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The Role of Sphingolipids and
Specialized Pro-Resolving Mediators
in Alzheimer’s Disease
Nienke M. de Wit, Kevin Mol, Sabela Rodrı́guez-Lorenzo, Helga E. de Vries† and Gijs Kooij*†

Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit
Amsterdam, Amsterdam, Netherlands

Alzheimer’s disease (AD) is the leading cause of dementia worldwide giving rise to
devastating forms of cognitive decline, which impacts patients’ lives and that of their
proxies. Pathologically, AD is characterized by extracellular amyloid deposition,
neurofibrillary tangles and chronic neuroinflammation. To date, there is no cure that
prevents progression of AD. In this review, we elaborate on how bioactive lipids, including
sphingolipids (SL) and specialized pro-resolving lipid mediators (SPM), affect ongoing
neuroinflammatory processes during AD and how we may exploit them for the
development of new biomarker panels and/or therapies. In particular, we here describe
how SPM and SL metabolism, ranging from w-3/6 polyunsaturated fatty acids and their
metabolites to ceramides and sphingosine-1-phosphate, initiates pro- and anti-
inflammatory signaling cascades in the central nervous system (CNS) and what
changes occur therein during AD pathology. Finally, we discuss novel therapeutic
approaches to resolve chronic neuroinflammation in AD by modulating the SPM and
SL pathways.

Keywords: Alzheimer’s disease, neuroinflammation, sphingolipids, specialized pro-resolving mediator,
sphingosine-1-phosphate, ceramide, bioactive lipids
INTRODUCTION

The central nervous system (CNS) is one of the most important but vulnerable parts of the human
body. CNS-specific cell types, for example microglia, oligodendrocytes, and astrocytes, play a vital
role in securing CNS homeostasis and supporting neuronal functioning. In addition, the unique
properties of the microvasculature of the CNS that forms the blood brain barrier (BBB), further
ensures a tightly controlled CNS environment. The BBB consists of endothelial cells, which are
supported by pericytes and astrocytes, together regulating the flow of molecules and cells in and out
of the CNS to safeguard its homeostasis (1–5). Over the past decades, worldwide occurrences of
neurodegenerative diseases, such as Alzheimer’s disease (AD), are increasing and it is expected that
this trend will continue (6). Despite years of research and increasing fundamental knowledge, only a
few treatments have been developed and used, but none of such interventions results in curing these
devastating neurodegenerative diseases, thereby creating a high and unmet clinical need. For this,
more fundamental insight into pathological mechanisms that underlie AD pathology is therefore
needed to facilitate the development of potential novel treatment regimes.
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Key modulators of a variety of physiological (including cellular)
processes are lipids. Lipids are highly abundant in the dry mass of the
CNS (up to 50%) where they serve important biological functions.
Apart from being structural components of a cell membrane, lipids
also act as energy storage source and play important roles in cell
signaling pathways such as maintaining BBB homeostasis, immune
regulation, and myelination (7–9). Since lipid metabolism occurs in
such core CNS processes, alterations in lipid metabolism influences
the pathophysiology of various neurodegenerative diseases (10).
Therefore, targeting lipid metabolism may result in new
perspectives for the treatment of such diseases.

Excessive or uncontrolled inflammation is known as a
unifying feature of a plethora of chronic diseases, including
neurodegenerative diseases like AD (11, 12). It has become
clear that lipids and their metabolites can influence the
immune responses and inflammatory processes, in promoting
as well as in resolving inflammation. In this review we will
discuss how bioactive lipids, including sphingolipids (SLs) and
specialized pro-resolving mediators (SPMs), are involved in
chronic neuroinflammation in AD and how such bioactive
lipids can be used for the development of new therapies.
ALZHEIMER’S DISEASE

AD is the predominant cause of dementia with an estimated 54
million cases worldwide, and with an expected growth to 130
million cases by 2050 (13). It is a progressive mental disorder that
is characterized by cognitive impairment and memory loss. Next
to age, the ϵ4 allele of the apolipoprotein E gene (ApoE) is the
strongest genetic risk factor for AD (14). Next to peripheral
tissues involved in cholesterol metabolism, ApoE is highly
expressed in the brain where it plays an important role in lipid
trafficking (15). Moreover, it is involved in synaptic plasticity,
synaptogenesis, inflammation, blood-brain barrier function and
in regeneration after injury (16, 17). However, how ApoE
contributes to AD remains to be elucidated.

The major neuropathological hallmarks of AD are the
accumulation of extracellular senile plaques composed of
aggregating b-amyloid (Ab) and the intracellular aggregation
of hyperphosphorylated tau protein. Ab is released as monomer
into the extracellular environment when b-amyloid precursor
protein APP is processed by the amyloidogenic pathway (18, 19).
The monomers can aggregate to form oligomers, protofibrils,
fibrils and, ultimately, plaques, all of which can have neurotoxic
effects causing synaptic dysfunction, reactive oxygen species
(ROS) formation, increased membrane permeability, and
disrupted mitochondrial and proteasomal processes (20–25).
Tau is a neuronal microtubule-associated protein that is
distributed to the axons to regulate microtubule assembly and
stability (26–28). However, when tau is hyperphosphorylated, as
seen in AD, it becomes sequestered into neurofibrillary tangles
(NFTs), which are mainly found in neuronal processes known as
neuropil threads or dystrophic neurites. The dissociation of tau
proteins from microtubules negatively affects synaptic plasticity,
leading to neurodegeneration (29–31).
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Another neuropathological process in AD is neuro-inflammation.
Neuro-inflammation describes the reactive morphology and altered
function of the glial compartment (32). Although the observed
inflammatory glial response is presumed to be secondary to
neuronal death or dysfunction, it is suggested that the activation of
microglia and astrocytes contributes to the progression of AD. The
main cellular players in neuroinflammatory processes are microglia,
the innate immune cells of the CNS. Microglia have a complex
function that involves an anti-inflammatory (pro-resolving) role
where they engulf toxic proteins and apoptotic cells or a (chronic)
pro-inflammatory phenotype, that promotes neurotoxicity through
excessive production and secretion of inflammatory mediators.
Chronically activated microglia release pro-inflammatory mediators
like interleukin-1b (IL-1b), IL-6, IL-12, tumor necrosis factor-a
(TNF-a), ROS, superoxide, and nitric oxide (NO) causing CNS
tissue damage (33–36). On the other hand, pro-resolving microglia
are involved in the healing phases of CNS injury by actively
monitoring and controlling the extracellular environment (37). In
addition, by secreting anti-inflammatory mediators like IL-10 and
transforming growth factor b (TGF-b), these cells are able to prevent
neurotoxicity, thereby restoring CNS homeostasis (38). During
homeostatic conditions, the pro-inflammatory response of
microglia is tightly controlled by pro-resolving microglia to prevent
collateral damage to surrounding neurons. However, during
neuroinflammatory diseases, such as AD, this resolution of
inflammation is dysregulated, resulting in chronic neuro-
inflammation and subsequent neurotoxicity.

In AD, pattern recognition receptors on microglia trigger a pro-
inflammatory immune response upon Ab recognition (39). The
inflammatory properties of Ab are strengthened by promoting
increased APP levels and elevated cleavage enzyme activity,
creating more Ab production (40). Additionally, microglia
surrounding senile plaque become impaired in Ab uptake and
clearance, causing further accumulation of Ab thereby inducing a
prolonged inflammatory response with continuous secretion of pro-
inflammatory mediators (41). The local immune response triggers
the secretion of pro-inflammatory mediators such as TNF-a, IL-1b
that subsequently activate astrocyte-induced proinflammatory
responses. In turn, astrocytes amplify the microglia inflammatory
responses by producing IL-1b and TNF-a upon activation (42).
This, together with Ab deposition and ROS formation, has
considerable detrimental effects on the BBB, such as the loss of
tight junctions, pericyte death, and a decrease in the coverage of the
parenchymal basal membrane by astrocytic endfeet (43–46). In
turn, this greatly abolishes BBB homeostasis and increases innate
and adaptive immune cell trafficking toward the CNS, thereby
contributing to excessive neuro-inflammation and cognitive
impairment in AD (47–50). Creating insights into ways to
counteract chronic neuroinflammatory events are of high
importance to dampen disease progression.
SPHINGOLIPID METABOLISM

The CNS has the second-highest abundancy of lipids to adipose
tissue, with 50% of its dry weight comprising of lipids (51). They
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can be classified into 8 groups containing distinct classes and
subclasses of molecules, performing key biological functions
(52). Especially SLs gained interest in recent years because of
their role as secondary messengers in health and disease. Not
only are they ubiquitous components of the plasma membrane of
eukaryotic cells and are essential for the development of the CNS,
they are also known as bioactive lipids regulating cell survival,
cellular stress and cell death (53–55).

In the centre of SL metabolism are ceramides, that consist of a
sphingosine backbone and a fatty acid residue. Ceramides can be
synthesized via the de novo pathway, the sphingomyelinase
pathway, or the salvage pathway (Figure 1). The de novo
synthesis pathway starts with L-serine and palmitoyl-CoA
condensation in the endoplasmic reticulum by serine
palmitoyltransferase (SPT) to 3-ketosphinganine, that is directly
reduced to sphinganine by 3-ketosphinganine reductase (3-KSR).
Next, ceramide synthases (CerSs) add fatty acyl-CoAs of different
chain lengths to sphinganine to form dihydroceramide. Finally,
dihydroceramide desaturase converts dihydroceramide to ceramide.
After ceramide synthesis, it can be further metabolized to form
complex SLs, such as sphingomyelin and glycosphingolipids (56).
These complex SLs create a potential ceramide source since they can
be converted to ceramide again. For instance, the sphingomyelinase
pathway generates ceramides via the hydrolysis of sphingomyelin.
This is catalyzed by two sphingomyelinases, named neutral
sphingomyelinase (nSMase) and acid sphingomyelinase (aSMase)
(57, 58). Finally, ceramide can also be generated from sphingosine
via the salvage pathway. While sphingosine can be reused to
generate ceramide, it is also the precursor of sphingosine-1-
phosphate (S1P) (59). The breakdown of S1P into non-
sphingolipid molecules by S1P lyase is the only exit point of
sphingolipid metabolism. Over the last decades, it became clear
that SLs and their metabolites play an important role in several
cellular processes and signaling events, including neuro-
inflammation (60–62).
SPHINGOLIPIDS AND
NEUROINFLAMMATION

Ceramide and S1P are the main signaling molecules of the SL
machinery that can activate a pro- or anti-inflammatory
response. Activation of their modulators, such as SMase and
sphingosine kinase (SK), are therefore important events during
neuroinflammation. Originally it was thought that ceramide
functions as a secondary messenger with two faces, where
short-chain ceramides (acyl chain length C2-C8) show an anti-
inflammatory effect while long-chain ceramides (acyl chain
length C16-C24) initiate a pro-inflammatory response (63–66).
However, synthetic short-chain ceramides were used to mimic
the effects of long-chain ceramides resulting in contradictory
results. For instance, the use of short-chain ceramides caused an
anti-inflammatory effect in LPS stimulated rodent microglia, by
competing with LPS for the binding to toll-like receptor-4
(TLR4). This resulted in the reduction of cytokines,
chemokines, inducible NO synthase, cyclooxygenase-2 (COX-2,
Frontiers in Immunology | www.frontiersin.org 3
also known as prostaglandin G/H synthase 2) and ROS (63, 67,
68). In contrast, astrocytes and microglia produce long-chain
ceramides upon TNF-a induced SMase activity. These ceramides
activate pro-inflammatory transcription factor NF-kB, inducing
expressions of pro-inflammatory cytokines such as IL-1b, IL-6,
IL-8, NO, TNF-a, monocyte chemoattractant protein-1, pro-
inflammatory enzyme cyclooxygenase-2 (COX-2), and
lipoxygenases (LOXs) (64, 65, 69). These observations are
supported by SMase knockdown experiments in rodent LPS-
activated microglia, showing impaired NF-kB induced gene
expression (66).

However, in the context of ceramide function in the brain, it
has become clear that the amount of ceramide is important as
well as the relative amount of the individual chain-lengths (70).
The various ceramide species are generated by six individual
CerSs, of which five are present in the brain. Each CerS prefers
certain fatty acyl-CoA substrates, generating distinct ceramide
species with unique N-linked fatty acids. The resulting ceramide
species differ in their chain-length (C14-C26), localize to distinct
cellular compartments, and in turn may mediate specific
functions (71, 72). Therefore, contributing opposing functions
to short- or long-chain ceramides is to simplified and the
underlying regulatory process is far more complicated. This
needs to be considered when investigating the role of ceramide
in neuro-inflammation.

Besides ceramides, S1P plays an important role in the
intracellular and extracellular signaling in the CNS. Various
reports suggest that S1P is involved in migration, proliferation
and changes in astrocyte and microglia morphology, suggesting
its involvement in neuroinflammation (73). Upon activation, two
distinct enzymes, SK1 or SK2, phosphorylate sphingosine to form
S1P. Although S1P has several intracellular targets, S1P is
predominantly transported to the outside the cell, where it acts in
a paracrine or autocrine manner on five different S1P receptors
(S1PR1-5), which are G protein-coupled receptors (74). S1PR1-3
are ubiquitously expressed while S1PR4 is mainly expressed by
leukocytes and S1PR5 by oligodendrocytes and brain endothelial
cells (75, 76).

Upon LPS induced activation, SK1 shuttles to the plasma
membrane where it converts sphingosine to S1P. Subsequently,
S1P binds to S1PRs, which induces proliferation and synthesis of
pro-inflammatory cytokines, such as TNF-a, IL-1b, and IL-17, and
neurotoxic molecules like ROS and NO (77). Additionally, the
accumulated extracellular S1P activates microglia and further
enhances the inflammatory response (78). Also, S1PR, and SK1
knockdown or the addition of S1PR antagonists reduce pro-
inflammatory responses (79, 80). At the level of the BBB, different
S1PRs seem to be involved in the remodeling of its integrity.
Endothelial cells express three types of S1PRs, S1PR1 activation
restricts leukocyte infiltration to the CNS while S1PR2, 3 and 5
regulate vascular permeability by enhancing pro-inflammatory
expression. Astrocyte-endothelial cell communication via S1P
and/or ceramide may, therefore, be important in maintaining
BBB homeostasis as it can promote or decrease its integrity (81–
85). This shows that directing specific S1PR activation may
influence inflammatory responses in the CNS.
January 2021 | Volume 11 | Article 620348

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


de Wit et al. Sphingolipids and SPMs in AD
SPHINGOMYELINASE AND CERAMIDE
DURING NEUROINFLAMMATION IN
ALZHEIMER’S DISEASE

In AD, many of the SLs and their metabolites are altered. For
example, increased sphingomyelin levels are observed in brain
tissue of AD patients, which is associated with the severity of AD
pathology (86). However, SMase levels and activity are also
increased due to the presence of Ab and, therefore, could
result in increased sphingomyelin hydrolysis (87). Moreover,
elevated aSMase significantly correlated with the levels of Ab and
hyperphosphorylated tau protein (88). The enhanced SMase
levels in AD are possibly involved in pro-inflammatory
processes in the brain. The inhibition of nSMase, not aSMase,
in Ab activated human astrocytes suppresses the production of
NF-kB and pro-inflammatory cytokines, such as TNF-a, IL-1b
and IL-6 (89). Additionally, antisense knockdown of nSMase
lowered inducible NOS in vivo and protected neurons in the
mouse cortex from fibrillar Ab toxicity. This indicates that
nSMase has a role in the pro-inflammatory activation of
astrocytes through a nSMase/ceramide signaling pathway. In
addition, exosomes secreted by activated astrocytes induced
apoptosis in surrounding astrocytes by transporting long-chain
ceramide C18 (90). This toxic effect was attenuated upon nSMase
inhibition, suggesting nSMase activation results in a neurotoxic
ceramide secretion via exosomes. Furthermore, the increased
activity of the sphingomyelin pathway is a large source of
ceramide observed in AD (87).

Involvement of the de novo ceramide synthesis pathway is
also reported in AD. SPT is the first enzyme in the de novo
Frontiers in Immunology | www.frontiersin.org 4
synthesis of ceramide, and elevated SPT long-chain 1 and SPT
long-chain 2 levels are observed in AD (91). Inhibition of SPT
directly lowers ceramide synthesis and results in decreased Ab
production, which supports the findings that ceramide
metabolism is involved in amyloidopathy (92). For example,
ARN14494, which inhibits SPT activity, prevents the synthesis of
long-chain ceramides and dihydroceramide in a cortical
astrocyte-neuron co-culture. Blockade of SPT activity also
prevents the synthesis of pro-inflammatory mediators, such as
IL-1b, TNF-a, iNOS, and COX-2 by astrocytes. Additionally,
inhibition of SPT possibly prevents caspase-3 neurotoxicity, via
the reduced expression of astrocyte secreted pro-inflammatory
factors (93). This suggests that ceramide induces pro-
inflammatory responses through astrocytes, which may
promote neurotoxicity. The exact mechanism by which
ceramide activates the pro-inflammatory astrocyte response
remains to be established.

Indeed, increased long-chain ceramide levels have been found
in AD affected brains, senile plaques, cerebral spinal fluid (CSF)
and serum of AD patients (94–98). Interestingly, ceramides
enhance APP metabolism toward Ab by stabilizing b-secretase,
creating a vicious cycle. This results in increased ceramide levels
in neurons possibly leading to cell death. These observations
indicate that interfering in ceramide synthesis possibly reduces
Ab pathology and neuronal cell death in AD (99–101). Taken
together, the de novo and the sphingomyelinase ceramide
synthesis pathways show to increase the expression of pro-
inflammatory cytokines and chemokines in AD. Ceramide
metabolism might therefore be an interesting therapeutic target
to prevent and resolve neuroinflammation during AD.
FIGURE 1 | Overview of the sphingolipid (SL) rheostat model and the interplay with specialized pro-resolving mediator (SPM) metabolism. Ceramide can be
synthesized by ceramide synthases via the de novo and the salvage pathway from sphingosine or by hydrolysis of sphingomyelin by sphingomyelinase. Once
generated, ceramide can act as substrate for other sphingolipids such as sphingosine and sphingosine-1-phosphate (S1P) via sphingosine kinase (SK). S1P can be
catabolized into hexadecenal + phospho-ethanolamine by the action of sphingosine 1-phosphate lyase. Alternatively, SK can generate N-acetyl sphingosine via
acetyl-CoA and sphingosine, followed by the acetylation of COX-2. In turn, this activates COX-2 mediated 15-HETE, 18-HEPE and 17-HDHA production, which can
be converted to SPMs like such as 15R-LXA4, RvE1, and RvD1, thereby providing a direct link between the SL and SPM pathways.
January 2021 | Volume 11 | Article 620348
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SPHINGOSINE-1-PHOSPHATE DURING
NEUROINFLAMMATION IN ALZHEIMER’S
DISEASE

The function of S1P in AD affected brains remains controversial.
Analysis of post-mortem brain tissue of AD patients showed a
reduced level of S1P, which correlated with the levels of
hyperphosphorylated tau and Ab (88). The reduction might be
caused by decreased SK1 and increased S1P-lyase activity due to
Ab, which supports the idea that S1P is a pro-survival and
proliferative signal (102, 103). On the other hand, however,
prolonged exposure of hippocampal neurons to S1P resulted in
apoptosis (104). Moreover, depletion of S1P lyase in vivo, causing
an increase in S1P levels, augments tau phosphorylation in
neurons (105). A study focusing on the development of AD
showed elevated S1P levels in mild cognitive impairment patients
while eventually in AD patients, S1P levels declined (106).
Interestingly, another study investigated whether sphingolipid
levels are altered as a function of age and APOE genotype (107).
The authors observed an age-dependent decline in S1P levels
specifically in females. Moreover, the APOE genotype was not
found to have a significant influence on the SL levels. These
findings suggest that age is an important factor regarding SL
metabolism, where increased S1P levels might play a role in the
early development of AD and, as observed in post-mortem AD
brains, these levels decrease over time.

Zhong and colleagues proposed a mechanism that displays
how S1P is involved in pro-inflammatory activation of microglia
in AD (108). They showed that Ab activates spinster homolog 2
(Spns2), which transports S1P out of the cell, resulting in the
subsequent binding of S1P to S1PR1. S1P binding to S1P1R
induced the pro-inflammatory cytokine secretion of microglia
via a NF-kB dependent mechanism. These experiments were
conducted in vitro and in vivo, using primary cultured microglia,
mouse models, Spns2 knockout mice as well as an S1PR inhibitor
Fingolimod (FTY720). Spns2 knockout mice show reduced
inflammatory microglia phenotypes, suggesting that S1P
transport is important for the activation of microglia and
provides evidence that S1P contributes to Ab-induced NF-kB
signaling and cognitive decline. Another study used LPS
activated microglia and astrocytes to study S1PR1 dependent
pro-inflammatory chemokine release. Here, the inhibition of
S1PR1 via FTY720 attenuates pro-inflammatory chemokine
release in both astrocytes and microglia (109). Interestingly,
LPS binds to TLR4 to activate pro-inflammatory responses,
which suggests that TLR4 may mediate pro-inflammatory
cytokine/chemokine secretion via S1PR1 activation.

In astrocytes, TLR4 seems to activate SKs resulting in
chemokine expression (110). This could also be true for Ab
induced NF-kB secretion via S1PR activation since Ab binds to
TLR4, TLR2 and CD14 for the pro-inflammatory activation of
microglia (39, 111, 112). Indeed, in case Ab would mediate pro-
inflammatory responses via other mechanisms, a stronger pro-
inflammatory effect could be expected in FTY720 inhibited
microglia and astrocytes (108). In conclusion, S1P signaling
through S1PR1 seems to play a pivotal role in the pro-
Frontiers in Immunology | www.frontiersin.org 5
inflammatory responses by microglia and astrocytes. The onset
of Ab induced neuroinflammation through TLR/SK/S1P/Spns2/
S1PR1/NF-kB signaling possibly takes place in the early stages of
AD, as S1P levels are higher in mild cognitive impairment
patients before the official onset of AD. However, the exact
mechanisms behind the onset of neuro-inflammation in AD by
S1P remains to be established.
SPECIALIZED PRO-RESOLVING
MEDIATORS AND THE RESOLUTION OF
NEUROINFLAMMATION

Resolution of inflammation is crucial to regain tissue homeostasis.
When resolution fails, chronic inflammation occurs, causing
excessive release of pro-inflammatory cytokines and mediators,
potentially leading to ongoing neuroinflammation and
neurodegeneration, as seen in AD (113). Under healthy
conditions, the resolution of inflammation is facilitated by SPMs
that are derived from polyunsaturated fatty acids (PUFAs). These
include w-3 fatty acids, like a-linolenic (ALA) acid,
docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA) as
well as w-6 fatty acids, such as linolenic acid (LA) and arachidonic
acid (AA). The PUFAs are predominantly metabolized by
lipoxygenases (LOX) and, to a lesser extent by (acetylated)
cyclooxygenases (COX) to generate SPMs, such as lipoxins, E-
series resolvins, D-series resolvins, protectins and maresins (114). In
general, SPMs are potent resolution agonists that extinguish the
eicosanoid-induced inflammation by activating local resolution
programs, eventually leading to tissue recovery (115, 116).

During an acute inflammatory event, the vasculature as well
as local macrophages/microglia are activated, resulting in the
production of pro-inflammatory cytokines as well as the
activation of lipid mediator producing enzymes, such as COX
and LOX. In general, COX activity supports the secretion of
prostaglandins, like PGE2 and PGI2, leading to the migration of
leukocytes, such as neutrophils to the site of inflammation. In
this initial pro-inflammatory response, leukotriene B4 (LTB4) is
produced by innate immune cells, also attracting leukocytes
toward the site of inflammation. This pro-inflammatory lipid
mediator response is changed to a pro-resolving response in a
process called lipid mediator class switching (117). In particular,
this consists of the change of AA metabolism from pro-
inflammatory LTB4 to a pro-resolving lipoxin A4 (LXA4) lipid
mediator production in response to inflammation (e.g.,
eosinophils) or due to a phenotype switch (e.g., macrophages).
Four LXA4-biosynthesis pathways that are involved in class
switching are currently known. First, protein kinase A gets
activated by PGE2 resulting in the phosphorylation of 5-LOX.
This increases LXA4 synthesis and inhibits LTB4 (118). Secondly,
neutrophils induce 15-LOX-mediated LXA4 synthesis and
downregulate 5-LOX mediated LTB4 synthesis, induced by
PGE2 (115). Thirdly, endotoxin or extracellular ATP can
induce hydrolytic release of the esterified 15-HETE and
synthesize LXA4 via 5-LOX pathway (119). Finally, the activity
of 12/15-LOX can catalyze LTA4 conversion to LXA4 (120).
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Overall, increasing LXA4 synthesis contributes to the decreased
leukocyte migration toward the site of inflammation and is,
therefore, the first step in the resolution response.

The E and D series resolvins, protectins, and maresins,
derived from w-3 fatty acids, are metabolized by LOX and/or
CYP450 (115, 121). These SPMs are locally secreted to stimulate
macrophage/microglia phenotype switching toward a pro-
resolving phenotype. In turn, this promotes efferocytosis for
the clearance of debris and downregulates the activity of the
adaptive immune system to facilitate the return to tissue
homeostasis (122, 123). Therefore, anti-inflammation and pro-
resolution are not equivalent. The SPMs that actively promote
resolution are fundamentally different from the antagonists that
limit the duration and magnitude of the inflammatory response
at both the molecular and cellular levels (124).
SPECIALIZED PRO-RESOLVING
MEDIATORS IN AD

An important process in the return to tissue homeostasis after
the onset of acute inflammation is inflammation resolution via
SPMs. When resolution fails, acute inflammation will acquire a
chronic phenotype, resulting in severe tissue damage. Chronic
inflammation in AD is possibly caused by alterations in the SPM
production machinery (125). Of note, it was shown that APOE4
may mechanistically impact the neuropathogenesis of AD by
decreasing DHA transport into the brain, which in turn, may
lead to lower SPM levels in patients (126). Understanding the
mechanisms behind this resolution failure can therefore be of
clinical value for the treatment of AD.

Currently, only a few studies have addressed the potential
effects of SPMs in AD. For example, lower levels of LXA4 are
found in post-mortem hippocampal tissue as well as CSF
compared to controls (125). Additionally, CSF levels of LXA4

and RvD1 are correlated with the mini-mental state examination
scores , suggest ing that the impaired resolut ion of
neuroinflammation is involved in the cognitive decline in AD
(127). Additionally, higher levels of 15-LOX-2, 15-LOX-1 and 5-
LOX enzymes are observed in AD hippocampus. However, these
enzymes are also known to mediate the production of pro-
inflammatory lipid mediators and depend on class switching to
generate SPMs (117). Therefore, it is possible that the increase of
15-LOX and 5-LOX together with the lack of lipid class switching
facilitates the ongoing pro-inflammatory response (125, 128,
129). This also suggests that AD progression might be reduced
when altered local SPM levels are restored. Indeed, treatment
with aspirin-triggered LXA4 was shown to ameliorate Ab and tau
pathology in vivo (130). In addition, enhancing LXA4 signaling
by using aspirin leads to reduced pro-inflammatory cytokine and
chemokine levels, while anti-inflammatory IL-10 levels are
elevated, leading to more pro-resolving microglia phenotypes,
Ab phagocytosis and improved cognition (127). Similar to LXA4,
RvD1 induces an pro-resolving microglia phenotype and
enhances microglia-mediated Ab phagocytosis (131). Besides
LXA4, maresin-1 is also decreased in post-mortem hippocampal
Frontiers in Immunology | www.frontiersin.org 6
tissue and CSF of AD patients compared to controls (125).
Importantly, in vitro experiments with the CHME3 microglial
cell line revealed enhanced Ab phagocytosis and attenuated
microglia activation when incubated with maresin-1 (132).
Together, these findings suggest that administering disease-
affected SPMs or activating local SPM biosynthesis during AD
could be an interesting therapeutic approach to resolve chronic
inflammation and thereby prevent neurodegeneration.
SPHINGOLIPID MEDIATED RESOLUTION
OF NEUROINFLAMMATION VIA SPMS

So far, only few studies have reported on the interplay of the SL
and SPMmachinery and the role thereof in AD is now emerging.
Interestingly, Young Lee and colleagues demonstrated a direct
anti-inflammatory correlation between the SL machinery and
SPMs in AD (133, 134). Neuronal SK1 appears to generate N-
acetyl sphingosine via acetyl-CoA and sphingosine, followed by
the acetylation of serine residue 565 of COX-2 by N-acetyl
sphingosine. This activates COX-2 mediated 15-HETE, 18-
HEPE, and 17-HDHA production, which can be converted to
SPMs, such as 15R-LXA4, RvE1, and RvD1. In APP/PS1 mice,
SK1 is severely decreased in neurons but not in microglia,
causing a decrease in N-acetyl sphingosine and therefore a
decline in SPM production and secretion by neurons. The
increased or decreased SK1 levels result in altered SPM levels
as well as phagocytosis of Ab by microglia in APP/PS1 mice,
respectively (133, 134). Of note, SK1 levels appear to be reduced
in post-mortem AD affected brains (103, 133). This suggests that
neuronal SK1 fulfils an anti-inflammatory role during
neuroinflammation in AD. Additionally, N-acetyl sphingosine
is decreased in microglia, caused by deficient acetyl-CoA,
reducing acetylated COX-2 and SPM secretion by Ab activated
microglia from C57BL/6 mice. Treating 5xFAD and APP/PS1
mice with N-acetyl sphingosine increased COX-2 acetylation and
subsequent SPM biosynthesis in microglia (134). This facilitates
the resolution of neuroinflammation and enhances the
phagocytosis of Ab by microglia. Overall, these findings
indicate that the sphingolipid machinery has an immune
regulatory function by activating SPM biosynthesis in the CNS
via COX-2 acetylation (Figures 1 and 3). Moreover, the immune
regulation via sphingolipids seems to be dysregulated in AD,
providing a new framework to reinstate the resolution of
neuroinflammation in AD.
SPHINGOLIPID AND SPM BASED
THERAPEUTIC APPROACHES FOR AD

Although the fundamental knowledge about SLs and SPM
metabolism in the CNS during healthy and pathological
situations remains to be fully elucidated, it has been
demonstrated that changes in their metabolic pathways occur
during AD pathogenesis as described above. In turn, this paves
the way to include their receptors, metabolites, and involved
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machinery as possible therapeutic targets to limit the progression
of AD. Various strategies targeting these pathways will be
discussed below (see Table 1 for complete overview).
POTENTIAL S1P METABOLISM-RELATED
THERAPEUTIC TARGETS AND
THERAPIES

S1P signaling through S1PR1 demonstrated to be a possible initiator
for pro-inflammatory immune responses of microglia (108).
Inhibition of S1PR1 signaling could, therefore, be an interesting
approach to attenuate neuroinflammation in AD. Fingolimod
(FTY720) is a functional antagonist that promotes initial
activation followed by sustained internalization and desensitization
of several S1PRs in lymphocytes, except S1PR2 (144). Fingolimod is
approved by the EuropeanMedicines Agency (EMA) as a treatment
for relapsing-remitting multiple sclerosis (MS) and has the potential
to target major processes in AD pathogenesis as well, including Ab
toxicity and production, neuroinflammation and neuronal loss. In
vitro experiments demonstrated that Fingolimod ameliorates Ab
toxicity in neuronal cultures via increased concentrations of brain-
derived neurotrophic factor (135, 145). In vivo models, using the
5XFAD transgenic AD mouse model, displayed decreased signs of
neuroinflammation and cognitive improvement when given a low
dose (0.03 mg/kg/day) (136, 137). Other experiments demonstrated
that Fingolimod attenuates pro-inflammatory chemokine release in
both astrocytes and microglia (108, 109). Furthermore, Ab load is
decreased in APP/PS1 mice by the inhibition of b-secretase when
treated with Fingolimod, possibly bymodulating the transport of Ab
through the BBB (138). Taken together, this shows that Fingolimod
is a promising new therapeutic approach for AD. Moreover, other
neurodegenerative or neuro-inflammatory diseases such as
Parkinson’s disease, Huntington’s disease, and epilepsy also
explore the use of Fingolimod as possible treatment because of its
diverse anti-inflammatory and neuroprotective effects (146).
However, although different animal models show promising
results upon treatment with Fingolimod, further experiments, as
well as clinical studies, should elucidate if patients indeed benefit
from Fingolimod as medication.
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The promising preclinical results of S1PR inhibitor Fingolimod
also creates possibilities for the use of other more selective S1PR
inhibitors, such as Ponesimod (acts via S1PR1), Siponimod (acts via
S1PR1 and S1PR5), and Ozanimod (acts via S1PR1 and S1PR5) in
AD (Figure 2), especially since Fingolimod targets all S1P receptors
(except S1PR2), creating potential harmful side effects (147, 148).
Currently, the use of these S1PR inhibitors are focused on therapy
development for MS and no scientific literature is describing their
use in ADmodels. Another strategy to interfere in the S1P signaling
could be via the inhibition of the S1P transporter Spns2. As
described earlier, Spns2 knockout mice display reduced
inflammatory microglia phenotypes and Spns2 is possibly
involved in the Ab42-induced NF-kB signaling and cognitive
decline. Additionally, Spns2 forms a complex with major
facilitator superfamily domain-containing 2a (Mfsd2a) to
optimize S1P transport and shows involvement in maintaining
BBB integrity by adjusting S1P concentrations (149). This indicates
that S1P transport could potentially be inhibited via either Spns2 or
Mfsd2a. Unfortunately, no inhibitors are currently available for both
Spns2 and Mfsd2a.
CERAMIDE SYNTHESIS INHIBITION AS A
THERAPEUTIC TARGET IN AD

With enhanced levels of long-chain ceramides found in AD,
inhibition of ceramide metabolism could be an interesting
therapeutic approach. For instance, targeting the de novo
ceramide synthesis by inhibiting SPT has already been
investigated by using SPT inhibitors such as myriocin, ARN14494
and L-cycloserine. In vitro experiments with myriocin indicated
that it inhibits ceramide synthesis via SPT in MS and its mouse
model experimental autoimmune encephalomyelitis (139).
However, myriocin has not been extensively tested for efficacy in
AD models. In AD in vitro models, ARN14494 and L-cycloserine
are capable of inhibiting SPT, resulting in decreased ceramide and
pro-inflammatory cytokine levels (92, 93). While these initial in
vitro results are promising, studies exploring the effect of SPT
inhibition in vivo is needed to confirm whether these inhibitors
have indeed anti-inflammatory and neuroprotective effects.
TABLE 1 | Sphingolipid and SPM based therapeutic approaches for AD.

Compound Target In vivo/in vitro Cell type/animal model Concentration Reference

Fingolimod S1PR1, 3, 4, 5 In vitro Mouse neuronal cultures 1–100 pM (135)
In vivo 5XFAD mouse model 0.03–5 mg/kg/day (136, 137)
In vivo APP/PS1 mouse model 0.3 mg/kg/day (138)

ARN14494 SPT In vitro Ab induced cortical astrocyte-neuron co-cultures 1, 5, 10 µM (93)
L-cycloserine SPT In vitro cortical neurons and astrocytes 2 mM (92)
Myriocin SPT In vitro human oligodendroglioma cell line 5 µM (139)
PDDC nSMase2 In vivo 5XFAD+vehicle mouse models 10 mg/kg/day (140)
GW4869 nSMase2 In vitro hippocampal neuronal cultures 150 µM (141)
Cambinol nSMase2 In vitro hippocampal neuronal cultures 0.1–30 µM (141)
Aspirin COX2 In vitro Mice microglia 10, 100, 1000 nmol/liter (127)

In vivo Tg2576 mice 15 µM/kg 2x per day (127)
Defensamide SK1 In vitro primary cultured human keratinocytes 100 µM (142)
AE1-329 EP4 In vitro primary cultured mouse microglia 100 µM (143)
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Targeting the sphingomyelinase pathway might be another
approach to decrease ceramide levels. For instance, the
knockdown of nSMase in Ab activated astrocytes decreased their
pro-inflammatory cytokine and chemokine secretion (89). GW4869
and Cambinol are proven inhibitors of nSMase and show
neuroprotective and anti-neuroinflammatory properties (90, 141).
However, these inhibitors have an unfavorable IC50 of >1µM.
Additionally, GW4869 is insoluble and has a high molecular
weight, creating difficulties for the conduction of (pre)clinical
studies (141, 150). Recently a new nSMase2 inhibitor was
identified, phenyl (R)-(1-(3- (3,4-dimethoxyphenyl)-2,6-
dimethylimidazo[1,2-b]pyridazin-8-yl)- pyrrolidin-3-yl)carbamate
1 (PDDC). This inhibitor showed in the 5XFAD+vehicle AD
mouse model that it can penetrate the BBB, inhibit exosome
release and neuroinflammation (140, 151). The first results with
PDDC as nSMase2 inhibitor seem promising but, being a new
compound, additional research is warranted.

Overall, the inhibition of ceramide synthesis pathways shows
potential to function as a therapeutic approach for AD. A reduction of
pro-inflammatory cytokines and chemokines is observed upon the
use of ARN14494 and L-cycloserine to inhibit de novo synthesis in
vitro. Additionally, PDDC already showed inhibitory effects on SMase
ceramide synthesis pathways, decreasing neuroinflammation in vivo.
Frontiers in Immunology | www.frontiersin.org 8
BOOSTING THE RESOLUTION OF
NEUROINFLAMMATION AS A NOVEL
TREATMENT MODALITY FOR AD

The exploitation of SPMs to resolve neuroinflammation in AD is
still in its infancy. Several papers demonstrate that aspirin can
acetylate COX-2, resulting in the blocking of prostaglandin
biosynthesis and activation of SPM biosynthesis. For example,
aspirin-triggered LXA4 production reduced NF-kB activation and
pro-inflammatory cytokine and chemokine secretion in aspirin
treated microglia. It also increased Ab phagocytosis by microglia
and improved cognitive function in Tg2576 mice (127). Aspirin is
currently the only known therapeutic that inhibits the pro-
inflammatory response and activates the anti-inflammatory
response of COX-2. However, a clinical human trial showed no
evidence that aspirin reduces the risk of AD (152).

Other therapeutic approaches could consist of SK1 activation
via (S)-Methyl 2-(hexanamide)-3-(4-hydroxyphenyl)
propanoate (MHP), also known as Defensamide (142). Young
Lee and colleagues demonstrated how SK1 has a pro-resolving
effect on neuroinflammation via N-acetyl sphingosine
generation followed by COX-2 acetylation, resulting in SPM
biosynthesis (133, 134). It can therefore be hypothesized that
FIGURE 2 | Chemical structure of Fingolimod together with three other more selective S1PR inhibitors; Siponimod, Ponesimod, and Ozanimod.
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activation of SK1 by Defensamide might be a novel SPM
promoting therapeutic approach. Currently, Defensamide was
shown to activate SK1 in human keratinocytes (an epidermal cell
line), however, it is not known if this activation also increases N-
acetyl sphingosine generation and no publications discuss its
effect in an AD experimental setup (142). The effect of
Defensamide remains, therefore, to be established.

An important event in the resolution of neuroinflammation is
lipid mediator class-switching. This can for example be induced
by the activation of E-prostanoid (EP)4 receptor by PGE2. In
turn, this enhances LOX-15 production that induces LXA4

biosynthesis (153). This indicates that activation of EP4 during
neuroinflammation in AD could represent a new therapeutic
approach. Indeed, AD in vitro microglial experiments showed
that EP4 receptor activation by EP4 receptor agonist AE1–329
attenuates Ab induced ROS, pro-inflammatory cytokine and
chemokine expression. Additionally, EP4 receptor expression
levels seem to be reduced in human post-mortem AD brain
(143). This indicates that activating the EP4 receptor via AE1-
329 might be a possible new therapeutic route for the resolution
of neuroinflammation during AD, but the lowered expression of
EP4 may attenuate its effects. Currently, only one paper discusses
the effect of AE1-329 in a mouse model of cerebral ischemia,
confirming that AE1-329 does enter the brain and therefore
could be implemented in AD mouse model studies (154).
Overall, research into new therapeutics for the targeting of
SPM metabolism in AD is still at the beginning, but some
publications show that modulation of the SPM metabolism can
be applied as a potential novel treatment strategy.
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DISCUSSION AND FUTURE DIRECTIONS

Our understanding of neuroinflammation in AD has tremendously
increased over the last decade. With this, it became clear that both
SL and SPM metabolism are major players in the onset and
resolution of excessive neuroinflammation during AD. Increased
ceramide and SMase levels are found in AD brain and showed to be
part of the signaling cascades for pro-inflammatory responses (87,
95). S1P signaling in AD remains controversial, as levels are
increased in mild cognitive impairment patients but are attenuated
in cases with more advanced AD (104). The exact mechanisms
underlying SL metabolism alterations in AD patients is largely
unknown. Additionally, several SPMs are reduced in AD patient
tissues and body fluids, suggesting potential defects in resolution
pathways, but how this decrease in SPM levels is mediated remains
to be established. Interestingly, it was suggested that SK1 can
generate N-acetyl sphingosine that acetylates COX-2, resulting in
activation of the SPM production (133, 134). This suggests that SL
metabolism is involved in the resolution of neuroinflammation via
SPM biosynthesis, thereby providing a direct link between these
bioactive lipid pathways (Figures 1 and 3). In short, although
increased understanding of SL and SPM metabolism in AD is
gained over the years, extended research should be conducted to
further understand its involvement in AD pathology. This includes
getting a better understanding of the underlying mechanisms that
are involved in lowering SK1 and subsequent SPM levels, as well as
increased ceramide levels.

Although the development of SL and SPM therapeutics is still
in its infancy, several potential compounds show beneficial
FIGURE 3 | The role of sphingolipids and specialized pro-resolving mediators in health and disease. In healthy conditions, neurons maintain a proper balance of
sphingolipids. The abundant SK1 enzyme deviates the sphingolipid pathway toward SPM production and secretion. Secreted SPMs reach perineuronal microglia,
promoting their pro-resolving phenotype. Pro-resolving microglia maintain a healthy microenvironment by clearing amyloid beta through phagocytosis. In AD, there is
a dysregulation of sphingolipids and SPMs, which correlates with the levels of hyperphosphorylated tau and Ab. Reduced levels of the enzyme SK1 result in less
SPM production and secretion. Microglia become pro-inflammatory, and start secreting pro-inflammatory cytokines. Ab is no longer cleared, leading to the formation
of extracellular amyloid plaques. These plaques further contribute to neurotoxicity.
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effects on reducing neuroinflammation, increasing Ab
phagocytosis, and decreasing the levels of phosphorylated tau
(90, 92, 130, 135, 139–141, 145, 151). Fingolimod is one of those
prime candidates, demonstrating decreased neuroinflammation
in both in vitro and in vivo models of AD. Additionally,
Fingolimod is already approved by the EMA as therapy for
MS. This makes Fingolimod one of the most promising
therapeutic compounds to reduce the pro-inflammatory
response via S1PRs in AD. Therefore, additional research with
AD models should be conducted, focusing on the inhibition of
neuroinflammation using S1P receptor specific therapeutic
compounds like Ponesimod, Siponimod, and Ozanimod.

Therapeutics that focus on the downregulation of ceramide
syntheses, such as PDDC, ARN14494, and L-cycloserine, are
possibly effective to fight progression of AD pathology, as
ceramide levels appear to be increased throughout AD
progression. However, Fingolimod and Defensamide are
possibly most effective during the early stages of AD. For
instance, SK1 levels are decreased in post-mortem brain tissue
of AD patients. In addition, mild cognitive impairment patients
show high S1P levels, but their levels decrease during the
progression of AD. Therefore, the effects of possible treatments
should be studied throughout AD progression to determine the
most effective treatment window.

In conclusion, SL and SPM metabolism are essential players
in the onset and resolution of neuroinflammation in AD
Frontiers in Immunology | www.frontiersin.org 10
(Figure 3). Increasing our knowledge about alterations in their
metabolism and signaling, and more importantly about the
interplay between SLs and SPMs metabolism will provide new
perspectives for the development of innovative therapies for AD
based on resolution pharmacology. It is therefore of major
importance to gain more insight in the coming years into the
underlying mechanism of action by which SLs and SPM
signaling and metabolism act during tissue homeostasis and
neuroinflammation in AD.
AUTHOR CONTRIBUTIONS

This manuscript was written by NW, KM, and GK. SRL provided
the illustration. HV and SRL contributed in revising the
manuscript. All authors contributed to the article and
approved the submitted version.
FUNDING

This work was supported by a grant from IMI (807015 to NW), a
grant from the Dutch MS Research Foundation (20-1087 MS to
SRL), as well as a grant from the Dutch Research Council (NWO
Vidi grant 91719305 to GK).
REFERENCES

1. Lawson LJ, Perry VH, Dri P, Gordon S. Heterogeneity in the distribution
and morphology of microglia in the normal adult mouse brain. Neuroscience
(1990) 39(1):151–70. doi: 10.1016/0306-4522(90)90229-W

2. Sofroniew MV, Vinters HV. Astrocytes: Biology and pathology. Acta
Neuropathol (2010) 119:7–35. doi: 10.1007/s00401-009-0619-8

3. Tognatta R, Miller RH. Contribution of the oligodendrocyte lineage to CNS
repair and neurodegenerative pathologies. Neuropharmacology (2016)
110:539–47. doi: 10.1016/j.neuropharm.2016.04.026

4. Daneman R, Prat A. The blood–brain barrier. Cold Spring Harb Perspect Biol
(2015) 7(1):a020412. doi: 10.1101/cshperspect.a020412

5. Wit N, Kooij G, Vries H. In Vitro and Ex Vivo Model Systems to Measure
ABC Transporter Activity at the Blood-Brain Barrier. Curr Pharm Des
(2016) 22(38):5768–73. doi: 10.2174/1381612822666160810145536
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106. Ibáñez C, Simó C, Barupal DK, FiehnO, KivipeltoM, Cedazo-Mıńguez A, et al. A
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