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Mycobacterium avium complex (MAC) is an increasingly important cause of morbidity and
mortality, and is responsible for pulmonary infection in patients with underlying lung
disease and disseminated disease in patients with AIDS. MAC has evolved various
virulence strategies to subvert immune responses and persist in the infected host.
Current treatment for MAC is challenging, requiring a combination of multiple antibiotics
given over a long time period (for at least 12 months after negative sputum culture
conversion). Moreover, even after eradication of infection, many patients are left with
residual lung dysfunction. In order to address similar challenges facing the management of
patients with tuberculosis, recent attention has focused on the development of novel
adjunctive, host-directed therapies (HDTs), with the goal of accelerating the clearance of
mycobacteria by immune defenses and reducing or reversing mycobacterial-induced lung
damage. In this review, we will summarize the evidence supporting specific adjunctive,
HDTs for MAC, with a focus on the repurposing of existing immune-modulatory agents
targeting a variety of different cellular pathways. We also highlight areas meriting
further investigation.

Keywords: nontuberculous mycobacteria (NTM), Mycobacterium avium complex, host-directed therapy,
Mycobacterium tuberculosis, drug repurposing

INTRODUCTION

Nontuberculous mycobacteria (NTM), including organisms of the Mycobacterium avium complex
(MAC), represent a significant and growing threat to human health worldwide. Since the beginning
of the AIDS epidemic in the 1980s, the prevalence of MAC infection has increased substantially
worldwide (1). MAC is widely distributed in the environment, including in water and soil, and is
transmitted via inhalation into the respiratory tract and via ingestion into the GI tract (2). The most
common clinical syndromes caused by MAC are pulmonary infection in patients with underlying
lung disease, as well as disseminated disease in the severely immunocompromised (3, 4). A recent
review of MAC pulmonary disease worldwide reported a five-year all-cause mortality rate of
27% (5).

In addition to the virulence factors common to all mycobacteria, MAC possesses several unique
features which may contribute to pathogenesis. For example, MAC demonstrates increased resistance
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to phagosome-lysosome fusion and oxidative damage in murine
macrophages, suggesting a unique ability to survive within
activated macrophages (6). MAC can escape from macrophages
undergoing apoptosis and survive extracellularly, evading the
cytotoxic response necessary to eliminate intracellular bacteria
(7). MAC also expresses several unique glycopeptolipids, which
may modulate macrophage signaling cascades, thereby preventing
an effective inflammatory response (8).

Treatment of MAC is challenging. Current treatment
recommendations vary depending on the underlying conditions,
severity of disease, and in vitro susceptibility profile. Macrolide-
susceptible pulmonary disease is generally treated with a three-drug
regimen, which includes a macrolide, ethambutol and a rifamycin,
for at least 12 months after negative sputum-culture conversion (9).
MAC often exhibits resistance to first-line antibiotics, and in vitro
susceptibility testing for non-macrolide drugs has poor correlation
with clinical efficacy. MAC pulmonary infection can present as
cavitary disease with long-term respiratory sequelae. A milder form
of the disease, which manifests as fibronodular bronchiectasis has a
slower progression, but has been linked to increased mortality (10).

In the face of the increasing prevalence, high mortality, and
treatment challenges associated with MAC infections, new
therapeutic options are urgently needed. A promising avenue
of research is that of host-directed therapies (HDTs). HDTs are
adjuncts to antimicrobial therapy, differing from the latter in that
they target host processes rather than the pathogen itself. The
goal of HDTs is to boost protective immune responses, especially
those inhibited or otherwise modified by the pathogen, and
prevent excessive pathological inflammation (11, 12). Unlike
novel antibacterial agents, they also confer the advantage of
not contributing to drug resistance or cross-resistance to
conventional antibiotics (12). Although HDTs are an active
area of investigation in the therapy of tuberculosis (TB), as
well as many non-mycobacterial infectious diseases (11-15),
there has been a relative dearth of research into the potential
of HDT's as adjunctive therapies for disease caused by MAC (16).

In the current review, we summarize HDT agents which are
currently under investigation for MAC disease, as well as other
HDTs and potentially targetable host pathways, which have not
been investigated directly for MAC, but which show promise for
future research.

IMPROVEMENT OF
ANTIMYCOBACTERIAL IMMUNITY

Enhancing Autophagy: mTOR Inhibitors
Autophagy is a key self-degradative process in which the
cytoplasmic contents of a cell are taken up by autophagosomes,
trafficked to the lysosome, and digested (17). Although basal levels
of this process occur in every cell, stress conditions, such as nutrient
deficiency or pathogen infection, induce autophagy as a way of
establishing homeostasis (18, 19). Autophagy plays a role in multiple
physiological and pathological pathways, including the clearance of
mycobacteria and other intracellular pathogens (17).

Initiation of autophagy is dependent on the Unc-51-like
kinase-1 (ULK1) complex. This initiator complex is, in turn,
regulated by the master regulator of autophagy, mammalian
target of rapamycin (mTOR). mTOR plays a critical role in
cellular metabolism, promoting anabolism and suppressing
catabolic processes, such as autophagy (20). mTOR signaling is
complex and can be activated or inhibited by a wide variety of
molecules and signaling pathways. Nutrient states, particularly
amino acid levels at the cellular level, serve as the main signal for
mTOR activation. In nutrient-rich states, mTOR exerts an
inhibitory effect on the ULK1 complex, leading to suppression
of autophagy (21). Because of its important role in metabolism and
cell growth, mTOR inhibition is a therapeutic target for a number
of diseases, including autoimmune disorders and cancer (22).
Rapamycin and other analogs directly inhibit mTOR activity,
and vitamin D blocks upstream signaling to activate mTOR (22,
23). During Mycobacterium tuberculosis (Mtb) infection, the
activation of both intracellular or extracellular surface pattern
recognition receptors (PRRs) by certain unique Mtb-associated
molecules, such as lipomannan, lipoarbinomannan, phthiocerol
dimycocerosate (PDIM), lipoproteins, mycolic acid and Mtb
DNA/RNA, induces autophagy (24, 25). Given that autophagy
plays an important role in mycobacterial clearance, and MAC can
survive intracellularly by blocking phagosome-lysosome fusion,
enhancing autophagy through inhibition of the mTOR pathway
appears to be an attractive HDT strategy (26, 27).

To date, there has been little research on targeting autophagy
to improve host control of MAC infection. Early et al. reported
that induction of autophagy by lactoferrin increases MAC killing
by macrophages and renders the bacteria more susceptible to
ethambutol, suggesting that autophagy is worthy of further
investigation as an HDT target (28). Although they have not
been studied in the context of MAC infection, mTOR inhibitors
have been explored as HDTs for Mtb, with mixed results (29).
Most data from in vitro studies have suggested that mTOR
inhibition may result in enhanced intracellular killing of Mtb,
however there is also some contrasting evidence to suggest that
induction of autophagy results in increased Mtb growth,
especially in the context of Mtb/HIV co-infection (30, 31).
Vitamin D, an upstream inhibitor of mTOR signaling, also has
shown some promise as an HDT for TB, although clinical trials
do not show a consistent benefit, and it has not been investigated
specifically against MAC (32).

Aside from autophagy, mTOR is involved in multiple
metabolic and immunological pathways, which could affect
mycobacterial pathogenesis and immunity. As a whole, the role
of mTOR and autophagy in MAC infection remains largely
unexplored, and further research is required to evaluate its
suitability as an HDT target.

Blocking the PD-1/PD-L1 Pathway:
Anti-PD-1/PD-L1 Therapy

The Programmed Cell Death Protein-1 (PD-1) and its ligand,
PD-L1, are the major components of the PD-1/PD-L1 pathway,
an immune checkpoint, which regulates peripheral immune
tolerance and suppresses inflammation (33). PD-1 is expressed
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on multiple cell types, including activated T cells, B cells, natural
killer cells, and macrophages. PD-L1 is expressed on
nonlymphoid cells. Binding of PD-1 to PD-L1 inhibits
proliferation and effector functions of T and B cells, preventing
self-reactivity (34). PD-L1 is highly expressed on tumor cells and
virus-infected cells, conferring resistance to cell-mediated
immunity. PD-L1 is also expressed on macrophages and plays
a role in regulating immunosuppressive and pro-inflammatory
activity. PD-L1 signaling in tumor-associated macrophages
induces an immunosuppressive phenotype (35). Recently, the
PD-1/PD-L1 pathway has become the subject of extensive
research in cancer immunotherapy, as PD-1/PD-L1 antibody
blockade has demonstrated efficacy in inducing cell-mediated
immunity against multiple cancer types. Treatment of tumor-
associated macrophages with anti-PD-L1 antibodies confers a
pro-inflammatory phenotype, with increased expression of
inducible nitric oxide synthase (iNOS), MHC II, TNF-o, and
CD40 (36, 37). This is particularly important, since TNF-o. and
iNOS are critical effector mechanisms in the killing of
intracellular mycobacteria, including MAC by macrophages
(38). In patients with MAC pulmonary disease, expression of
PD-1 by CD4 T cells is directly correlated with disease severity
(39). An analysis of peripheral blood mononuclear cell (PBMC)
function in such patients found that expression of PD-1 and PD-
L1 were increased in lymphocytes of infected patients, which
correlated with increased lymphocyte apoptosis compared to
lymphocytes from healthy controls (40). Treatment of PBMCs
obtained from MAC patients with anti-PD-1 and PD-L1
antibodies resulted in increased IFN-y production and reduced
T-cell apoptosis compared to PBMCs from healthy controls (40).
These data suggest that PD-1/PDL-1 therapy could rescue
immune cells from an immunosuppressive phenotype, allowing
an improved immune response against MAC.

Although anti-PD-1 therapy may hold promise for treatment
of MAC, there is some evidence that PD-1 is necessary for
mycobacterial immunity, particularly against Mtb. Thus, mice
deficient in PD-1 are more susceptible to Mtb infection (41). In
Mtb granulomas, PD-1 is expressed in stable, cellular granulomas,
but not in caseating ones, suggesting that it plays a role in
granuloma maintenance. In a three-dimensional cell culture
model, PD-1 inhibition led to increased Mtb growth, possibly
due to excessive TNF-ou expression (42).

The potential of anti-PD-1/PDL-1 therapy to improve the
immune response to MAC remains to be investigated, both in
vitro and in vivo. As anti-PD-1/PD-L1 therapy becomes more
common in cancer therapy, retrospective analyses of its effect on
patient susceptibility to MAC disease and clinical outcomes
following MAC therapy may be useful.

Heme Oxygenase Inhibition

Heme oxygenase (HO-1) is an antioxidant enzyme that catalyzes
the conversion of heme into carbon monoxide, biliverdin and
iron (43, 44). Apart from its role in cytoprotection, HO-1 has
been shown to regulate cell proliferation, differentiation, and
apoptosis (44). The induction of pulmonary HO-1 is associated

with TB disease (45), suggesting its potential utility as a
diagnostic biomarker. Although its role in TB pathogenesis is
not fully understood, experimental data in Mtb-infected mice
have shown that lung bacterial loads decrease following HO-1
inhibition by the metalloporphyrin, SnPPIX (45). The same
study found that a combination of an HO-1 inhibitor, SnPPIX
and antimycobacterial therapy enhanced T-cell-dependent
pathogen clearance. Clinical data have shown that plasma HO-
1 levels decline following successful TB treatment (46).

As in the case of Mtb infection, HO-1 has been found to be
elevated during MAC infection in BALB/c mice (47). Consistent
with a host protective role in resisting MAC infection,
mycobacterial burden in the liver, lungs and spleen was
significantly higher and the disease was more likely to be
disseminated in mice with HO-1 deficiency compared to HO-1
homozygous or heterozygous mice (47, 48). Further investigation
is required to determine how HO-1 activity is regulated during
MAC infection, and whether HO-1 inhibition is a promising HDT
in the context of MAC.

IFN-y Therapy

IFN-y plays a significant role in immunity against Mycobacterium
infections. In contrast to type I IFNs (ct and B), which are made by
virus-infected cells, IFN-v is produced by activated T cells, NK cells,
and macrophages, leading to the activation of phagocytes,
stimulation of antigen presentation to T cells, and regulation of
several other cellular functions, including proliferation, apoptosis,
and cell adhesion (49). In particular, IFN-y induces the expression of
iNOS (50) and the respiratory burst enzyme NADPH-dependent
phagocyte oxidase (51), thereby enhancing the mycobactericidal
activity of macrophages. Mice with mutations in the IFN-y receptor
have been shown to have increased susceptibility to intracellular
pathogens (52). Pre-treatment of intestinal and peritoneal-derived
macrophages with IFN-y produced both bactericidal and
bacteriostatic activity against MAC following infection of these
cells (53, 54). Although in vivo treatment of beige and Swiss-
Webster mice with recombinant murine IFN-y did not alter the
course of visceral MAC infection (55), the bactericidal activity of
clofazimine against MAC was enhanced in beige mice pre-treated
with IEN-y (54).

Mutations in the IFN-y receptor gene or anti-IFN-y
autoantibodies confer increased susceptibility to disseminated
NTM infections in humans (56-58). IFN-c, which, like IFN-y,
signals through STAT1, activating many common downstream
effector genes, has shown some promise in treating patients with
IFN-vy signaling defects and disseminated mycobacterial disease
(59). In a study of 7 patients with disseminated MAC infection,
subcutaneous administration of IFN-y, in combination with
conventional medical treatment, resulted in improvement in
symptoms, and pathological and radiological findings, and also
reduced the need for medical procedures, such as paracentesis
following 8 weeks of treatment (60). Aerosolized IFN-y has shown
some promise in treating patients with TB and idiopathic
pulmonary fibrosis, and is worthy of study in patients with
pulmonary MAC (61).
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PREVENTION OF EXCESSIVE
AND PATHOLOGICAL INFLAMMATION

Suppressing Excessive TNF-o Activation:
Anti-TNF Antibodies

Tumor necrosis factor alpha (TNF-o) is a pro-inflammatory
cytokine which is upregulated during MAC and Mtb infection
and plays an essential role in antimycobacterial immunity (62).
During mycobacterial infection, T cells, macrophages, and
dendritic cells produce TNF-o in response to multiple
signaling pathways (63). TNF-o signaling is complex, and the
cytokine serves multiple functions, including in the formation
and maintenance of granulomas, as evidenced by the observation
that mice deficient in TNF-o or receiving anti-TNF-ot therapy
produce defective granulomas following mycobacterial infection
(64, 65). TNF-oalso promotes killing of intracellular mycobacteria
by macrophages, as the TNF blockers adalimumab and infliximab
suppressed phagosome maturation in primary human PBMCs in
the presence or absence of IFN-y (66) Moreover, TNF-o. serves
macrophage antimicrobial functions by activating reactive oxygen
and nitrogen species (67). Treatment with anti-TNF-o. antibody
has been associated with decreased resistance to MAC infection in
mice (68).

Although TNF-a is required for an effective immune response,
excessive TNF-o. production has deleterious pathological effects.
Thus, when its production is properly regulated, TNF-o. induces
apoptosis of Mtb-infected infected cells by recruiting Fas-
associated protein with death domain (FADD) and subsequent
activation of effector caspases and signal-regulating kinase 1
(ASK1), thus favoring mycobacterial clearance (63, 69, 70).
However, when produced in excessive amounts, TNF-o results
in necrosis of Mtb-infected macrophages and hyperinflammation
through activation of serine/threonine-protein (RIP)1/3 kinases
and mitochondrial reactive oxygen species (ROS) production (70-
72). TNF-ou also induces necroptosis, a highly inflammatory
form of cell death, which could contribute to pathological
inflammation (73).

Because of its roles in mycobacterial immunity and pathology,
TNF-o has been a focus of HDT investigation. Multiple anti-TNF
antibodies and TNF soluble receptors have been approved for use
in humans to block TNF-o. activity, and are primarily used to treat
autoinflammatory conditions, such as rheumatoid arthritis. TNF
blockers have shown some promise as HDTs for mycobacterial
infections. Combined use of the TNF-o receptor inhibitor
etanercept with antibiotics decreased the lung burden of Mtb
and reduced TB-associated lung pathology in infected mice
compared to antibiotics alone (74). However, the role of anti-
TNF therapy in clinical cases of mycobacterial infection is
controversial. Patients receiving anti-TNF therapy are at
increased risk for developing disease due to Mtb and MAC (75-
77). After a diagnosis of TB or MAC disease is made, anti-TNF
therapy is usually halted at least until anti-mycobacterial therapy
has been initiated and the infection is under control. On the
other hand, there are several reports of TB patients experiencing
clinical exacerbation upon discontinuation of anti-TNF treatment,
and improvement of disease following its reinstitution (78-80).

In addition, a subset of MAC-infected patients show favorable
outcomes if anti-TNF therapy is maintained throughout treatment
(76). However, it is uncertain in these cases whether anti-TNF
therapy contributed as an adjunctive HDT or by ameliorating the
underlying autoimmune disease.

The roles of TNF-o. in mycobacterial immunity and disease
are complex, and the therapeutic potential and risk of inhibiting
TNF-a function during MAC infection require further
investigation. Given the relatively long half-lives of most TNF
blockers relative to antibiotics, there is concern over sudden
stoppage of all treatment by patients, resulting in the unopposed
anti-TNF activity and possible worsening of infection (81). Since
TNEF-o. interacts with multiple other signaling pathways, further
research is also needed to identify other cytokines which, if
targeted in tandem with TNF-o, could hold promise as HDTs.

Broad Suppression of Inflammation:
Nonsteroidal Anti-Inflammatory Drugs
and Corticosteroids
Excessive and chronic inflammation is an important factor in the
progression of mycobacterial disease (82). Thus, the broad
inhibition of the inflammatory response by non-steroidal anti-
inflammatory drugs (NSAIDs) or corticosteroids is an attractive
HDT strategy. NSAIDs have been well-studied as adjunctive
therapies for TB, with a protective effect, both in animal models
and in human disease, when used in conjunction with antibiotics
(83). There are multiple proposed mechanisms for these effects.
NSAIDs suppress the excessive recruitment of neutrophils to
granulomas, which can be responsible for destructive
inflammation (84, 85). By reducing prostaglandin E2 (PGE2)
expression, NSAIDs also inhibit phagocytosis and killing of
mycobacteria during late TB (86). NSAIDs have anti-thrombotic
effects, which may prevent the hypercoagulable state occasionally
observed with severe TB (87, 88). Despite their relatively well-
characterized role as an adjunctive therapy for TB, there has been
little research into NSAIDs as HDTs for MAC. The NSAID
diclofenac sodium modulates multiple cytokines in MAC-
stimulated macrophages but does not improve bacterial clearance
by macrophages or infected mice (89). Although NSAIDs can
prevent destructive inflammation, they might also inhibit an
effective immune response. This is especially concerning for
MAUC, since an immunocompromised state is a major risk factor
for disseminated MAC disease (10). NSAIDs have not been causally
linked to MAC disease, but long-term NSAID use has been
identified as a possible predisposing factor in at least one case (90).
Corticosteroids are some of the earliest HDTs used for
mycobacterial disease and may be useful in treating patients
with late-stage and extrapulmonary TB (91, 92). In particular,
short-term steroid use, by reducing inflammation caused by
antibiotic-mediated killing of mycobacteria and accompanying
increased intracranial pressure, has been shown to improve
mortality by as much as 25% in patients with tuberculous
meningitis (93). Similar to NSAIDs, the beneficial effect of
corticosteroids is primarily attributed to the suppression of
pathological inflammation. Corticosteroids exert their anti-
inflammatory effects through a variety of mechanisms, including
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by inducing transcription of anti-inflammatory genes, such as
annexin-1, IL-10 and IkB-o (inhibitor of NF-«B), by direct
interacting with NF-xB, AP-1 and other immunomodulatory
transcription factors, inhibiting maturation and differentiation of
antigen presentation cells with reduced sensitivity to T cell
regulation, and promoting the formation of macrophages with
anti-inflammatory properties (94).

The use of corticosteroids as an HDT for MAC disease is
somewhat controversial, due to their immunosuppressive effects
and the lack of controlled studies (95-97). Although there is a
significant body of research on the use of corticosteroids in
reducing inflammation due to a variety of infectious diseases,
their specific role as an adjunctive HDT for MAC disease has not
been studied. Further research is required to understand the
effects of corticosteroids on MAC infection on the molecular,
cellular, and organismal level, to determine whether their use is
justified or contraindicated in specific stages of MAC disease.

MULTIPLE MECHANISMS OF ACTION

Targeting Lipid Metabolism and Inducing
Autophagy: Statins

The 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA)
reductase inhibitors (statins) are a class of lipid-lowering
medications, which have shown promise as HDTs for TB (98).
PBMCs from patients with familial hypercholesterolemia
receiving statin therapy demonstrate resistance to ex vivo Mtb
infection compared to those from untreated donors (99).
Adjunctive therapy with simvastatin enhanced the bactericidal
activity of the first-line anti-mycobacterial regimen in a mouse
model of chronic TB and shortened the duration of curative
treatment in a murine model of TB relapse (100, 101). Consistent
with a class effect of statins, pravastatin adjunctive therapy
showed a dose-dependent reduction in bacillary lung burden
and decreased lung inflammation in conjunction with front-line
chemotherapy in a mouse model of chronic TB (102).
Mechanistically, statins reduce the formation of lipid droplets
in foamy macrophages, which may serve as a nutrient source for
intracellular Mtb and contribute to antibiotic tolerance (99, 103).
However, the primary HDT mechanism of action of statins likely
involves the promotion of phagosome maturation and
autophagy, thereby improving clearance of Mtb by infected
macrophages (99). Statins enhance autophagy of Mtb-infected
macrophages by blocking mTORCI, activating AMP-activated
protein kinase (AMPK) and favoring nuclear translocation of
transcription factor EB (TFEB) (104). Although the role of lipid-
laden, foamy macrophages in MAC pathogenesis is less well
understood than in TB, morphologically similar phenotypes have
also been described in MAC-infected macrophages, and it is
possible that statins could have similar HDT effects (105).

Activation of AMPK and Potentiation of
Macrophage Effector Function: Metformin
Multiple studies have found that use of the anti-hyperglycemic
drug metformin reduces the risk of TB and improves clinical
outcomes in patients with diabetes mellitus (106, 107).

Experimental evidence indicates that metformin has multiple
host-directed effects, which may promote clearance of MAC. The
drug enhances mycobacterial killing in human PBMCs by
promoting autophagy and phagosome-lysosome fusion, as well
as by selectively increasing mitochondrial ROS production (108).
Metformin has a dose-dependent inhibitory effect on
intracellular replication of mycobacteria through activation of
the adenosine monophosphate-activated protein kinase (AMPK)
signaling pathway (109). Metformin also suppresses TNF-o
expression in human monocytes (110). In Mtb-infected mice,
metformin adjunctive therapy is associated with reduced chronic
lung inflammation, enhanced immune responses, and improved
efficacy of antibiotics (111, 112). In contrast, Dutta et al. showed
that adjunctive therapy with human-equivalent doses of
metformin did not enhance the bactericidal or sterilizing
activities of the first line antitubercular regimen in Mtb-
infected BALB/c mice (111). Given the widespread use of
metformin and the high prevalence of MAC disease,
retrospective analyses of the effect of metformin on MAC
microbiological and clinical outcomes would be useful to gauge
its promise as an adjunctive HDT for MAC.

Immunomodulation and Antimicrobial
Properties: Clavanin-MO

Clavanin-MO is a naturally occurring antimicrobial peptide
which possesses immunomodulatory properties (113). Both in
vitro and in vivo, clavanin-MO stimulates production of
inflammatory mediators, including IFN-y, granulocyte-
macrophage-stimulating factor, and monocyte chemoattractant
protein-1, while suppressing the pro-inflammatory cytokines IL-
12 and TNF-o (113). Clavanin-MO protects animal models from
infection by both gram-positive and gram-negative bacteria
(113). Although clavanin-MO has not been tested against
mycobacteria, its immunomodulatory effects could potentially
improve the immune response against MAC while blocking
pathological inflammation, especially since it affects both IFN-y
and TNF-o, which are targets of other promising HDTs.

Potentiation of Macrophage Effector
Function and Antimicrobial Activity:
Thioridazine

Thioridazine is a neuroleptic drug, which has both direct
antimycobacterial and host-directed effects (114, 115). The drug
acts directly against Mtb by inhibiting antibiotic efflux pumps,
thereby enhancing antibiotic susceptibility in vitro (116).
Thioridazine also affects the host by inhibiting mammalian
efflux pumps in the macrophage, leading to acidification of the
phagosome and improving mycobacterial clearance (114, 117).
Although its efficacy as an adjunctive therapy in murine models of
chronic TB is controversial (118, 119), thioridazine was found to
reduce the emergence of isoniazid-resistant mutants in Mtb-
infected mouse lungs following co-administration with the
standard anti-TB regimen (120). Thioridazine has been
suggested as an adjunctive therapy for MAC, but research in
this area has been limited (121-123). A short course of
thioridazine and moxifloxacin was sufficient to clear MAC from
infected monocytes (122). However, the pharmacokinetics of
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thioridazine may prevent it from reaching effective concentrations
in the lung, thus limiting its clinical utility in MAC pulmonary
disease (121, 123).

HDTs WITH UNKNOWN OR POORLY
UNDERSTOOD MECHANISMS OF ACTION

Poloxamer CRL-1072

Poloxamer CRL-1072 is a surfactant which makes mycobacteria
more susceptible to some antibiotics, possibly through
disruption of mycobacterial surface lipids (124). Its effects are
especially pronounced in macrophages and mice compared to
broth culture, suggesting that it has an effect on the host response
to mycobacterial infection (124). The mechanisms of action of
CRL-1072 are poorly understood. The surfactant induces
production of nitric oxide in cultured human macrophages,
leading to improved clearance of MAC (125). In addition,
CRL-1072 induces production of IL-8 in human macrophages,
a chemotactic factor which attracts neutrophils and T cells to the
site of infection (126). To date, there has been little research on
CRL-1072, and much remains unknown about its potential as an
HDT. An important consideration is that, as a surfactant, CRL-
1072 would likely have to be delivered topically to the lungs via
inhalation. There is precedent for inhaled therapies for MAC
with the recently FDA-approved Amikacin Liposome Inhalation
Suspension (ALIS) (127).

Picolinic Acid

Picolinic acid is a degradation product of L-tryptophan with
metal-chelating properties (128). An oral formulation,
chromium(III) picolinate is safe and available as a nutritional
supplement (129-131). Experimentally, it has both antimicrobial
and host-directed effects against MAC. Specifically, picolinic acid
potentiates the antimicrobial effects of clarithromycin, rifampicin,
and some fluoroquinolones against both extracellular and
intracellular MAC, suggesting that it has direct antimicrobial
activity, which may be due to its iron-chelating properties (132).
When used together with IFN-y, picolinic acid also triggers
apoptosis of MAC-infected mouse macrophages, thereby
inhibiting intracellular mycobacterial growth (133, 134).
Picolinic acid may also increase expression of TNF-o and
interleukin-1, improving macrophage effector function (135). On
the other hand, picolinic acid does not upregulate production of -
defensin-1, free fatty acids, or reactive oxygen and nitrogen
intermediates (136). Therefore, its potentiation of macrophage
effector functions remains poorly understood.

HDT TARGET PATHWAYS FOR FUTURE
INVESTIGATION

HIF-1a

Hypoxia-inducible factor-1 alpha (HIF-1c) is a key regulator of
cellular metabolism in hypoxic environments and is involved in
the immune response, even under normoxic conditions (137).

HIF-1a is thought to play an important role in immunity to
mycobacterial infection. In zebrafish, stabilization of HIF-lo
protects against M. marinum infection (138). The protective
effect is related to upregulation of IL-1f in macrophages, which
results in increased nitric oxide production by neutrophils (139).
There is also evidence that HIF-1o plays multiple roles in the
macrophage response to Mtb infection by mediating IFN-y-
dependent genes, regulating immune effectors, shifting
metabolism to aerobic glycolysis, and blocking excessive
inflammation (140-142). In general, HIF-1o. promotes a pro-
inflammatory state, which may improve mycobacterial clearance
early in infection, but also induces pathological inflammation
and immune exhaustion during chronic infection.

HIF-1o. has not been well-studied in the context of MAC
infection. However, research on other mycobacteria suggests that
HIF-1o is a double-edged sword. Whereas induction of HIF-1o
promotes a pro-inflammatory state, which may improve
mycobacterial clearance early during the course of infection, it
can also lead to pathological inflammation and immune
exhaustion during chronic infection (140, 143). Targeting the
HIF-1o. pathway (and its timing) as an HDT strategy for MAC
remains to be investigated.

Broadly Protective HDT Targets Against
Intracellular Pathogens

A recent study screened FDA-approved drugs to identify HDT
targets with broad protection against multiple intracellular
pathogens (14). Three targets were identified which broadly
protect THP-1 cells from intracellular bacteria: antagonizing G
protein receptor (GPCR) signaling, interfering with intracellular
calcium signaling, and disrupting membrane cholesterol
distribution (14). Although mycobacteria have been shown to
manipulate G-protein-coupled receptors to suppress epithelial
signaling pathways (144) and to inhibit intracellular calcium
signaling, leading to reduced phagosome-lysosome fusion and
increased mycobaceterial survival within human macrophages
(145), these cellular pathways have not been directly targeted by
therapies, and represent an area of potential future investigation.

CONCLUSIONS

Although HDTs represent a promising tool to improve MAC
clinical outcomes, they have been the subject of little research to
date. Looking to the future, there are several major challenges
and opportunities in MAC HDT research which remain to be
met. Two specific research needs are a better understanding of
MAC pathophysiology to identify HDT targets, and improved
model systems to allow investigation of potential HDTs.

An improved understanding of the host-pathogen interactions
during MAC disease could reveal additional HDT targets. To date,
the majority of HDTs against MAC fall into two general
categories: improving immune effector function or modulating
pathologic inflammation. The mechanism of several HDT's are not
completely understood. A better mechanistic understanding of
their function could improve our knowledge of MAC
pathophysiology and identify new pathways to be targeted by
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HDTs. For example, the efficacy of statins in improving TB clinical
outcomes suggests that the metabolism of mycobacterial-infected
cells may be a promising area of investigation (102).

A lack of in vitro and in vivo experimental models of MAC
infection has been a major barrier to research. Current model
systems are not standardized, and do not always yield replicable
or clinically useful results (146). Cell cultures cannot entirely
recapitulate a disease which involves long-term, complex
interactions between multiple cell types, tissues and organs,
while murine models of NTM differ from human disease in their
immune responses and granuloma structure, and generally do not
sustain chronic infection unless immune suppression is induced
(147). These deficiencies are especially important for investigating
HDTs, which may target complex or human-specific pathways.
Recent advances in model systems will inform future HDT research.
In silico models could identify promising HDTs prior to the expense
and difficulty of in vitro and in vivo experimentation. Recent
developments in organoid models promise to allow better in vitro
investigation of complex pathways involving interactions between
multiple cell types and the extracellular matrix. For example, a
three-dimensional granuloma model has recently been developed
for Mtb and could be a valuable tool for investigating HDTs if
adapted for MAC (148).

Finally, there is an unexplored need to investigate the use of
HDTs in combination. To date, most studies have examined a
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