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Common variable immunodeficiency (CVID) is the most frequently diagnosed primary
antibody deficiency. About half of CVID patients develop chronic non-infectious
complications thought to be due to intrinsic immune dysregulation, including
autoimmunity, gastrointestinal disease, and interstitial lung disease (ILD). Multiple
studies have found ILD to be a significant cause of morbidity and mortality in CVID. Yet,
the precise mechanisms underlying this complication in CVID are poorly understood. CVID
ILD is marked by profound pulmonary infiltration of both T and B cells as well as
granulomatous inflammation in many cases. B cell depletive therapy, whether done as
a monotherapy or in combination with another immunosuppressive agent, has become a
standard of therapy for CVID ILD. However, CVID is a heterogeneous disorder, as is its
lung pathology, and the precise patients that would benefit from B cell depletive therapy,
when it should administered, and how long it should be repeated all remain gaps in our
knowledge. Moreover, some have ILD recurrence after B cell depletive therapy and the
relative importance of B cell biology remains incompletely defined. Developmental and
functional abnormalities of B cell compartments observed in CVID ILD and related
conditions suggest that imbalance of B cell signaling networks may promote lung
disease. Included within these potential mechanisms of disease is B cell activating
factor (BAFF), a cytokine that is upregulated by the interferon gamma (IFN-g):STAT1
signaling axis to potently influence B cell activation and survival. B cell responses to BAFF
are shaped by the divergent effects and expression patterns of its three receptors: BAFF
receptor (BAFF-R), transmembrane activator and CAML interactor (TACI), and B cell
maturation antigen (BCMA). Moreover, soluble forms of BAFF-R, TACI, and BCMA exist
and may further influence the pathogenesis of ILD. Continued efforts to understand how
dysregulated B cell biology promotes ILD development and progression will help close the
gap in our understanding of how to best diagnose, define, and manage ILD in CVID.
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INTRODUCTION

Primary antibody deficiencies (PADs) are the most prevalent form
of immunodeficiency and are defined by disruption of a patient’s
ability to generate functional antibodies. They are further classified
by the mechanism of disruption and type of antibody affected. For
example, X-linked agammaglobulinemia is an antibody deficiency
defined by a reduction in all antibody classes due to a severe block in
B cell differentiation, and hyper IgM syndrome is a deficiency
characterized by defective B cell isotype class switching that results
in lower levels of IgG and IgA, and higher IgM (1–3). The lack of a
complete antibody arsenal typically predisposes PAD patients to
recurrent bacterial and viral infections; however, the severity and
prevalence of symptoms varies with type of PAD as well as
individual manifestations of those with the same PAD.

The most prevalent symptomatic PAD is common variable
immune deficiency (CVID) which is classified by profound
reduction in IgG as well as IgA or IgM due to impaired B cell
differentiation (4). Affecting 1:25,000 individuals, patients are
typically diagnosed between the ages of 20 and 40 (5).
Immunoglobulin replacement therapies can be used to limit
infections, however about half of CVID patients develop non-
infectious complications such as autoimmunity, lung and/or
gastrointestinal disease, and malignancy despite this therapy (6).
Moreover, these non-infectious complications occur in CVID more
frequently than other forms of PAD for reasons that are poorly
understood (7, 8). This suggests the presence of genetic,
immunological, and/or environmental factors, and not simply
antibody deficiency alone, drive the development of inflammatory
complications in PAD. Yet, these complex etiologies remain poorly
understood. Consequently, non-infectious complications are the
leading cause of morbidity and mortality in CVID (9, 10).

The lung, as a mucosal surface regularly exposed to exogenous
pathogens, is one of the organs most affected by the infectious and
non-infectious complications of CVID. Upper respiratory tract
infections by encapsulated bacteria are common in patients, leading
to airway inflammation, impaired host defense, permanent tissue
damage, and frequently bronchiectasis - an irreversible dilation of the
bronchial airways (11). While bronchiectasis is likely the most
common pulmonary complication of CVID, interstitial lung disease
(ILD) also occurs in about 1 out of 3 CVID patients and accounts for
a larger percentage of mortality (9, 10, 12). Radiological findings that
distinguish CVID ILD typically include pulmonary nodules, ground
glass opacities, and mediastinal lymphadenopathy (13). Additionally,
biopsies typically reveal benign lymphoproliferation and
Abbreviations: APRIL, a proliferation-inducing ligand; BAFF, B cell activating
factor; BAFF-R, BAFF receptor; BCMA, B cell maturation antigen; COPD, chronic
obstructive pulmonary disease; CSR, class-switch recombination; CTLA-4,
cytotoxic T-lymphocyte-associated protein 4; CVID, common variable
immunodeficiency; GLILD, granulomatous lymphocytic interstitial lung disease;
GOLD, Global Initiative for Chronic Obstructive Lung Disease; IKKa, IkB kinase;
iBALT, induced bronchus-associated lymphoid tissue; ILD, interstitial lung
disease; LRBA, lipopolysaccharide (LPS)-responsive and beige-like anchor
protein; NIK, NF-kB-inducing kinase; PAD, primary antibody deficiency;
STAT1, signal transducer and activator of transcription 1; TACI,
transmembrane activator and CAML interactor; TI, T cell-independent; TRAF3,
TNF receptor-associated factor 3.
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granulomatous inflammation leading this form of interstitial lung
disease to be labeled granulomatous-lymphocytic interstitial lung
disease (GLILD) (1, 13). The exact cause of ILD in CVID remains
unclear and does not require the presence of bronchiectasis or history
of pneumonia, suggesting that infection is not an underlying cause in
many cases (14). Immunoglobulin replacement therapy typically does
not ameliorate the development of ILD in CVID, and current
therapeutic approaches rely on immunomodulatory drugs (15).
While treating ILD, these immunomodulatory drugs may also
increase the risk of infection or malignancy in these patients
already vulnerable for these complications, particularly because a
therapeutic endpoint is often unclear (16). Greater understanding of
ILD pathogenesis in CVID is needed to develop safer and more
effective therapeutic approaches.

Perhaps a key to understanding ILD pathogenesis in CVID is the
fact that it frequently occurs together with other non-infectious
complications, like autoimmune cytopenia and splenomegaly,
which are driven by mechanisms of immune dysregulation (17).
Additionally, there are a number of monogenic antibody deficiency
syndromes that present with ILD of a similar pathology to that seen
in CVID patients (18). These include patients with gain-of-function
mutations of PI3KD that develop the CVID-like activated PI3Kd
syndrome defined by lymphoid hyperplasia, which can affect the
airways. Activated PI3Kd syndrome can be ameliorated by
rapamycin, which reduces resultant hyperactive mTOR signaling
in lymphocytes, or targeted inhibition with the PI3Kd inhibitor
leniolisib (19, 20). Similarly, patients with genetic deficiency of
cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) or a protein
vital for its vesicular trafficking, lipopolysaccharide (LPS)-responsive
and beige-like anchor protein (LRBA), develop inflammatory
complications that are responsive to CTLA-4-Ig, known as
abatacept (21, 22). These examples highlight the potential of
precision immunomodulatory treatments for ILD as well as other
non-infectious complications of CVID based upon identification of
an underlying genetic lesion.

Despite CVID being defined by impaired antibody production,
B cells appear to play an important role in ILD pathogenesis.
Pulmonary B cell hyperplasia is a defining feature of CVID ILD,
particularly in patients with biopsy proven follicular bronchiolitis,
lymphocytic interstitial pneumonia, and nodular lymphoid
hyperplasia of the lungs (23). Notably, ILD occurs far less
commonly in X-linked agammaglobulinemia, a form of PAD
where B cells are absent (7). Numerous studies have found B
cell-depletive therapy with rituximab to be efficacious for CVID
ILD (23–27). We conducted the largest study of rituximab
monotherapy for CVID ILD, finding clear efficacy of this
intervention over supportive care (28). ILD recurred after
rituximab in about 1/3rd of subjects, but this recurrence could be
limited by additional immunosuppression with azathioprine or
mycophenolate. ILD recurrence was associated with increased
levels of B cell activating factor (BAFF) in the blood and lungs,
a key cytokine for B cell activation and survival (28). While these
results do not prove that B cells are pathogenic in CVID ILD, they
provide justification for deeper consideration and further research
efforts to understand how these lymphocytes may contribute to
disease. In the effort to summarize our understanding of how B
February 2021 | Volume 11 | Article 622114
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cells may contribute to CVID ILD, we will review mechanisms of
B cell dysfunction described in CVID and non-CVID lung diseases
alike. We apply particular focus upon BAFF-related B cell biology
given the considerable research in CVID and other lung diseases
that has been recently conducted.

It is important to note that not all ILD found in CVID may be
the same. It has been suggested that there are diverse forms of
ILD afflicting CVID patients (29). We have found evidence of B
cell hyperplasia and heightened BAFF responses in CVID,
spec ifi ca l l y w i th b iopsy -proven fo rms o f ben ign
lymphoproliferative interstitial lung disease. This is a spectrum
of pulmonary pathology that starts with follicular bronchiolitis,
when disease is limited to peribronchial areas, and progresses to
lymphocytic interstitial pneumonia and nodular lymphoid
hyperplasia, when inflammation becomes more diffuse within
the lung parenchyma (30). CVID ILD can also manifest as other
types of pathology, such as non-specific interstitial pneumonia,
prominent granulomatous inflammation, or organizing
pneumonia (12, 14). It may be important to confirm ILD by
performing lymphocyte phenotyping of biopsies to gain a
specific pathology diagnosis, like lymphocytic interstitial
pneumonia, rather than label all forms of presumed ILD on
CT scan as GLILD and treat them the same. It is likely that CVID
ILD pathology with prominent B cell follicles, such as follicular
bronchiolitis and lymphocytic interstitial pneumonia, may be
more responsive to B cell-targeted therapy. Variability among
CVID ILD pathology may mean that some cases are more
responsive to BAFF or B cell-targeted therapy than others.
BIOLOGY OF BAFF AND ITS RECEPTORS

BAFF and a proliferation-inducing ligand (APRIL), are members
of the tumor necrosis factor family of ligands that share receptors
to promote activation and survival of B cells. BAFF and APRIL
are elevated in the blood of CVID patients (31, 32). BAFF may
contribute to lung disease in CVID as its levels were found to be
highest in CVID patients with progressive ILD (28). APRIL levels
Frontiers in Immunology | www.frontiersin.org 3
were not found to be also elevated in this study. A variety of cell
types are capable of producing BAFF in response to type I and
type II interferons as well as pattern recognition receptor
engagement, including dendritic cells, monocytes, and
neutrophi l s (33) . BAFF is expressed as a type II
transmembrane protein that is processed at a furin cleavage
site to release soluble BAFF (33, 34). Upon release from the cell
membrane, BAFF can assemble into homotrimers or oligomeric,
capsid-like 60-mers (35). Alternative splicing of BAFF generates
a shorter isoform (DBAFF) that is co-expressed and associates
with BAFF but interferes with proteolytic cleavage at the
membrane (36). Thus, soluble BAFF can have distinct
functional impact upon B cells depending on its abundance,
multimeric state, and isoform.

The effects of BAFF are influenced by the specific receptor it
binds. BAFF can signal via three receptors, BAFF receptor
(BAFF-R), transmembrane activator and CAML interactor
(TACI), and B cell maturation antigen (BCMA), while APRIL
signals through TACI and BCMA only (Table 1) (37). BAFF
receptors are differentially expressed across developmental
subsets of B cells to regulate intracellular signaling pathways
related to B cell activation, survival, and maturation (37–39).
Expression of BAFF-R is absent on pre-B cells in the bone
marrow until development into immature B cells, coinciding
with establishment of BAFF-R as the predominant BAFF
receptor in naive and transitional B cells (39). TACI expression
increases with development into marginal zone and memory B
cells as well antibody producing cells (38, 40). Expression of
BCMA is mainly restricted to plasma cells (38, 41–43).

Along with differences in expression during B cell maturation,
there are distinguishing features regarding BAFF-R signaling
compared to other receptors for BAFF (Figure 1). In addition to
activating the canonical NF-kB and phosphoinositide 3-kinase
pathways, BAFF-R engagement of trimeric or oligomeric BAFF
activates the non-canonical NF-kB pathway and upregulates
expression of proteins in the Bcl-2 family that enhance B cell
survival (44–46). Non-canonical NF-kB signaling requires
activation of NF-kB-inducing kinase (NIK), a kinase that is
February 2021 | Volume 11 | Article 62211
TABLE 1 | Important characteristics of the receptors for BAFF.

BAFF-R (TNFRSF13C) TACI (TNFRSF13B) BCMA (TNFRSF17)

B cell subset expression Naïve & transitional B cells Marginal zone & class-switched memory B cells Plasma cells
Ligands BAFF trimer, BAFF 60mer BAFF 60mer, APRIL, HSPGs BAFF, APRIL
TRAF Interactions TRAF3

TRAF6
TRAF2 (thru TRAF3)

TRAF2
TRAF3
TRAF5
TRAF6

TRAF1
TRAF2
TRAF3
TRAF5
TRAF6

Signaling pathways Non-canonical NF-kB
Canonical NF-kB
PI3K-Akt

Canonical NF-kB
NFAT
MyD88-dependent CSR

Canonical NF-kB

Effects upon B cells Pro-survival
Enhanced proliferation
Resistance to apoptosis

Cell cycle arrest
Apoptosis
TI class switching to IgG, IgA
Plasma cell differentiation

Survival of plasma cells

Extracellular CRDs 1 (shorter) 2 1
Soluble receptor processing ADAM10, ADAM17

(BAFF & TACI-dependent)
ADAM10, g-secretase, ADAM17 g-secretase
4

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Matson et al. B Cells in CVID Lung Disease
targeted for constitutive degradation while in complex with TNF
receptor-associated factor 3 (TRAF3) in unstimulated B cells (47,
48). Ligation of BAFF to BAFF-R induces the targeted
degradation of TRAF3, allowing NIK to accumulate and
induce IkB kinase (IKKa)-dependent cleavage of p100 into
p52 which associates with RelB to alter transcriptional activity
(49–54). TRAF molecules such as TRAF2, TRAF3, TRAF5, and
TRAF6, are recruited to the intracellular domain of BAFF
receptors to mediate downstream signaling pathways in B cells
through the canonical and non-canonical NF-kB pathways, AP-
1 signaling, and MyD88-dependent class switch recombination
in cooperation with TLRs (51, 55–58). B cell survival is also
enhanced through the cooperation of BAFF-R with CD19 in
regulating the activity of phosphoinositide 3-kinase (59). BAFF-
R has greater affinity for BAFF compared to TACI and BCMA
(60, 61). Due to its ability to promote survival through the non-
canonical NF-kB and phosphoinositide 3-kinase pathways,
expression from early stages of B cell maturation, and high
affinity for BAFF, BAFF-R is positioned as a chief mediator of
BAFF activity. Further efforts are needed to determine how
Frontiers in Immunology | www.frontiersin.org 4
significant the role of BAFF-R is in the pathogenesis of CVID-
related complications.

Unlike BAFF-R, TACI signal activation requires binding to a
higher-order oligomeric BAFF complex, such as the BAFF 60mer
(62). BAFF signaling through TACI activates the canonical NF-
kB pathway and upregulates expression of genes involved with
cell cycle arrest, cell death, and class switch recombination (CSR)
in response to T cell-independent (TI) antigens (45, 63, 64). In
line with the role of TACI in TI responses, BAFF and APRIL
induce IgG and IgA CSR via TACI through MyD88 (64). TACI
interacts with mechanistic target of rapamycin (mTOR) via
MyD88 to contribute to TACI-mediated NF-kB activation,
association with TLRs, and IgG class switching in response to
TI antigens (65). TACI also appears to have a regulatory role in
antibody production from B cells stimulated with BAFF and
CD40, which indicates a homeostatic role in regulating T cell-
independent versus T cell-dependent antibody production (66).
TACI can also signal through the nuclear factor of activated T
cells (NFAT) pathway (67). Alternative splicing of TACI
transcripts can generate a short isoform that induces strong
FIGURE 1 | Key aspects of BAFF-R, TACI, and BCMA signaling within the context of CVID. BAFF-R is distinguished by its ability to signal via the non-canonical NF-
kB pathway to induce Bcl-2 and other pro-survival factors. Lack of memory B cells and plasma cells expressing TACI and BCMA in CVID may increase signaling via
BAFF-R. CSR, class-switch recombination; TI, T-independent.
February 2021 | Volume 11 | Article 622114
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activation of the NF-kB pathway and has distinct localization
within B cells compared to the full-length isoform (68, 69).
Importantly, TACI signaling promotes expression of BLIMP-1, a
transcription factor that induces cell cycle arrest and plasma cell
differentiation by inhibiting expression of Bcl-6 and Pax5 (63,
70). Interestingly, Pax5 has been characterized as a lineage
biomarker for a subset of rituximab-treated B cell lymphoma
patients who relapse with CD20-negative B cells (71–74).
However, the role of Pax5 in the development and progression
of non-infectious complications in CVID remains to
be characterized.
BAFF AND ITS RECEPTORS IN CVID

Germline mutations in TNFRSF13B, the gene that encodes
TACI, are observed in 5-10% of CVID patients (75, 76). TACI-
deficient patients are known to have an increased rate of
autoimmunity and lymphoproliferative disease in CVID in
association with increased autoreactive B cell selection and
survival (77, 78). There may a greater risk of progressive ILD
in CVID patients with certain TACI mutations compared to
other CVID patients (28). The C104R and A181E variants are the
most common variants in TACI that are considered likely
pathogenic (Figure 2). The C104R mutation disrupts a
disulfide bond in the extracellular cysteine rich domain 2
Frontiers in Immunology | www.frontiersin.org 5
(CRD2) to diminish TACI ligand binding capacity and TACI-
mediated activation of canonical NF-kB signaling (79). The
A181E TACI variant affects the CAML binding site located in
the transmembrane domain does not interfere with ligand
binding or surface expression but fails to activate NF-kB
signaling (79). Several other CVID-associated genetic variants
of TACI have been identified in clinical settings and further
characterization of these variants may provide insight into
TACI’s role in regulation of the BAFF/APRIL signaling axis in
CVID and other diseases (75–77, 79–82). A global cohort
analysis revealed that although mutations in TNFRSF13B are
prevalent in CVID and healthy populations, there is an excess of
rare derived alleles of TNFRSF13B in CVID cohorts compared to
healthy individuals of the same population, indicating that
defects in TACI are contributory toward manifestations of
CVID (80). However, given the prevalence of the same variants
in healthy populations, TNFRSF13Bmutations are likely disease-
modifying rather than disease-causing.

Regarding BAFF-R, a homozygous in-frame deletion that
results in the loss of eight amino acids within the
transmembrane region was identified in siblings with
hypogammaglobulinemia (83). The two siblings had reduced
serum IgG and IgM, but normal level of IgA. Class-switched
memory B cells were lacking in these patients, and they did not
have a medical history of autoimmune or lymphoproliferative
complications. Also, a P21R variant of BAFF-R has been
FIGURE 2 | Mutations of TNFRSF13B (TACI) associated with CVID. The variants listed are limited to the two most common, C104R and A181E, which are
discussed in the text, as well as two other illustrative examples of how disruption of TACI can impair B cell function. Proposed mechanisms of biochemical disruption
of certain variants included.
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identified that interferes with BAFF-R complex formation, has
reduced capacity to bind BAFF, and impairs BAFF-mediated
NF-kB2 activation (84). B cells from patients with the BAFF-R
P21R mutation lacked an increase in cell number and IgM
secretion in response after stimulation with CpG DNA, anti-
IgM, and BAFF. The BAFF-R P21R allele is found in 10.2% of
CVID patients and 6.7% of healthy controls. Three additional
heterozygous BAFF-R variants have been identified in a CVID
cohort, all of which are present in healthy controls as well and
their role in CVID remains to be defined (85).
SOLUBLE BAFF RECEPTORS

Each of the three BAFF receptors can be proteolytically
processed to generate soluble molecules that function as decoy
receptors in circulation (Figure 3). These soluble BAFF receptors
add another layer to regulation of BAFF and APRIL-mediated
homeostasis in B cells, prompting investigations into their utility
in pharmacologic and diagnostic applications (86). Upon
binding to BAFF, the extracellular domain of BAFF-R is
processed by a metalloprotease (ADAM10) only in cells that
also express TACI (87). This regulated processing is different
Frontiers in Immunology | www.frontiersin.org 6
from that of TACI and BCMA, receptors that undergo
constitutive processing to release soluble fragments (88, 89).
The BAFF trimer induces processing of BAFF-R by ADAM10,
whereas TACI processing is unaffected by BAFF trimer
stimulation (87). BAFF 60-mers are capable of stimulating
processing of BAFF-R and TACI by both ADAM10 and
ADAM17 (87). In the same study, the two metalloproteases,
ADAM10 and ADAM17, demonstrated differential activity with
respect to the activity state of B cells with increased ADAM10
activity on resting and TLR9-activated B cells, and ADAM17
processes BAFF-R on dark zone and germinal center B cells.
Inhibition of ADAM10, responsible for processing of BAFF-R
and TACI, was then shown to increase BAFF-dependent survival
and secretion of IgM from B cells.

TACI is constitutively processed by ADAM10 on the surface of
B cells to release the soluble extracellular domain of TACI capable of
binding to BAFF and APRIL (88). Then g-secretase, an
intramembranous protease, cleaves the remaining membrane-
proximal TACI fragment to prevent receptor-dependent
activation of canonical NF-kB signaling (88). There is conflicting
evidence supporting the capacity of the extracellular domain of
TACI fused to an immunoglobulin Fc domain (TACI-Fc) to induce
reverse signaling in macrophages through membrane bound BAFF
FIGURE 3 | Membrane processing of human BAFF receptors. Cleavage of the BAFF-R ectodomain is induced by BAFF binding in cells that co-express TACI.
Processing of BAFF-R by ADAM10 is induced by binding to BAFF trimers and binding of BAFF 60mer to BAFF-R induces ADAM17 processing of BAFF-R. The
membrane-bound C-terminal fragment of BAFF-R is degraded in lysosomes after cleavage of the ectodomain. TACI is cleaved in a constitutive manner by ADAM10,
followed by cleavage of the membrane-bound C-terminal fragment by g-secretase. sTACI exhibits homotypic assembly and binds to BAFF and APRIL to reduce NF-
kB activation and B cell survival, with TACI-Fc demonstrating similar capabilities. BCMA is constitutively cleaved by g-secretase to release sBCMA consisting of the
ectodomain and a portion of the transmembrane domain of BCMA. sBCMA is a decoy for APRIL-induced NF-kB activation but does not block BAFF-mediated NF-
kB activation. However, BCMA-Fc is capable of binding both APRIL and BAFF to block NF-kB activation.
February 2021 | Volume 11 | Article 622114
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and APRIL (90, 91). Studies that interrogate the role of soluble
TACI must take into consideration differences in amino acid
composition of endogenous sTACI compared to that of TACI-Fc
due to demonstrated differences in BAFF/APRIL binding between
sBCMA and BCMA-Fc (89). Subtle differences in the amino acid
composition may have drastic effects on ligand binding capacity of
the extracellular domain, as point mutations in TACI are capable of
diminishing affinity for ligand, processing of TACI, and even
processing of BAFF-R (87). Thus, the biological impact of soluble
TACI remains incompletely understood.

BCMA is constitutively processed by g-secretase, a process
that acts to reduce surface BCMA and consequently regulate the
number of plasma cells in the bone marrow, given the
importance of this receptor for plasma cell survival (89).
Although BCMA is able to bind BAFF and APRIL to induce
canonical NF-kB signaling, soluble BCMA (sBCMA) is able to
bind APRIL but does not block BAFF-mediated activation of NF-
kB in HEK cells transfected with BCMA (89). The same study
also found recombinant BCMA-Fc to bind BAFF and APRIL,
leading to inhibition of BAFF and APRIL-mediated NF-kB
signaling through BCMA. Quantification of serum BCMA
revealed markedly reduced levels among patients with severe
PAD, such as CVID and XLA (92). Evaluation of
immunoglobulin deficiencies in CVID and other PADs often
requires repeated vaccine challenges and discontinuation of
immunoglobulin replacement therapy, which increase patient
susceptibility to infection and may take several weeks (93–95).
Methods of diagnosing PAD requiring immunoglobulin
replacement that reduces diagnostic delay and does not require
treatment discontinuation, such as is the case with sBCMA
measurement, could significantly improve clinical care and
quality of life in those with PAD.
THE POTENTIAL CONTRIBUTION OF
BAFF TO CVID ILD

CVID patients can have a significant increase in serum IgM
corresponding to progression of ILD as determined by pulmonary
function decline (96). This serum IgM increase is associated with
hyperplasia of ectopic pulmonary B cells expressing IgM (28). B cell
depletion with rituximab ameliorates CVID ILD, corresponding
with improved pulmonary function and reduction of serum IgM,
compared to those receiving supportive care (28). Moreover, the
ILD recurrence that occurred in 1/3rd of study subjects within 2
years of receiving rituximab was also associated with serum IgM
elevation (28). Thus, the presence and reemergence of B cells,
corresponding with rising levels of serum IgM, may be quite
fundamental to CVID ILD pathogenesis.

CVID patients who experienced ILD progression after
rituximab had significantly elevated levels of BAFF in blood
and lung tissue compared to CVID patients with stable ILD, no
ILD, and healthy controls (28). IFN-g upregulates signal
transducer and activator of transcription 1 (STAT1) expression
to act as a potent stimulus of BAFF production (97). Numerous
reports that have found elevation of IL-12, IFN-g, and related T
Frontiers in Immunology | www.frontiersin.org 7
helper type 1 cytokines in CVID patients with inflammatory
complications (28, 98–105). Furthermore, plasma IFN-g levels
and STAT1 expression were elevated in CVID patients with
progressive ILD and correlated with BAFF expression, and
CD14+ monocytes were identified as a prominent source of
IFN-y-induced BAFF production and STAT1 expression in
CVID patients with progressive ILD (28). Together, these
results implicate an IFN-g:STAT1:BAFF axis in pathogenesis of
ILD in CVID. Efforts to unravel fundamental biology and clinical
importance of this IFN-g and BAFF relationship in CVID
are underway.

Heterozygous mutations of TACI found in CVID appear to
be key for the persistence of autoreactive B cells through
interaction with toll-like receptor (TLR) 7 and TLR9 (106).
Moreover, when BAFF is elevated in non-CVID patients it has
been shown that autoantigen-engaged B cells demonstrate
enhanced survival and migration to follicular zone and
marginal zone niches where they would normally be excluded
(107, 108). While the relationship between B cell autoreactivity
and ILD is unclear in CVID, it is possible that enhanced BAFF-R
signaling in the absence of counterbalancing signals from TACI
promotes pathogenic pulmonary B cell hyperplasia. Indeed, 3
patients with TACI mutations in our study of CVID all had
progressive ILD that recurred after rituximab (28). Thus, in
addition to the greater prevalence of progressive ILD in CVID
patients with TACI mutations there was apparently greater
resistance to B cell depletive therapy, possibly due to elevated
signaling through BAFF-R.

BAFF-R is the predominant BAFF receptor expressed by the
IgD+ B cells that make up the ectopic pulmonary follicles
observed in CVID ILD, while TACI is expressed in the
extrafollicular areas of the lung harboring plasmablasts
expressing IgM and the proliferation marker Ki67 (28). BAFF-
R is the principal BAFF receptor on B cells in CVID patients with
autoimmune and lymphoid hyperplasia due to the lack of
marginal zone, memory, and plasma cells in these patients that
would otherwise express TACI and/or BCMA (109, 110).
Elevated levels of BAFF enhance BAFF-R-mediated activation
of the non-canonical NF-kB pathway to upregulate Bcl-2
survival signals and impair B cell apoptosis (45, 48). The
expanded subset of naïve B cells in CVID ILD were observed
to induce expression of Bcl-2 and RelB to a level that is
significantly greater in CVID patients with progressive ILD
compared to healthy controls (28). Enhanced activity of BAFF-
R signaling in response to elevated BAFF not only drives
proliferation and resistance to apoptosis in naïve B cells, but
may concurrently impair B cell maturation by drowning out
BAFF-mediated maturation signals from TACI (45, 63).
Excessive BAFF inhibits autophagy in B cells and reduces
autophagosome marker LC3-II through mechanisms that
depend on active Akt/mTOR signaling, suggesting that
elevated BAFF can drive B cell survival through multiple
mechanisms (111).

The extent of B cell contributions to pathogenesis of CVID ILD
remains to be sufficiently defined. Like B cells, T cells are a
prominent feature of CVID ILD pathology, and treatment with
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azathioprine or mycophenolate mofetil in combination with
rituximab improved clinical chest radiography scores and
components of pulmonary function testing in patients with CVID
ILD (15). A considerable portion of patients in this study relapsed
after receiving this immunosuppressive combination in association
with elevated B cells and activated CD4+ T cells. Variations in the
extent of immune cell compartment imbalance in CVID may
enhance the progression of ILD due to mechanisms that remain
unclear. T cells from CVID patients demonstrate increased
frequencies of activated, memory, and effector populations with a
lack of naïve and regulatory T cell subsets (112). The enhanced state
of T cell activation and effector function in CVID may further
contribute to the B cell hyperplasia observed in CVID ILD due to a
lack of T cell-mediated regulation of B cell activity in addition to
upregulation of non-canonical NF-kB signaling in B cells as a result
of more widespread stimulation of CD40 through CD40L expressed
on activated T cells (113, 114). The notable variability of clinical
manifestations and aberrant immune cell compartments in CVID
suggests that multiple aspects of immune system dysregulation may
contribute to CVID ILD. Furthermore, efficacy of therapeutic
depletion of B cells may stem from indirect effects upon
leukocytes, such as T cells, that closely interact with B cells in
CVID ILD.

Studies of lung disease with pathologic similarities to that
observed in CVID ILD may also prove to be informative. For
example, lymphocytic interstitial pneumonia makes up 15% of
interstitial lung disease affecting Sjogren’s syndrome patients
(115). Similar to CVID, B cells appear to play a central role in the
development of ILD in Sjogren’s syndrome. Specifically, elevated
levels of BAFF can be found in the serum, saliva, and salivary glands
of Sjogren’s syndrome patients in comparison to healthy controls
(116–118). BAFF levels in these patients are also positively
associated with the presence of autoantibodies, including anti-SSA
and anti-SSB (119). Also, like we found in CVID ILD, elevated levels
of BAFF seen in Sjogren’s is associated with heightened interferon
signaling through the JAK/STAT pathway in monocytes (28, 120).
Elevated levels of BAFF in Sjogren’s syndrome ultimately enables
prolonged survival of B cells, which have been shown to aggregate
into inducible bronchus-associated lymphoid tissue structures with
pulmonary B cell follicles as in CVID ILD (121). A double-blind,
randomized, placebo-controlled, multi-center, multi-national
clinical trial (NCT02631538) that investigated the effects of
rituximab and belimumab administration in 86 pSS patients was
recently completed in June 2020. This trial contained four groups,
including a placebo group, a group that received only belimumab, a
group that received only rituximab, and a group that received both
belimumab and rituximab. Results from this study have not been
published yet, but they will put the implication of BAFF and
aberrant B cell survival and signaling found in Sjogren’s
syndrome patients to the test.

Another chronic lung disease where there is increasing evidence
for a role of B cells and BAFF is chronic obstructive pulmonary
disease (COPD). Although COPD is commonly associated with
smoking, anywhere between 25 and 45% of COPD patients have
never smoked, suggesting that other factors contribute to the
pathogenesis of this lung disease (122). The implication of the
Frontiers in Immunology | www.frontiersin.org 8
adaptive immune system in the development and progression of
COPD becomes evident when considering the fact that there is a
significantly greater number of B cells and CD4+ and CD8+ T cells
in the airways and parenchyma of the lungs of COPD patients (123,
124). These excess B and T cells arise from induced bronchus-
associated lymphoid tissue (iBALT) and form pulmonary follicles
containing germinal center B cells and follicular T cells (123).
Moreover, significantly more lymphoid follicles were found in the
lungs of those who were diagnosed with COPD in comparison to
smokers without COPD (124). Also, when categorizing COPD
patients on the Global Initiative for Chronic Obstructive Lung
Disease (GOLD) scale, a significant increase in the number and size
of lymphoid follicles was seen in later-stage COPD patients in
comparison to those in the earlier stages (124). The same study also
performed immunofluorescence on lung samples and found the size
of the lymphoid follicles identified in each of the aforementioned
groups to be directly correlated to the percentage of BAFF-positive
B cells, which co-localized with BAFF-R (124, 125). BAFF
expression was also found to be elevated in the blood of COPD
patients in comparison to non-smoking and smoking control
subjects (124). Healthy, smoking controls and the early-stage
COPD subjects, on the other hand, had a higher proportion of
caspase-3-positive B cells, indicating apoptosis, in their pulmonary
follicles in comparison to later-stage COPD subjects. These findings
implicate dysregulation of the BAFF : BAFF-R axis in the
progression of COPD, with the anti-apoptotic signals of BAFF-R
promoting the B cell follicles that are a major component of
pulmonary pathology, similar to what was found in CVID ILD.
CONCLUSION

There is increasing evidence that dysregulated B cell responses,
such as those exacerbated by BAFF, promote the progression of
ILD in CVID. This is supported by the adoption of B cell
depletive therapy, either alone or in combination with other
immunosuppression, as a fundamental component of CVID ILD
treatment. Continued suppression of B cell activation through
administration of immunosuppressive antimetabolite agents
such as azathioprine or mycophenate, or potentially through
inhibition of BAFF may help maintain CVID ILD in remission. B
cell hyperplasia is a defining aspect of CVID ILD and is
perpetuated via survival signals mediated by BAFF through
BAFF-R. In addition to B cells, CVID ILD consists of
prominent T cell infiltration which appears to also improve
with B cell depletive therapy (23, 28). The link between B cells
and T cells in the CVID lungs remains undefined, and whether
depletion of B cells removes a vital antigen-presenting cell,
lymphoid structure, source of chemokines, and/or another
component required for T cell recruitment and persistence in
the lungs is unknown. Further research is necessary to prove
whether B cells fundamentally contribute to pathogenesis of
CVID ILD, define the best way to achieve safe long-lasting
suppression of dysregulated B cell responses, and accurately
identify the individual CVID patients who would most benefit
from B cell-targeted therapy. Moreover, we must elucidate
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mechanisms by which the IFN-g/STAT1/BAFF axis is elevated in
CVID and other disorders. Further efforts to unravel the
mechanisms by which BAFF and B cells become dysregulated
in CVID offer potential to address these knowledge gaps in CVID
and other forms of autoimmune and inflammatory disease.
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