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Systemic lupus erythematosus (SLE) is a complex systemic autoimmune disease.
Infections or infectious reactivation are potential triggers for initiation of autoimmunity
and for SLE flares. Epstein-Barr virus (EBV) is gamma herpes virus that has been
associated with several autoimmune diseases such as SLE, multiple sclerosis,
Sjogren’s syndrome, and systemic sclerosis. In this review, we will discuss the recent
advances regarding how EBV may contribute to immune dysregulation, and how these
mechanisms may relate to SLE disease progression.
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INTRODUCTION

Systemic lupus erythematosus (SLE) is a multifaceted systemic autoimmune disease (1) stemming
from immune dysregulation. A characteristic feature is the presence of autoantibodies directed
towards nuclear antigens (ANA), which can be detected up to a decade before disease onset.
Although not completely characterized, studies suggest that cellular dysfunction, dysregulated
inflammatory responses and autoantibody -mediated damage leads to progression of autoimmune
disease and organ damage (2).

The underlying factors responsible for disease transition and pathogenesis likely involve an
interplay between genetic and environmental factors. SLE has a twin concordance rate of 24% to
40% (3, 4) and over 100 genetic associations have been identified and confirmed (5).

Infections or pathogens have been proposed to lead to autoimmunity. Epstein Barr virus (EBV)
is one such pathogen that has been repeatedly associated with SLE since the first report in 1969. EBV
adopts several strategies to exploit host immune response for its persistence. Consequences to the
host are increased acute inflammation and autoantibody generation, which are usually transient and
self-limited, as seen in patients with infectious mononucleosis (6). However, a growing body of
research suggests that these effects in certain individuals, possibly based on genetic risk factors, can
cascade into a chronic inflammatory state. Due to its strong association with tumorigenesis, EBV
has been studied extensively for its ability to overcome immune surveillance and approached to
combat tumorigenic effects.

In this review we provide a compilation of the current understanding of how EBV may
contribute to immune dysregulation, including strategies used by EBV to combat immune
surveillance, and how these processes may relate to SLE pathogenesis (Figure 1).
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FIGURE 1 | Proposed role of EBV in SLE pathogenesis. EBV infects naive B cells. The infected B cells enter the memory B cell compartment through germinal center
like reaction, mediated by the expression of latent membrane proteins. EBV maintains latency in the resting memory B cells. EBERs, non-coding RNA expressed by EBV,
can mimic dsRNA, and activate RIG-| leading to production of type | interferons. EBERs also induce growth factor IL-6 and regulate B cell survival. EBV can act on
plasmacytoid dendritic cells (pDC). Initial binding of virus is mediated by class Il MHC on pDCs, following which through engagement of TLR7 and 9, EBV RNA and DNA
can induce type interferon secretion by pDCs. EBV induces superantigen on HERV-K18, which can induce unregulated T cell activation.

EBV LIFE CYCLE

Acute primary EBV infection, which is also a common cause of
infectious mononucleosis, is characterized by fatigue, atypical
lymphocytosis, splenomegaly, and lymphadenopathy. Although
the host immune response eventually controls viremia, the virus
maintains latency in memory B cells with occasional reactivation
to infect naive B cells. EBV genomes in latently infected B cells
are thought to exist as episomes (7), although it is possible that
the genomes exist as integrated DNA. EBV expresses nine latent
proteins; six EBV nuclear antigens (EBNA, EBNA-1, 2, 3A, 3B,
3C, and leader protein), and three latent membrane proteins
(LMP 1, 2A, and 2B). In addition to latent proteins, expression of
small non-polyadenylated RNAs, EBER1 and 2, is also
observed (8).

Unique forms of latency that differ in the latent protein
expression have been identified (Table 1). Latency III, where
all latency gene products are expressed, is the predominant
latency observed in lymphoblastoid cell lines, acute infectious
mononucleosis, and certain immunocompromised individuals.

TABLE 1 | Latency forms of EBV.

Latency Genes expressed

Latency O EBER1/2

Latency | EBNA-1, EBER1/2, miRNA

Latency Il EBNA-1, EBER1/2, miRNA, LMP1/2

Latency Il EBNA, EBNA-1, 2, 3A, 3B, 3C, EBNA-LP, LMP 1, 2A, 2B, EBER1/

2, miRNA

This form of latency can mediate naive B cell activation.
EBNAI1 and LMP1/2A are expressed in the latency II
program, which is observed in nasopharyngeal carcinoma and
Hodgkin’s lymphoma. LMP1 and LMP2 can induce B-cell
activation and growth (proliferation). Latency I, which is
observed in EBV-positive Burkitt’s lymphoma tumors,
expresses only EBNA-1. In this form, latent EBV genomes
can multiply in dividing memory cells. The Gly-Ala repeats in
EBNA-1 inhibit antigen processing, and therefore, CD8 T cells
are unable to detect virally infected cells in this form. Latency 0
is observed in quiescent B cells, where no EBV proteins are
expressed, however cells switch to Latency I during cell
division with expression of EBNA-1, which is required for
replication of the episome. Latently infected B cells occasionally
reactivate EBV. This allows the virus to re-infect new B cells
and epithelial cells, and acts as a source of viral transmission.
Although the molecular pathways involved in viral reactivation
are studied extensively, the triggers for reactivation in vivo
are unclear.

The occasional reactivation of the virus can be detected
serologically. A primary infection with EBV leads to an IgG
response to viral capsid antigen (VCA). The VCA IgG antibodies
are maintained throughout the life span of the individual.
Following VCA IgG response, IgG responses toward early
antigen (EA) are detected. These antibodies are detectable for 6
months to up to two years. During EBV reactivation, EA IgG
levels are detectable and there is an increase in VCA IgG levels (9).
Therefore, an increase in VCA IgG and presence of EA IgG
indicates current or recent reactivation of the virus.
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EBV LATENCY AND REACTIVATION
IN SLE

Many studies to date have demonstrated an association between
SLE and EBV infection. A higher EBV seroconversion rate was
observed in both pediatric and adult SLE patients compared to
healthy controls (10-12). SLE patients show increased levels of
IgG antibodies toward VCA and EA, both indirect markers of
increased EBV reactivation. However, the IgG responses towards
other herpes viruses such as cytomegalovirus (CMV) and herpes
simplex virus (HSV) are similar in SLE patients and controls.
These reports suggest that SLE patients may have increased
reactivation of the virus. EBV viral load is elevated in SLE
patients (13, 14), which may also suggest increased
reactivation. A possible reason for increased reactivation is
inefficient regulation of the latent phase or enhanced transition
from latent to lytic phase. Interestingly, a higher percentage of
patients have detectable levels of EBV gene BZLF1 (15), which is
an immediate-early gene that is responsible for the switch to lytic
cycle. Two other latent genes LMP1 and LMP2A were also
detected in SLE patients. The type of latency maintained in
SLE patients is not completely understood. LMP1/2A are
expressed in latency II, and all latent genes are expressed in
latency III (Table 1). The presence of two latent genes, BZLF-1
and LMP-1, which cannot be detected in seropositive healthy
individuals, suggests that EBV latency may be dysregulated in
some SLE patients. Based on the expression pattern of latent
genes reported so far, SLE patients may have an intermediate
form between latency II and III.

EBV REACTIVATION IN SLE AND
UNDERLYING MECHANISMS

Based on serologic evidence and higher viral loads observed in
SLE patients, the consensus is that SLE patients have increased
EBV reactivation. Dysregulation of anti-viral T cell responses is a
proposed mechanism for increased viral loads. SLE patients have
higher interferon y (IFNY) secreting CD4+ T cells, but lower
frequencies of EBV specific CD8+ T cell responses. EBV viral
loads in peripheral blood cells positively correlated with EBV
specific and IFNy secreting CD8+ T cells (14). EBV specific
CD8+ T cells in SLE patients are functionally impaired (16, 17),
although CMV specific responses were unaltered (17). The
upregulation of PD1 on EBV specific T cells in SLE patients
may be responsible for the suppressed responses to EBV antigen,
as blockade of PD1 restored IFNy production in response to EBV
antigens. Based upon these data and the observed diminished
responses of SLE T cells to superantigen stimulation, the authors
suggest that SLE T cells demonstrate an exhausted phenotype.
However, CMV specific T cell responses were unaltered by PD1
blockade. These data suggest that the general immune
surveillance mechanisms are intact in SLE patients, but there is
an inherent defect in regulating EBV infection (17). Both CD4
and CD8 lytic and latent antigen specific functional T cells were

lower in SLE patients. A negative correlation between SLE
disease activity index (SLEDAI) and EBV specific functional T
cell responses was reported (18), with decreased EBV lytic gene
responsive T cells in patients with elevated disease activity.
Furthermore, an inverse relationship was observed between
EBV specific T cells and levels of anti-EBV antibodies (18).
SLE T cells may also contribute to defective regulation of certain
B cell functions (19). Absolute numbers of Th17 and Treg cells
were reduced in SLE patients with EBV and/or CMV viremia
compared to those without viremia or healthy controls.
However, there was a direct correlation between viremia and
SLEDALI suggesting that reduction in Th17 and Treg cells may
be a consequence of SLE immune dysregulation independent of
viremia (20). EBV can transactivate superantigen on human
endogenous retroviral (HERV)-K18, which can lead to
unrestricted activation of T cells (21).

EBV induced gene 3 protein (EBI3) was identified in EBV
transformed B cells (22). It serves as a beta chain for cytokines
IL-27, IL-35, and IL-39, and can induce regulatory or suppressive
T cells in a murine model (23). The serum IL-35 level and the
percentage of CD4+EBI3+ T cells were negatively correlated with
the SLE disease activity index, and both of these parameters were
increased shortly after treatment of active SLE patients with
methylprednisolone (24). However, levels of EBV reactivation
were not determined in this study. Although EBI3 was initially
reported in EBV transformed B cells and induced by LMP1, the
name of the gene is misleading. EBV infection of T cells is not
established unequivocally. It was later shown that EBI3 can be
induced in naive T cells by polyclonal stimulation with plate
bound anti-CD3 and anti-CD28 (25). This also explains
upregulation of EBI3 in experimental murine models, which
lack EBV infection. Therefore, the increase in IL-35 observed in
SLE patients may be independent of EBV induced gene
expression. Studies evaluating the upregulation of EBI3 in SLE
patients in the context of EBV infection and subsequent
contribution to SLE pathogenesis are lacking.

Differences in cytokine production in response to EBV
antigens have been reported. SLE patients exhibited a
decreased IL-12, IFNY; IL-17, and IL-6 response to EBNA-1,
and decreased induction of IL-6, TNEp, IL-1f3, and GM-CSF
upon EBV-EA-D stimulation. Serologic SLEDAI scores, based
solely on anti-dsDNA, complement, thrombocyte, and leukocyte
levels, correlated negatively with numerous cytokine responses
against EBNA-1 and EA-D (26). These data further support
impaired regulation of immune response against latent and lytic
EBV antigens in SLE patients.

The numbers of infected B cells positively correlated with SLE
disease activity index (15). The EBV viral load in SLE patients
with active disease was found to be higher than in inactive cases
(27), however, another study did not find this (17). Although this
report did not find a consistent increase in EBV viral load
immediately prior or at the time of a flare, the viral loads were
higher in a majority of patients during elevated disease activity
(17), suggesting that EBV may have a role in the pathogenesis
and activity of SLE. The overall low number of EBV-infected B
cells during latency and the lower numbers of B cells due to
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lymphopenia in SLE patients provides a technical challenge in
detecting EBV DNA. Assays with higher sensitivities to detect both
latent and lytic EBV genes, perhaps partnered with single cell
technologies, will be helpful to understand the relation between
timing of EBV reactivation and SLE flare. Detailed longitudinal
analyses of a larger cohort of SLE patients will improve our
understanding of viral reactivation and SLE disease activity.

Newer data have evaluated the association of EBV
reactivation with SLE disease onset. Our retrospective analyses
of unaffected family members of SLE patients showed that SLE
relatives that subsequently transition to classified SLE (>4 ACR
criteria), have increased VCA-IgG and EA-IgG at a time-point
prior to the transition, when compared to relatives that do not
transition to SLE (28). The responses towards CMV and HSV-1
were not different between the two groups of relatives. These data
suggest that EBV reactivation observed in SLE patients is not due
to immune dysregulation caused by the chronic autoimmune
and inflammatory environment in patients, nor is it solely a
consequence of immunosuppressive medications. However, as
the study involved blood relatives of SLE patients, a genetic
component may be involved in increased EBV reactivation. On
similar lines, seropositivity for anti-EBV early antigen (EA), a
marker of EBV reactivation, was dramatically increased in
patients with SLE compared with unrelated controls (92.3% vs
40.4%; OR 17.15(95% CI 10.10, 30.66), p<0.0001) or unaffected
first-degree relatives of lupus patients (49.4%; OR 12.04(7.42,
20.74), p<0.0001). The seroprevalence of VCA IgG in patients
and first-degree relatives was similar suggesting same level of
prior EBV exposure in these two groups (29).

Significant interactions between EBV serology and single
nucleotide polymorphisms (SNPs) in genes that are associated
with SLE and also involved in EBV infection were observed. The
association between VCA IgG level and transitioning to SLE was
modified by CD40 rs4810485 (interaction p = 0.0009). Similarly,
the association between VCA IgA and transitioning to SLE was
modified by IL10 rs3024493 (interaction p = 0.008) (28). In line
with a genetic component contributing to increased EBV
reactivation, a higher frequency of subjects with germ-line
mutations in CTLA-4 had detectable EBV viral load when
compared with healthy controls. None of the subjects had
symptoms of EBV infection the time of analyses. However,
none of the 15 subjects included in this study had a SLE
diagnosis (30). Parks et al. showed a significant interaction
between VCA IgA and CTLA-4 gene polymorphism
(-1661AA), and increased VCA IgA seropositivity in African
American SLE patients (31). CTLA-4 -1661 mutation was
associated with risk of SLE in young African American
patients (32).

Harley et al. recently showed that in EBV-immortalized B
cells, almost half of SLE European ancestry risk alleles can be
occupied by EBNA-2 protein, which is expressed in latency II
and III. The authors showed that host transcriptional factors
bind to SLE risk loci only in the presence of EBV, and that
EBNA-2 is involved in allele dependent transcription complex
formation at risk loci. These data provide another potential
origin of gene/environment interaction in SLE (33).

Thus, genetic predisposition leading to immune
dysregulation may contribute to EBV reactivation eventually
resulting in classified SLE.

EBV EFFECTS ON THE IMMUNE
SYSTEM IN SLE

In order to evade the host immune system and to establish a
persistent latent infection, EBV encodes several viral homologues
of human proteins. These homologues either accentuate the
effect of human proteins on immune cells, inhibit, or allow the
virus to hijack the immune response to its benefit.

EBV IL-10

EBV IL-10 (VIL-10) is a late viral gene expressed during the lytic
phase of virus replication encoded by the viral BCRF1 gene,
which is highly homologous to the human IL-10 (hIL-10) gene
(34, 35). Due to the high homology, vIL-10 shares some of the
suppressive and stimulatory functions of hIL-10. vIL-10 can
inhibit inflammatory cytokine (IFNy, TNFo) production and
can promote proliferation and differentiation of B cells, as well as
immunoglobulin production. Functional differences between
hIL-10 and vIL-10 have also been reported. vIL-10 cannot co-
stimulate mouse thymocyte proliferation and mast cell
proliferation and cannot up-regulate MHC class II on B cells
(36-38).

We recently showed that in contrast to hIL-10, vIL-10 can
induce a pro-inflammatory phenotype in monocytes. vIL-10
induced a unique gene expression profile in monocytes, and
monocytes exposed to vIL-10 showed defective clearance of
apoptotic cells. vIL-10 signals through the same receptor
subunit as hIL-10, can act as a competitive inhibitor of hIL-10,
and inhibit suppressors of immune response induced by hIL-10.
vIL-10 levels were significantly higher in SLE patients plasma
compared to matched controls (39). As vIL-10 is a lytic gene,
these data also support increased reactivation of EBV in
SLE patients.

Increased vIL-10 in SLE patients may increase pro-
inflammatory responses by monocytic cells, while inhibiting
hIL-10 functions. These pro-inflammatory mediators, along
with a reduced clearance of apoptotic infected cells, may lead
to increased antigen presentation and activation of cytotoxic T
cell responses towards EBV. Indeed Stewart et al. showed that
vIL-10 enhances the generation of allo-specific CTL, EBV-
specific CTL, and HLA-unrestricted activated killer cells (40).
Although this allows the virus to enter latency and persist, in a
genetically prone individual with defective tolerance
checkpoints, the defective clearance and increased antigen
presentation may lead to autoimmune responses (Figure 2).
Further longitudinal studies evaluating vIL-10 levels in
preclinical samples, as well as in SLE patients, pre and post
flare, and associations of these levels with monocyte activation
status are needed to confirm the role of vIL-10 in induction of an
autoimmune response.

Frontiers in Immunology | www.frontiersin.org

February 2021 | Volume 11 | Article 623944


https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

Jog and James

EBV Infection and Lupus

‘ t EBYV reactivation ’

A

“_ . Macrophage

Y

possibly regulated by vIL-10 are shown in red arrows.

¥

Increased
inflammation

=\ Lytic activation

Release of EBV

3 . EBV
N
| Defective ‘ : Q Latency A
‘ clearance Apoptotic R ‘
Inhibition of cell
hiL-10 T cell
mediated Monocyte 22 Neoroc e
suppression G\e")‘ ecrosis | utoimmune
| y ‘ ) ‘ response
\_/; >
Dendriie™ Anfigen = |
cell ) presentation |

Th1 responses

Inflammatory
mediators

FIGURE 2 | Proposed role of vIL-10 in SLE pathogenesis. Increased reactivation of EBV in SLE patients increases vIL-10. vIL-10 competes with hIL-10 for IL10R1
and inhibits the suppressive effects of hiL-10 on myeloid cells. vIL-10 also reduces the ability of monocytes/macrophages to clear apoptotic cells. This leads to
increased secondary necrosis, increased presentation of antigens by dendritic cells (DCs), and allows virus to establish latency. Reduced clearance of apoptotic cells
leading to secondary necrosis along with increased antigen presentation and inflalmmatory responses exacerbate autoimmune response in SLE. The processes

How vIL-10 induces a unique gene expression in monocytes
and can inhibit hIL-10-mediated immune suppression is not clear.
vIL-10 has lower affinity to IL-10R1 compared to hIL-10.
However, vIL-10 is more potent than hIL-10 in inducing B cell
proliferation, and therefore the lower affinity may not explain the
differences in monocyte activation by vIL-10. The vIL-10: IL-10R1
interaction is very transient, while with hIL-10 is more sustained
(41). A transient interaction may interfere with ligand-dependent
receptor internalization and proteasomal degradation. vIL-10 may
be sequestering receptors and compete with hIL-10. Although not
reported in the literature yet, it is possible that the vIL-10
monomer forms a heterodimer with hIL-10 and inhibits
signaling by hIL-10.

Latent Membrane Proteins
How EBV maintains latency in memory B cells is also not
completely understood. It is hypothesized that EBV enters the
memory B cell compartment through differentiation of the
latently infected B cell blasts into resting memory B cells, also
known as the germinal center (GC) model. The observations that
the viral infection is strictly latent in resting memory B cells in
the periphery, but active infection of naive B cells and virus
shedding can be detected in tonsillar lymphoid tissue, support
this hypothesis [Reviewed in (42)].

EBV expresses three latent membrane proteins (LMP, 1, 2A,
2B) that can mimic signals necessary to rescue normal B cell
differentiation in absence of T cell signals. Despite the lack of

significant protein homology, LMP1 is a functional homologue
of CD40, and acts as a constitutively active receptor (43). LMP1
induces B cells to express B cell-activating factor of the TNF
family (BAFF) and a proliferation-inducing ligand (APRIL),
which mediate B cell survival and T cell-independent antibody
production, and therefore can induce class switch recombination
(CSR) in absence of a GC reaction (44, 45). Thus, EBV may block
B cells from entering GC, and induce extra-follicular B cell
activation through the expression of LMPI. The expression of
a chimeric molecule with the mouse CD40 extracellular domain
and the LMPI intracellular signaling regions in lupus-prone
mouse strain accentuated the autoimmune phenotype. This
suggests that LMP1 acts synergistically with host predisposing
genetic factors and contributes to exacerbation of an
autoimmune response (46).

LMP2A mimics the B cell receptor (BCR), and contains an
immunoreceptor tyrosine based activation motif (ITAMs) which
associates with downstream signaling kinases. LMP2A mimics
the BCR signal and can rescue B cells lacking surface
immunonoglobulin from death (47). Conditional expression of
LMP2A in murine GC B cells enhanced BCR signals, facilitated
plasma cell differentiation, and resulted in selection of low
affinity antibody producing cells. The conditional GC
expression also led to SLE-like autoimmune phenotype
including anti-double stranded DNA (dsDNA) antibody
production, and immune complex deposition in the kidneys
(48). Expression of LMP2A transgene in anti-Sm heavy chain
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transgenic mice resulted in increased anti-Sm antibodies (49). In
these mice transgenic for anti-Sm and LMP2A, anti-Sm B cells
bypassed the pre-plasma cell tolerance checkpoint and
differentiated into antibody secreting cells, suggesting that
LMP2A can modify GC B-cell selection and may contribute to
persistent EBV infection.

EBV RNA (EBERs and MIRNA)

Additional genes that are expressed during EBV latency are two
noncoding RNAs, EBER1 and EBER2, and 44 microRNAs
(miRNAs), derived from two loci, the BART and BHRF
clusters. BART transcript encodes 22 miRNA precursors (miR-
BART1-22) with 40 mature miRNAs, whereas the BHRF1
transcript expresses three miRNA precursors (miR-BHRF1-1,
-2, and -3) producing four mature miRNAs (50). EBV miRNA
from infected cells were secreted in exosomes, which can be
internalized by monocyte derived dendritic cells (51) and
modulate their gene expression. In individuals with increased
EBV viral load, EBV miRNA were detected in both B and non-B
cells in peripheral blood. Although the levels of EBV miRNA
have not been compared between SLE patients and unaffected
donors, EBV miRNA may be contributing to differences in gene
expression profiles observed in non-B cells in SLE patients.

EBERI and EBER?2 are present in all four latency stages (52,
53). Several reports have suggested a role for EBERs in the
tumorigenic process in vivo, which are also supported by murine
studies where transgenic mice expressing EBER1 developed
lymphoid hyperplasia and an increase in lymphoma incidence
(54). EBERs form a stem-loop structure by intramolecular base-
pairing, which can give rise to dsRNA-like molecules (55, 56).
EBERSs can bind to dsRNA activated protein kinase PKR, inhibit
its phosphorylation and can confer resistance to IFN-induced
apoptosis in Burkitt’s lymphoma cells (57). EBERs can
contribute to B cell transformation and growth by inducing the
growth factor IL-6 (58). EBERs can regulate target regulation of
several miRNAs. Expression of EBER can enhance the inhibitory
effect of miR143-mediated downregulation of the inflammatory
gene IL1a (59), however, the significance of these effects in the
development or progression of autoimmune diseases is unclear.
Expression of EBER in EBV-negative B lymphoma cell line
resulted in upregulation of kinases involved in B cell pro-
survival signaling, which were previously considered to be
regulated solely by LMP1, suggesting a redundancy in function
between EBERs and LMP1 during latency (60). EBERs are
recognized by retinoic acid-inducible gene I (RIG-I) through
the helicase domain and can activate signaling to induce type I
interferon and interferon-stimulated genes (61).

SLE patients show increased levels of type I interferon in
serum, and SLE disease activity correlates with IFNa. levels and
the strength of the interferon signature (62, 63). EBV increases
IFNa secretion by plasmacytoid dendritic cells (pDCs) through
toll-like receptors (TLR). The recognition of EBV is mediated by
class II MHC molecules (64). The increased LMP1 gene
expression in SLE patients correlated with SLE disease activity
index (SLEDAI) and interferon induced gene expression (65).
The levels of EBERs were not evaluated in this study. The
contribution of EBV or EBER mediated interferon activation

and the significance of this induction in progression of SLE needs
further evaluation.

EBV AND AUTOIMMUNE HUMORAL
RESPONSE IN SLE

In SLE patients, EBV EA IgG positivity correlated with lupus
antibodies (29). EBV IgG also correlated with anti-Ro and anti-
La antibodies in SLE patients (66).

Molecular mimicry between SLE autoantigens and EBV
antigens may lead to autoimmune response. Antibodies towards
different regions of EBNA-1 protein cross-react with SLE
autoantigens SmB, SmD, as well as Ro (67). Monoclonal
antibodies generated from mice immunized with EBNA-1 cross-
react with dsDNA (68, 69). Cross-reactivity between the anti-
EBNA-1 response and anti- complement component Clq
response has also been shown. Anti-Clq antibody towards A08
epitope of C1qisolated from SLE patients can bind a peptide derived
from EBNA-1, EBNA348, and SLE patients that showed reactivity
to EBNA348 peptide had higher levels of anti-Clq. This cross-
reactivity was shown to be dependent on amino acid identity (70).
Peptides derived from EBV EA and LMP1 increased ANA positivity
in mice. Both these peptides increased anti-SmB and anti-SmE.
While EA derived peptide, EP4, additionally increased anti-SmD
and anti-Ro, LMP1 derived peptide increased anti-rRNP. Levels of
EP4 antibodies were higher in SLE patients and correlated with
SLEDAL Interestingly, both these peptides had about ~60% amino-
acid sequence similarities with self-peptides, but the percentage of
similarities with amino-acid characteristics was 75 and 70%
respectively for each peptide (71).

Immunization of experimental animals with peptides from
regions of EBNA-1 lead to lupus-like autoimmune disease (72—
74). In these studies, immunization with a single peptide lead to
the generation of cross-reactive antibodies, but the autoimmune
response also spread to several different epitopes, and was not
restricted to the cross-reactive epitope. Furthermore, injection of
mice with plasmids expressing either full-length EBNA-1 or
EBNA-1 lacking 15 amino acids in in the Gly-Ala repeats,
resulted in anti Sm, and anti-dsDNA antibodies (75). Epitope
spreading has been suggested as a possible mechanism for
accrual of antibody specificities, and has been shown to occur
with immune response towards spliceosomal and other proteins
(72, 74, 76).

Taken together, these reports suggest that molecular mimicry
with EBV epitopes may allow loss of tolerance to self-antigens.
Through the process of epitope spreading, these responses may
target additional self-epitopes, eventually leading to pathogenic
responses and to clinical SLE (Figure 3).

ANIMAL MODELS OF EBV INFECTION

Although a significant effort has been made to understand EBV
biology, understanding how EBV contributes to autoimmune
pathogenesis, and the causal relationship between EBV infection,
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FIGURE 3 | Molecular mimicry and epitope spreading in autoimmunity. Antibodies to viral antigens such as EBNA-1 (red triangle) cross-react with autoantigens
(black triangle) due to structural similarities. Immune complexes consisting of autoantigen/antibody complexes are internalized by antigen presenting cells (APC),
antigen is processed and peptides presented to T cells, which can allow for loss of tolerance. Defective T cell tolerance possibly contributed by genetic susceptibility
may be responsible for this loss of tolerance. These autoreactive T cells in turn provide help to auto-reactive B cells leading to autoreactive antibody response. The
self-protein bound to B cell receptor is internalized, processed, and presented to T cells. The autoimmune response can be further diversified by epitope spreading.
B cells specific for viral antigen (red triangle) can recognize similar structures on self-antigen (black triangle). However, these cells can internalize and present peptides
from whole protein that carries the cross-reactive epitope (black triangle+gray circle) to T cells, which then provide help for antibody response towards additional

reactivation and autoimmunity are limited due to lack of an
appropriate animal model. Peptide immunizations have been
instrumental in establishing molecular mimicry between EBV
antigens and autoantigens. Transgenic mouse model approaches
allowed a better understanding of the ability of EBV latent
proteins to modulate B cell function. However, the expression
of EBV encoded oncogenes in absence of the entire EBV genome
has limitations. These knowledge gaps warrant a suitable animal
model that recapitulates the features of EBV infection.

Non-human primates are infected naturally with EBV-related
herpesviruses, or lymphocryptoviruses (LCV), and are therefore
considered as models for EBV infection [reviewed in (77)]. A
primary EBV infection can be established in healthy New
Zealand white rabbits, and EBV can also infect Owl monkey
and marmosets (78-80). These animal models may prove to be
useful for understanding role of EBV in malignancies. However,
none of these are characterized as animal models for human
autoimmune diseases.

A major advance in establishing a mouse model for EBV
came from utilization of humanized models on an immune-
deficient murine background. The reconstitution of severe
combined immune-deficient (SCID) mice with human
peripheral blood leukocytes results in mice with inducible
human immune function (81) and development of EBV+
lymphomas by transfer of peripheral blood leukocytes from
EBV positive donors (82). However, several limitations such as
transient nature of the graft, low engraftment levels, and frequent
graft-versus-host disease caused by human T cells attacking
mouse tissues, limit the use of this model.

Reconstitution of recombination activating gene 2 (Rag2)
deficient IL2 receptor gamma (IL2Ry) deficient mice also
supported EBV infection (83). The deficiency of IL2Ry allows
for T cell re-constitution, and T cells are selected on murine
tissue. However, as the T cell are selected on murine and not
human tissue, the response in these mice is still suboptimal. This
limitation can be overcome by implanting Non-obese diabetic
(NOD)/SCID mice with human fetal liver and thymic tissue to
provide human T cells appropriate thymic environment, with
subsequent autologous CD34+ cell implantation following sub-
lethal irradiation (BLT mice) (84). BLT mice showed marked
increase in memory T cells, and the T cells could respond to
autologous antigen presenting cells upon EBV infection,
suggesting that human T cells in BLT mice can mount human-
MHC-restricted response and can be used to reproduce human T
and B cell interactions. Although an attractive approach,
humanized models of EBV infection have not been utilized for
SLE research yet. Reconstitution of immunodeficient mice with
hematopoietic stem cells from EBV positive and EBV negative
SLE patients and matched controls may provide useful insights
into pathways regulating increased reactivation in SLE and/or
role of EBV in disease progression.

EBV infection of NOD/SCID IL2Ry-/- (NSG) mice
reconstituted with human cord blood hematopoietic cells
resulted in erosive arthritis in 65% of mice (85). However,
neither anti-citrullinated peptide antibodies nor rheumatoid
factor were detected in the blood of affected mice.
The serological response to EBV infection observed in humans
was also not detected, suggesting that the arthritis observed in
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these mice was by mechanisms different from those in patients.
However, the genetic factors associated with rheumatoid arthritis
were not considered in this study.

The study does point out a possible limitation of using
humanized mouse models to replicate EBV infection. During
both primary infection and subsequent reactivation, lytic
replication of EBV occurs in oropharyngeal epithelial cells,
where infectious virus particles are produced and shed.
Although EBV is hypothesized to infect and to maintain
latency only in B lymphocytes (86), EBV can replicate in
epithelial cells and viral gene expression patterns differ when
the virus emerges from epithelial cells versus B cells, which
suggests passage back and forth (87). Due to differences in routes
of infection and lack of the epithelial infection, humanized mice
do not recapitulate the complete life cycle of EBV infection, and
therefore do not reflect the immune response to EBV infection.
These models also lack final lytic replication in oropharyngeal
epithelial cells, which the virus uses to amplify infectious virus
production during shedding into saliva. This limitation may be
overcome by human epithelial tissue grafts in humanized mice
followed by infection through the natural route. However,
whether the transient infection in epithelial cells that produces
virus with increased tropism to B cells is necessary to establish
latent EBV infection in B cells and whether this transient
infection occurs during EBV reactivation are not known.

A murine virus similar to EBV is an alternate approach. The
most probable is murine gamma herpes virus 68 (MHV68).
Although not identical to EBV, MHV68 shares several features.
MHYV68 is found in class switched B cells that have undergone
GC reaction and reflect memory B cells. MHV68 is a natural
pathogen of free-living murid rodents. Virus neutralizing
antibodies are detectable in the natural hosts (88). The
infection of mice with MHV72, a gamma herpesvirus strain
related to MHV68, leads to detectable anti-viral antibodies, and
these correlate with viral reactivation (89).

MHV68 infection is associated with an expansion of lymphocyte
populations that drives an infectious mononucleosis-like response
marked by enlarged lymph nodes and splenomegaly (90, 91).
Productive infection in the lungs following intranasal infection of
mice with MHV68 lasts for ~10 days. During this time the virus
spreads to spleen through infected B cells and establishes latency in
GC B cells (92). Long term latency is detected in IgD- subset of
splenic B cells (93). MHV68 has been shown to maintain latency in
peritoneal macrophages, which has not been reported for EBV.
However, similar to EBV, the splenic latency is solely dependent on
B cells (94).

MHV68 increased anti-Sm antibodies in wild type and lupus
prone mice during acute phase of infection, however, chronic
infection protected mice from lupus-like disease (95). The
frequency of infected cells and viral load was not determined, and
single high dose of virus was used, which was administered intra-
peritoneally. Lower doses of virus do not impact establishment of
latency but can delay the acute-phase replication peak. Small
numbers of pre-formed virus particles were detected in
splenocytes of mice infected with lower doses of the virus (96).
Although this small increase in the numbers of virus particles did

not constitute significant reactivation in the non-autoimmune wild
type C57/Bl6 strain used in that study, it may contribute to immune
response in a mouse strain genetically prone to immune
dysregulation. Therefore, administration of lower doses of
MHV68 to lupus-prone mice by oral and/or intranasal routes,
may recapitulate EBV infection in SLE patients. MHV68 does not
encode a homologue for human IL-10. However, a recombinant
MHV72 expressing EBV IL-10 showed exacerbated acute-phase
pathogenicity (97). The effect of this recombinant virus on lupuslike
disease in murine models has not been evaluated. Detailed analyses
ofhumoral response to MHV68, frequency of viral reactivation, and
frequency of infected memory B cells in lupus prone mice are
necessary to understand the role of MHV68 in murine lupus-
like disease.

CONCLUDING REMARKS

EBV can modulate immune responses in a myriad of pathways,
including generation of cross-reactive antibodies, IFNo secretion,
antigen independent B cell activation, gene expression
modification, and anti-inflammatory response suppression. SLE
patients show evidence of increased reactivation of EBV, possibly
resulting from dysregulated immune responses together with
genetic risk factors. Furthermore, the viral homologues such as
vIL-10 modulate immune response in a manner that can exacerbate
autoimmune response in genetically susceptible subjects. A
longitudinal study that closely follows levels of viral latent and
lytic gene expression and cellular changes, in the context of genetic
risk alleles will provide an improved understanding of EBV
reactivation in SLE and how this reactivation may contribute to
autoimmune response.

Mouse models, either humanized or MHV infection of lupus
prone mice, may be an alternate approach to decipher the role of
EBV. CD34+ hematopoietic stem cells generated in vitro from
induced pluripotent stem cells (iPSC), which are EBV negative, to
reconstitute BLT mice described by Melkus et al. can overcome the
effects of prior exposure to EBV in patient cells. The use of iPSC also
allows for introducing (or reverting) specific mutations to further
clarify the gene/environment interactions, and determining
immune dysregulation immediately following EBV infection.
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