in
EEG include diffuse or focal slowing, intermittent interictal
epileptiform discharges and, in some cases, non-convulsive
status epilepticus pattern (136). Especially, the patients with
risk factors for ICANS, e.g., high tumor burden, EMD and
PCL should receive seizure prophylaxis such as levetiracetam
750-mg bid (104). When the patients exhibit clinical seizure or
non-convulsive status epilepticus in EEG, benzodiazepines or
other anticonvulsive drugs such as valproate, phenytoin,
barbiturate, lacosamide, and propofol can be given to
terminate seizures (68, 134, 136).

As of September 2020, there is still no approved agent for specific
ICANS therapy. ICANS patients with concurrent CRS are primarily
managed with tocilizumab (22). However, tocilizumab is a large
mAb that cannot penetrate the BBB in relevant concentration.
Evidence from primate model has suggested that intrathecal
administration of tocilizumab might be an option to overcome
the BBB (137). More importantly, tocilizumab binds to IL-6R and,
therefore, may even cause an increased level of IL-6 after
tocilizumab use (96). This phenomenon may potentially aggravate
ICANS. Indeed, Frigault et al. have recently reported that patients
receiving tocilizumab were more likely to develop ICANS in
comparison with those without tocilizumab (124). Currently, the
role of tocilizumab in ICANSmanagement is still controversial, and
further investigations are required at this point. In contrast to
tocilizumab, siltuximab antagonizes IL-6 and has a smaller
molecular size such that it can pass the BBB (138–140). However,
studies directly comparing tocilizumab with siltuximab in ICANS
are still not available. Currently, corticosteroids represent the
mains tays for ICANS managements due to the i r
immunosuppressive effects. Corticosteroids are typically indicated
in ICANS ≥grade 2 (22). In anti-BCMA CAR T cell trials in MM,
the patients have shown a rapid resolution of ICANS after high dose
corticosteroid therapy (39, 56, 60). On the other hand, the optimal
duration of steroid therapy is still undefined. In a recent study of
Karschnia et al., a shorter course of steroid treatment (<7 days) does
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not significantly alter the survival outcome of ICANS patients when
compared with longer steroid use (≥7 days). Interestingly,
prolonged steroid therapy of ≥10 days indicates a significantly
inferior overall survival (OS) in comparison with <10 days
steroid, probably due to the severity of ICANS itself (134).
Experience with steroid refractory ICANS is lacking, and these
patients have often an unfavorable prognosis. The IL-1 antibody
anakinra might be a salvage option, as it can cross the BBB and can
prevent ICANS in mouse model (141, 142). Anecdotal reports have
suggested that additional triple intrathecal chemotherapy with
cytarabine, methotrexate, and hydrocortisone could be effective in
steroid refractory ICANS (143). Moreover, “re-lymphodepleting”
with high dose cyclophosphamide (e.g., 1.5 g/m2) in addition to
steroid may also have some efficacy (41). In summary, the
pharmacologic therapy for ICANS is still a matter of debate. The
current recommendations for ICANS management are shown in
Table 3. Importantly, the ICANS monitoring and management
strategies are mainly based on protocols of several clinical trials that
have been performed at our center. Today, there is still no
international standard of ICANS management, and the
institutional practice might be not necessarily applied universally.
CONCLUSIONS AND FUTURE
CONSIDERATIONS

In recent years, CAR T cell has opened up a new era of the
immunotherapy for MM. This valuable approach has the
potential to further improve the survival outcome of MM
patients. On the other hand, despite the impressive efficacy and
marked progress in the development, this young research field is
still in its “puberty”, with a variety of unsettled issues, e.g.,
financial burden and the management of toxicities (86). A
recent analysis from the USA has yielded an estimated total
cost of $454 611 for one course of CAR T cell therapy, which may
restrict the availability of this novel therapy, in particular for
countries with limited resources (144). Although the data from
clinical trials have demonstrated only few toxic deaths related to
CAR T cell in MM patients, incidences of therapy-related AEs
such as CRS and ICANS are quite high, with fever ≥38°C being
even the “standard” event after CAR T cell infusion. Fortunately,
the cytokine storm with fever also indicates the remarkable
efficacy of CAR T cells and, thus, it could be accepted that the
MM would disappear after suffering from several days of high
fever. However, CRS and/or ICANS may progress to a life-
threatening event and require ICU admission, which may further
prolong the hospitalization and increase the cost of the
treatment. Taken together, the cost of CAR T cell therapy may
be reduced by optimizing the toxicity management. To overcome
these limitations, the following aspects have been considered: 1)
modifications of the CAR T cells, and 2) pharmacologic
intervention to attenuate CRS and ICANS.

T cells can be engineered to express both CAR and an
additional antigen such as CD20 or truncated epidermal growth
factor receptor (EGFRt). In this way, these CAR T cells can be
Frontiers in Immunology | www.frontiersin.org 11
antagonized using already approved mAbs rituximab or
cetuximab, if the treatment causes unacceptable toxicity (145,
146). For patients with MM, clinical trial investigating anti-
BCMA CAR T cells with EGFRt co-expression (EGFRt/BCMA-
41BBz) is currently ongoing (NCT03070327). Similarly, a suicide
gene, e.g., inducible safety switch caspase 9 (iCasp9) can be
incorporated into the CAR T cell. In patients experiencing severe
toxicities after CAR T cell therapy, iCasp9 can be activated by the
small molecule dimerizer drug AP1903, initiating a signaling
cascade leading to rapid apoptosis of the CAR T cells (147).
Another strategy is to design an “all-purpose” fluorescein
isothiocyanate (FITC) targeted CAR T cell that can be activated
only if a bispecific adapter links it to tumor cells (148). Preclinical
data in mouse model have demonstrated that CRS-like toxicity can
be regulated by controlling the dose of the bispecific adapter, which
connects the tumor cell and anti-FITC CAR T cell (149). However,
rigorous evidence in human is currently not available.

With tocilizumab and/or corticosteroid remaining the
backbone of the management of CAR T cell toxicity, some
alternative agents have been evaluated in preclinical setting.
For instance, GM-CSF inhibition using lenzilumab can
attenuate CRS and ICANS without impairment of the CAR T
cell function (150). Moreover, as endothelial damage is regarded
as a major “driver” in CRS and/or ICANS, endothelial protection
using defibrotide, an approved agent for treatment of veno-
occlusive disease following SCT, might be an option for CAR T
cell–related toxicities (151, 152). Clinical investigation is
currently underway (89). Recently, Mestermann et al. have
reported that the tyrosine kinase inhibitor dasatinib can
reversibly inhibit the cytolytic activity, cytokine production,
and proliferation of CAR T cells in vitro and in vivo,
suggesting that dasatinib could potentially be an option to
alleviate CRS and/or ICANS after CAR T cell therapy (153).

In summary, CAR T cell is now revolutionizing the treatment
of MM with amazing efficacy and acceptable safety profile.
Elucidating the underlying pathophysiology may provide novel
rationales for pharmacologic intervention of CAR T cell–related
toxicities. Improvement of the safety of CAR T cells can enable
widespread use of this promising therapy approach, and can
bring hopes for more patients with MM. Further studies in this
research field are highly warranted.
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