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Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by B cell
dysregulation and breaks in tolerance that lead to the production of pathogenic
autoantibodies. We performed single-cell RNA sequencing of B cells from healthy
donors and individuals with SLE which revealed upregulated CD52 expression in SLE
patients. We further demonstrate that SLE patients exhibit significantly increased levels of
B cell surface CD52 expression and plasma soluble CD52, and levels of soluble CD52
positively correlate with measures of lupus disease activity. Using CD52-deficient JeKo-1
cells, we show that cells lacking surface CD52 expression are hyperresponsive to B cell
receptor (BCR) signaling, suggesting an inhibitory role for the surface-bound protein. In
healthy donor B cells, antigen-specific BCR-activation initiated CD52 cleavage in a
phospholipase C dependent manner, significantly reducing cell surface levels.
Experiments with recombinant CD52-Fc showed that soluble CD52 inhibits BCR
signaling in a manner partially-dependent on Siglec-10. Moreover, incubation of
unstimulated B cells with CD52-Fc resulted in the reduction of surface immunoglobulin
and CXCR5. Prolonged incubation of B cells with CD52 resulted in the expansion of IgD
+IgMlo anergic B cells. In summary, our findings suggest that CD52 functions as a
homeostatic protein on B cells, by inhibiting responses to BCR signaling. Further, our data
demonstrate that CD52 is cleaved from the B cell surface upon antigen engagement, and
can suppress B cell function in an autocrine and paracrine manner. We propose that
increased expression of CD52 by B cells in SLE represents a homeostatic mechanism to
suppress B cell hyperactivity.
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INTRODUCTION

Systemic lupus erythematosus (SLE) is an autoimmune disease
characterized by loss of B cell tolerance that results in the
production of pathogenic auto-antibodies and immune
complexes, resulting in end organ damage (1, 2). A number of
dysregulated pathways have been identified in B cells derived
from SLE patients, including increased expression of pro-
inflammatory cytokines such as IL-6 and decreased expression
of inhibitory receptors such as FCgRIIb [(3), p. 6; (4), p.; (5, 6)].
Previous studies suggested that B cells from SLE patients were
more responsive to antigen-specific signaling, driving B cell
hyperactivity and autoimmunity (7, 8). However, several recent
studies have established that B cells from SLE patients are in fact
hyporesponsive to B cell receptor (BCR) signaling and TLR9
signaling, which is hypothesized to reflect a form of B cell anergy
acquired due to chronic antigen stimulation in the absence of
secondary signals [(9), p. 9; (10)].

In order to identify additional features that differentiated SLE
patient-derived B cells from those of healthy donors, we
performed single-cell RNA-sequencing on B cells from healthy
control (HC) individuals and SLE patients and compared their
gene expression profiles. Among several genes found to be
differentially expressed across subsets, we identified CD52 as
one of the most upregulated genes.

CD52 is a 12 amino acid GPI-linked protein with a large N-
linked glycan moiety, expressed widely across immune cells
including T and B cells, monocytes, macrophages and
eosinophils (11, 12). It is proposed to act as an adhesion
molecule and as a complement inhibitory protein [(13), p. 52;
(14, 15)]. It is the target of the of the lymphocyte depleting
antibody alemtuzumab [(16), p. 52; (17)]. Recent studies
demonstrated its role in immune homeostasis in T cells and
monocytes [(18), p. 52; (19)]. Upon antigen stimulation, CD52
is cleaved from the T cell surface, which generates a soluble form
of CD52 that suppresses T cell receptor signaling through
ligation of Siglec-10 [(18, 20), p. 1]. In monocytes,
macrophages and dendritic cells, soluble CD52 was found to
inhibit NF-kB mediated signaling, with higher concentrations
inducing apoptosis (19). The development of secondary
autoimmune diseases in a subset of MS patients treated with
B and T cell depleting alemtuzumab suggests an important role
for CD52 in maintaining immune cell homeostasis (21–23).
Nevertheless, to date the role of CD52 in B cell function has not
been defined.

Here, we describe our finding that both B cell surface and
soluble plasma CD52 are elevated in SLE patients, and that
soluble plasma CD52 levels correlate positively with clinical
measures of disease activity. Further, we demonstrate that
CD52 is cleaved from the surface of B cells upon antigen
stimulation and that both the surface and soluble forms inhibit
BCR signaling and function, demonstrating a regulatory role for
the protein. Our finding suggest that upregulation of surface and
soluble CD52 is an autoregulatory mechanism that limits B cell
responsiveness to antigen stimulation in SLE.
Frontiers in Immunology | www.frontiersin.org 2
MATERIALS AND METHODS

Study Subjects
SLE patients (n = 40) were recruited from the Stanford Lupus
Clinic. All patients fulfilled at least 4 of the classification criteria
for SLE set by the American College of Rheumatology; disease
activity was measured using SLE Disease Activity Index
(SLEDAI) 2K (24). Relevant clinical information for the
patients is listed in Supplementary Table 1. Additionally,
healthy control (HC) patients (n = 20) were recruited through
the Stanford Blood Center to match the demographics of SLE
patients. The study was approved by Stanford’s institutional
review board and written informed consent was obtained from
all participants of the study.

Isolation of Peripheral Blood Mononuclear
Cells, B cells, and Plasma
Whole blood from SLE patients and healthy controls was
collected into sodium-heparin tubes (BD Biosciences, San Jose,
CA, USA) and diluted 1:1 with PBS prior to isolation of
peripheral blood mononuclear cells (PBMCs). PBMCs were
purified by density gradient using Ficoll-Paque (GE Healthcare
Life Science, Marlborough, MA, USA) in Leucosep tubes
(Greiner Bio One, Monroe, LA, USA) per protocols provided
by the manufacturer. Blood plasma was collected after
centrifugation of blood. The PBMC layer was extracted and
washed twice with PBS prior to cryopreservation in Recovery
Cell Culture Freezing Medium (Gibco, Grand Island, NY, USA)
at 107 PBMCs per ml. PBMC vials were frozen at -80°C overnight
prior to long-term storage in liquid nitrogen. Plasma was
aliquoted and stored at -80°C until further use. For in vitro
experiments, B cells were isolated from PBMCs derived from
healthy donor whole blood buffy coats available from the
Stanford Blood Center. B cells were subsequently isolated using
the Human B Cell Isolation Kit (Stemcell Technologies,
Vancouver, BC, Canada) according to manufacturer’s protocol.
Purity and viability was >97% as assessed by flow cytometry.

Single Cell RNA-Sequencing
B cells from 2 HC and 3 SLE patients were isolated from PBMCs
by EasySep Human Pan-B Cell Enrichment Kit (Stemcell
Technologies, Vancouver, BC, Canada) according to
manufacturer’s protocols. ~5,000 negatively selected B cells
from each of the samples were separately loaded in to the 10X
chromium controller (10X Genomics, 95 Pleasanton, CA, USA)
for single-cell barcoding. Single cell gene expression libraries
were prepared using the Chromium single cell 5’ Reagent Kit per
the manufacturer’s protocol and subsequently sequenced on
Illumina HiSeq with 100x100 paired end reads (Illumina, San
Diego, CA, USA). Base calls were converted to fastq sequences
and demultiplexed using the cellranger mkfastq function from
10X Genomics 2.2.0 and aligned to the GRCh38 genome
supplied by 10X genomics. Sparse count matrices, barcode
assignments and feature calls were prepared using the
cellranger count function. Seurat v3.2 was used for gene
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expression analysis. Cells with less than 50 genes detected,
mitochondrial content above 20% of all transcripts or
expressing detectable CST3, CD3E, KLRB1, NKG7, and
GATA2 transcripts (to remove non-B cell populations like T
cells and myeloid cells) were excluded. Next, HC and SLE B cells
across patients were merged with other cells from their respective
groups into two separate objects, and then subsequently
integrated with each other using canonical correlation analysis
via the FindIntegrationAnchors function (n = 15,039 cells). The
integrated data was normalized, scaled, clustered, and then
visualized using UMAP. The FindMarkers function was used
to identify differentially expressed genes between HC and SLE B
cells within each cluster or group of clusters. B cell subsets were
annotated using canonical B Cell subset genes such as CD27,
FCER2, IGHD, IGHG1, TBX21 and ITGAX. Data is available at
accession GSE163121. Publicly available log-normalized gene
expression matrices retrieved from Seurat objects were used to
correlate expression of CD52 with other detected genes on a
single-cell level.

Flow Cytometry
SLE and HC PBMC samples were thawed and washed in 10 ml of
pre-warmed RPMI with 10% FBS. Cells were pelleted by
centrifugation at 400 x g for 5 min and then stained with
Fixable Viability Stain 510 (BD Biosciences, San Jose, CA,
USA) in PBS, blocked with 1 µL Trustain FcX (Biolegend, San
Diego, CA, USA) in 50 µL of staining buffer (2% FBS in PBS) and
then subsequently stained with two different panels of antibodies
in 50 µL in 5 ml polystyrene tubes. One panel included
antibodies for CD3, CD14 and CD19 to assess immune cell
type expression of CD52 (clone 4C8) and another included B cell
phenotyping markers IgD, CD27 and Siglec-10 (clone 5G6) for
determination of B cell subset specific expression (25, 26)
(Biolegend, San Diego, CA, USA). Once stained, cells were
washed, resuspended in PBS with 2% FBS and analyzed using
LSR II (BD, San Jose, CA, USA). For in vitro experiments, a
similar protocol was adapted using 96 well round bottom plates
for cell staining. For detection of apoptosis, Pacific Blue™

Annexin V Apoptosis Detection Kit with PI (Biolegend, San
Diego, CA, USA) was used according to manufacturer protocols.
Antibody clones used for staining are listed in Supplementary
Table 2.

Phospholipase C Treatment
Thawed and washed PBMCs (~2.5*106 cells) were resuspended
in 1 ml of PBS and incubated at 37°C for 30 min with 1 unit of
Phosphatidylinositol-Specific Phospholipase C (PLC)(Thermo
Fisher Scientific, Waltham, MA, USA). Cells were subsequently
washed and stained with antibodies against CD3, CD14 and
CD19 and CD52 (Biolegend, San Diego, CA, USA) and analyzed
using a BD LSR II flow cytometer (BD, San Jose, CA, USA).

Plasma CD52, Immunoglobulin and a2,3
sialylation Quantification
Plasma concentrations of IgG, IgM and soluble CD52 were
quantified by enzyme-linked immunosorbent assay (ELISA)
Frontiers in Immunology | www.frontiersin.org 3
according to the manufacturer’s protocols (Human CD52
ELISA kit, Aviva Systems Biology, San Diego, CA, USA;
Human IgG ELISA quantitation set, Bethyl Laboratories,
Montgomery, TX, USA; Human IgM ELISA quantitation set,
Bethyl Laboratories, Montgomery, TX, USA). For quantitation of
soluble CD52, plasma samples were diluted 1:10. Duplicates were
measured for each sample. The optical density values were
obtained on a SpectraMax M3 (Molecular Devices, San Jose,
CA, USA) at wavelength of 450 nm. Quantification of a2,3
sialylation was determined as previously described (20). Briefly,
plates were coated with MAA-II (Vector Labs, Burlingame, CA,
USA) at 20 µg/ml overnight at 4°C, washed twice with PBS,
blocked for 1 h at RT with 1% BSA in PBS and plated with 20 µg/
ml of CD52-Fc or control Fc prior to incubation with anti-IgG Fc
HRP antibody (Bethyl Laboratories, 1:1000 dilution). After two
washes with PBS, TMB was added and color development
stopped by addition of 0.5M H2SO4.

Gene Knockout Pool
CRISPR-Cas9 mediated knockout cell pool of CD52 in JeKo-1
cells were generated by Synthego Corporation (Redwood City,
CA, USA). To generate these cells, Ribonucleoproteins
containing the Cas9 protein and synthetic chemically modified
sgRNA were electroporated into the cells using Synthego’s
optimized protocol. Editing efficiency was assessed upon
recovery, 48 h post-electroporation. Genomic DNA was
extracted from a portion of the cells, PCR amplified and
sequenced using Sanger sequencing. The result ing
chromatograms were processed using Synthego Inference of
CRISPR edits software (ice.synthego.com). Cells were
maintained in B cell Media (RPMI supplemented with 10%
FBS, 100 U/ml Penicillin, 100 µg/ml Streptomycin, 55 uM B-
mercaptoethanol, 2 mM L-glutamine and 5 mM HEPES). Cells
were passaged once prior to downstream in vi tro
experiments (P3).

Cloning, Expression, and Purification of
hCD52-Fc and Control Fc
DNA encoding the signal peptide and extracellular portion of
human CD52 (amino acids 1–36), fused to a mutant human
IgG1 Fc (LALA-PG mutations) through a GGSGG linker and
Factor Xa cleavage sequence, was ordered from Integrated DNA
Technologies (Coralville, IA) and cloned into a PstI/BamHI
digested gWIZ vector (Genlantis, San Diego, CA, USA) using
Gibson Assembly (27, 28). At the c-terminus of the Fc, a
hexahistidine tag was also added for purification with
immobilized metal affinity chromatography. For control Fc,
DNA encoding GGSGG linker with Factor Xa cleavage
sequence fused to mutant human IgG1 Fc and a hexahistidine
tag was cloned into the gWIZ vector with a BM40 signal peptide.

Plasmids were transfected into Expi293F cells (Thermo Fisher
Scientific Scientific, Waltham, MA, USA) using Expifectamine
according to manufacturer’s instructions. At day 5 post-
transfection, supernatant was harvested, adjusted to pH 8.0,
and sterile filtered. CD52-Fc and control Fc were then purified
using high-density cobalt agarose beads (GoldBio, St. Louis, MO,
February 2021 | Volume 11 | Article 626820
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USA) and concentrated to 2mg/ml using Amicon Centrifugal
Filters (Millipore Sigma, Burlington, MA, USA). Commercially
available CD52-Fc was obtained from Arco Biosystems (Newark,
DE, USA).

Calcium Flux Measurement
B cells suspended at 106 cells per ml were labeled with Indo-1
(Thermo Fisher Scientific Scientific, Waltham, MA, USA)
according to the manufacturer’s instructions. After labeling
and quenching, cells were resuspended in 400 µL of B cell
media and incubated at 37°C for 5 min before analysis.
Baseline calcium levels were recorded for 30 seconds prior to
stimulation with 25 µg/ml goat anti-IgM F(ab)2 (Jackson
ImmunoResearch, West Grove, PA, USA). Indo-1 fluorescence
was detected from the UV laser of a Fortessa II (BD, San Jose,
CA, USA) in DAPI and BUV396 channels. The ratiometric mean
of DAPI to BUV396 at various timepoints was determined using
Flowjo (version 10.5, Treestar, Ashland, OR) and was used to
assess calcium flux.

BCR-Associated Protein Kinase
Phosphorylation Kinetics Using
Phospho-Flow
Purified B cells were pre-incubated for 15 min with vehicle
control, control Fc (20 µg/ml), CD52-Fc (20 µg/ml) in 100 µL
per replicate prior to stimulation with 100 µL of anti-IgM (final
concentration 25 µg/ml) for 2, 5 and 10 min with unstimulated
cells serving as a baseline. In some conditions, cells were pre-
treated with anti-Siglec-10 blocking antibodies (Cat. AF2130 50
µg/ml; R&D Biosystems, Minneapolis, MN, USA) (18). Cells
were immediately fixed at indicated timepoints with equal
volume (200 µL) of 4% paraformaldehyde in PBS. After
fixation for 15 min at 37°C, cells were washed and
resuspended in True-phos Perm Buffer (Biolegend, San Diego,
CA, USA) for 1 h at -20°C. Subsequently, cells were washed and
resuspended in antibodies against phospho-ERK, phospho-SYK,
pho spho -PLC g2 , pho spho -BTK o r pho spho -Lyn
(Supplementary Table 2) for 30 min in the dark at RT (BD
Biosciences, San Jose, USA). After washing, cells were
resuspended in PBS supplemented with 2% FBS and analyzed
on an LSR II (BD, San Jose, CA, USA).

Western Blot for Soluble CD52
For each condition, 106 purified B cells were incubated in 200 µL
of B cell media with 0 or 10 µg/ml of goat anti-IgM F(ab)2
(Jackson ImmunoResearch, West Grove, PA, USA) for 5 days.
Cells were spun at 1200 x g for 2 min prior to collection of cell
culture supernatants. The cell pellet was washed and stained with
FVS510, anti-CD19 and anti-CD52 for flow cytometric analysis
of surface CD52 expression at end of treatment. The supernatant
was diluted 3:1 with 4x laemmli sample buffer to which b-
mercaptoethanol was freshly added. Samples were boiled at
100°C for 5 min and then 45 µL from each sample loaded into
wells of a 4–12% Bis Tris pre-cast gel (Bio-rad, Hercules, CA,
USA). After running for 1 h at 150V, the proteins from the gel
were transferred to a methanol-activated PVDF membrane using
Frontiers in Immunology | www.frontiersin.org 4
the Trans-Blot Turbo Transfer System according to
manufacturer’s protocols. The membrane was blocked with 5%
Milk in TBST and incubated with anti-CD52 (Clone: H186;
Santa Cruz Biotechnology, Dallas, TX, USA) at 1:200 dilution
overnight at 4°C. The membrane was washed 3 times for 5 min
with 50 ml of TBST per wash. The membrane was then incubated
with mIgGk-HRP binding protein (Santa Cruz Biotech, Dallas,
Texas, USA) at 1:1000 dilution for 1 h at RT. After washing, the
membrane was developed with Femto Super Signal West
(Thermo Fisher Scientific) and imaged using a c600 imager
(Azure Biosystems, Dublin, CA, USA).

RNA-Seq
Purified B cells at 106 cells in 1 ml B cell media per replicate were
incubated with PBS (vehicle control) or CD52-Fc for 6 h, washed
and pelleted, followed by RNA extraction using the Qiagen
RNEasy Mini Kit (Qiagen, Hilden, Germany) column
centrifugation as per manufacturer’s protocol. Sample
concentration and quality was assessed using Nanodrop.
Samples were stored at -80°C and shipped to BGI genomics
(San Jose, CA, USA) for library preparation and sequencing.
Paired-end 100bp sequencing was performed using BGISEQ-
500. Raw reads were quality checked using FASTQC, aligned
using STAR and counted using featureCounts. Raw counts were
normalized using the DESeq2 package in R which was used to
identify differentially expressed genes between cells treated with
CD52-Fc and vehicle control. An adjusted p value < 0.05 was
used as a cutoff. Data is available at accession GSE163123.

In vitro Stimulations
1–2 × 105 healthy donor B cells isolated from whole blood buffy
coats were resuspended in 100–200 µL B cell media per replicate
in round bottom 96-well TC-treated plates (Greiner Bio-one,
Kremsmünster, Austria) and incubated with vehicle control PBS,
control Fc (20 µg/ml) or CD52-Fc (20 µg/ml) at 37°C for
indicated timepoints. Where indicated, B cells were stimulated
with polyclonal goat anti-IgM F(ab)2 (Jackson ImmunoResearch,
West Grove, PA, USA) or IL-4 (20 ng/ml) (Peprotech, Cranbury,
NJ, USA).

PNGase F Treatment
5 µg of CD52-Fc or control Fc was denatured prior to the
addition of PNGase F (NEB, Ipswich, MA, USA) per
manufacturer’s protocol. 1 µg of protein was mixed with 4x
Laemmli buffer supplemented with b-mercaptoethanol and
loaded into a 4–12% Bis-Tris gel run for 1 h at 150 V. The gel
was subsequently stained with Instant Blue Coomassie stain
(Abcam, Cambridge, UK) and imaged on a c600 imager
(Azure Biosystems, Dublin, CA, USA).

Measuring CD52-B Cell Interaction
10 µg of CD52-Fc was pre-complexed with equimolar (~30 µg)
Alexa fluor 647 anti-IgG (H+L) polyclonal antibody for 1 h at 4°C.
For each condition, 106 freshly isolated B cells were resuspended in
1 ml of B cell media to which either the pre-complexed CD52-Fc
mixture (10 µg/ml) or secondary alone (30 µg/ml) was added and
February 2021 | Volume 11 | Article 626820
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incubated for 1 h at 4°C, then washed. Fluorescence was analyzed
using an LSR II (BD, San Jose, CA, USA).

Immunofluorescence
Approximately 106 isolated human B cells in suspension were
fixed with 4% PFA for 10 min at room temperature then washed
with PBS three times prior to blocking with 1% BSA in PBS for
1 h at RT, then resuspended in antibodies against CD52 (1:50
dilution; Clone: H186, Santa Cruz Biotech, Dallas, TX, USA) and
Siglec-10 (1:40 dilution; Millipore Sigma, Burlington, MA, USA).
The cells were washed three times with PBS and resuspended in
blocking buffer containing Cy5 goat anti-rabbit IgG (4 µg/ml;
Thermo Fisher Scientific, Waltham, MA, USA) and AlexaFluor
488® donkey anti-mouse IgG (1:100 dilution; Jackson
ImmunoResearch, West Grove, PA USA) secondary antibodies.
Finally cells were washed three times in PBS-T, pipetted to a
microscope slide and mounted with ProLong™ Gold Antifade
Mountant with DAPI (Thermo Fisher Scientific, Waltham, MA,
USA). Cells incubated with secondary antibodies alone were used
as controls for specific staining. Slides were imaged using Zeiss
880 LSM confocal microscope.

Data Analysis and Statistics
All flow cytometry data were analyzed with Flowjo (version 10.5,
Treestar, Ashland, OR, USA). All statistical analysis was conducted
using GraphPad Prism (Version 8.4.1, GraphPad Software, La Jolla,
CA, USA). For non-normally distributed measurements, Mann
Whitney U test was used to examine the differences between two
groups. Spearman’s correlation was used to assess correlations
between variables as indicated in the figure legends. For in vitro
data Gaussian distribution was assumed and an unpaired t-test was
applied for the comparison of two groups. For tests comparing
three groups, one-way analysis of variance (ANOVA) test was used
with Dunnett’s test for multiple comparisons.
RESULTS

B Cell CD52 Gene Expression and Surface
Glycoprotein Expression Is Elevated in
SLE Patients
To identify genes that are differentially regulated between HC
and SLE individuals, we performed single cell RNA-sequencing
on B cells from two healthy donors and three SLE patients and
compared their gene expression profiles (Figures 1A–C and
Figure S1A). As previously described, we found a significant
expansion of the ITGAX (CD11c) and TBX21 (T-bet) expressing
double negative switched memory B cell subset (DN2) in SLE
patients that exhibited a strong interferon signature (Figure 1A)
(29). In addition, multiple B cell clusters from SLE patients
exhibited significantly increased expression of interferon-
stimulated genes including IFI44L and ISG15 (Figure 1C),
which was previously demonstrated to be a hallmark of SLE
(30). When comparing gene expression between HC and SLE B
cells across clusters, a variety of genes encoding surface proteins
including CD74, HLA-DR and ADGRE5 exhibited differential
Frontiers in Immunology | www.frontiersin.org 5
expression (Figure 1C). Among those, CD52 was one of the most
significantly upregulated genes (Figure 1C). To extend our
findings, we used flow cytometry to analyze an independent set
of SLE (n = 15) and HC (n = 15) samples for surface expression
of CD52 and the other candidate genes, and to assess whether
protein expression was altered in B cells derived from SLE as
compared to HC patients (Figures 1D, E). CD52 was found to be
among the most consistently upregulated surface proteins on B
cells derived from SLE patients, including in B cells representing
the range of B cell subsets (Figures 1G, H). Notably, CD52
expression was highest in B cells compared to T cells and
monocytes, and was highest in the non-switched memory B
cell population, which was the most depleted population in SLE
patients as has been previously reported (31) (Figures S2A, B,
E). Moreover, expression patterns of Siglec-10 across subsets
corresponded to expression levels of CD52 (Figures S2C, D).

Surface expression of CD52 negatively correlated with
complement 4 (C4) in SLE patients, (r = -0.8061, p = 0.0072),
a laboratory measure of disease activity, suggesting that patients
with more significant complement consumption, and therefore
likely higher disease activity levels, expressed higher levels of
CD52 on the surface of their B cells (Figure 1F).

Soluble CD52 Is Elevated in SLE Plasma
and Correlates With Clinical Parameters
We next quantified levels of soluble CD52 in plasma samples
from a total of 18 HC and 40 SLE patients via ELISA. Like cell-
bound CD52, soluble CD52 was significantly elevated in SLE
plasma compared to HC plasma (median [IQR] of HC vs. SLE:
8.69 [5.27, 13.01] vs. 18.36 [7.98, 21.93] ng/ml; p = 0.0074)
(Figure 2A). We found a significant negative correlation between
soluble CD52 and complement levels in SLE patients (n = 37; C3:
r = -0.23, p = 0.167; C4: r = -0.50, p = 0.0017) (Figure 2B and
Figure S3A). This finding suggests an association between higher
levels of soluble CD52 and complement consumption in SLE
patients. Furthermore, soluble CD52 was significantly elevated in
SLE patients with detectable levels of C-Reactive Protein (≥ 0.2
mg/dl), an inflammatory marker, compared to those with trace
amounts (< 0.2 mg/dl) (median [IQR] of trace vs. detectable:
7.805 [7.165, 9.295] vs. 12.16 [10.13, 16.47] ng/ml; p = <0.0001)
(Figure 2C). In agreement with the correlation of soluble CD52
with measures of disease severity, we also found a weakly positive
correlation of CD52 with erythrocyte sedimentation rate (ESR),
another inflammatory marker (n = 32; r = 0.234, p = 0.198)
(Figure S3B). Additionally, plasma CD52 positively correlated
with IgM titers (n = 40; r = 0.41, p = 0.0086) and weakly
correlated with IgG titers (n = 40; r = 0.30, p = 0.059), which were
found to be significantly elevated in SLE patients (n = 20)
compared to healthy controls (n = 18) (Figures 2D, E and
Figure S3C). This elevation seemed broad and not primarily
driven by antibodies against known lupus antigens; however we
detected non-significant trends of elevated CD52 in patients with
anti-dsDNA antibodies (p = 0.141) and anti-RNP antibodies (p =
0.169) (Figures 2F, G). Lastly, patients presenting with lupus
nephritis, or who had a history of lupus nephritis, had
significantly lower levels of soluble CD52 in their plasma (p =
February 2021 | Volume 11 | Article 626820
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FIGURE 1 | CD52 surface expression is elevated on B cells of SLE patients. (A, B) Single-cell RNA sequencing of HC (n=2) and SLE (n=3), represented as UMAP
plots. (A) UMAP projections distinguishing HC vs. SLE B cells, (B) UMAP displaying annotated B cell subsets. Naïve – Ifn: naïve with interferon signature, Switched
Memory – Ifn: switched memory with interferon signature, DN2: double-negative 2, DN2 – Ifn: double-negative two with interferon signature (C) Gene expression
across all B cells in HC vs. SLE, scatter plot displays averaged normalized and log transformed gene expression values with select genes annotated. (D, E)
Comparison of B cell CD52 expression between HC and SLE. (D) Representative flow histogram displaying surface CD52 expression on total B cells from one HC
(red) and one SLE patient (blue). (E) CD52 expression on B cells of HC (n = 15) and SLE (n = 15) patients. Fold-increase of median fluorescence intensity (MFI) is
shown, data points for each patient with mean and SD of each group. Data was pooled from two experiments. Statistics according to two-tailed Mann-Whitney U
Test. (F) Correlation between C4 levels in SLE patients (n = 10) and corresponding CD52 surface expression (MFI). Correlations performed using Spearman’s non-
parametric two-tailed method. (G, H) Flow cytometry assessment of CD52 expression levels on B cells. (G) Gating strategy for B cell subsets, pre-gated on live
CD19+ cells: Naïve B cells (Naïve, IgD+CD27-), double-negative B Cells (DN, IgD-CD27-), Non-switched Memory B Cells (NSM, IgD+CD27+) and Switched Memory
B cells (SM, IgD-CD27+). (H) Subset specific surface CD52 expression in HC (n = 10) and SLE (n = 10) with differences between groups determined by two-tailed
Mann-Whitney test. *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 2 | Soluble CD52 levels are elevated in SLE plasma and correlate with disease severity. (A) Plasma CD52 concentrations in HC (n = 18) and SLE patients
(n = 22) as determined by ELISA. Differences between groups determined by two-tailed Mann-Whitney test. (B) Correlation between plasma CD52 and C4 levels in
SLE (n = 37). Correlations were performed using Spearman’s two-tailed method. (C) Plasma CD52 levels in SLE patients with trace levels of C-reactive protein (<0.2
mg/dl; n = 15) or detectable levels (≥0.2 mg/dl; n = 16). Differences between groups determined by two-tailed Mann-Whitney test. (D, E) Correlations between
plasma CD52 and (D) plasma IgG and (E) IgM levels among SLE patients (n = 40). Correlations performed using Spearman’s non-parametric two-tailed method.
(F) Comparison of plasma CD52 levels in patients without any history of anti-dsDNA (n = 16) antibodies to those with a history of anti-dsDNA antibodies (n = 20).
(G) Comparison of plasma CD52 levels in patients without a history of anti-RNP antibodies (n = 24) to patients with a history of anti-RNP antibodies (n = 13).
(H) Comparison of plasma CD52 levels in patients with without any history of nephritis (n = 27) to those with active or previous diagnosis of lupus nephritis (n = 11).
Two-tailed Mann-Whitney test used to compare differences between the groups. **p < 0.01, ****p < 0.0001. ns, not significant.
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0.0015) suggesting differences in these patients’ regulation of
CD52 expression (Figure 2H). Correspondingly, we found a
weak negative correlation between urine protein levels and
plasma levels of soluble CD52 suggesting, as was observed with
the nephritis cases, that patients with perturbed kidney function
had deficient CD52 expression (n = 32; r = -0.213, p = 0.2421)
(Figure S3D).

Although soluble CD52 did not correlate with SLEDAI, high
CD52 levels corresponded with laboratory markers of
inflammation and B cell activation with enhanced antibody
production (Figure S3E).

Surface CD52 Inhibits Response to B Cell
Receptor Signaling
To delineate the role of surface bound CD52, we used CRISPR-
Cas9 to generate CD52 knockout JeKo-1 cells, a mantle cell
lymphoma cell line with high and homogenous expression of
CD52 which is in contrast to expression levels in other
commonly used B cell lines [(32), p. 52; (33), p. 52] (Figure
3A). Expression of key B cell proteins including CD19, IgM and
HLA-DR were unaffected by the knockout (Figures S4A–D). To
assess the strength of BCR signaling, we labeled wild-type (WT)
and CD52-KO JeKo-1 cells with Indo-1 and measured
intracellular calcium flux upon stimulation with anti-IgM. A
significantly higher calcium flux response was detected in CD52-
KO compared to WT cells (Figure 3B). To address the effect of
CD52 on BCR-signaling in more depth, we measured
phosphorylation levels of signaling molecules downstream of
the BCR, including phospho-BTK, phospho-AKT, phospho-
SYK, phospho-PLC-g2 and phospho-Lyn following BCR
engagement. We found significantly increased levels of each
phospho-protein in the CD52 KO cells compared to WT cells
(Figures 3C–G). Together, these data suggest an inhibitory role
for the surface form of CD52, directly or indirectly affecting the
BCR signaling pathway.

To assess the possibility of cis-interaction of CD52 with
inhibitory receptor Siglec-10, we immunofluorescently stained
human B cells for CD52 and Siglec-10 to assess the extent of co-
localization and found that both proteins were broadly
distributed across the B cell surface and partially co-localized,
suggesting a baseline level of cis-interaction (Figure S5A).

CD52 Gene Expression Correlates With
MHC Class II Gene Expression in B Cells
and Is Lowest in Affinity Maturing B Cells
In order to gain further insights into the function of surface
CD52 in B cells on a broader scale, we assessed expression of
CD52 in publicly available single-cell RNA-seq datasets from
PBMC samples of healthy individuals (10X Genomics). In
correlating the expression values of CD52 with all detected
genes within each individual B cell, we found MHC Class II
proteins (HLA-DRA, CD74) and associated tetraspanins (CD37,
CD81, CD53) to be among the most consistently positively
correlated genes across multiple independent datasets
(Figure S6A).
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In addition, we analyzed publicly available single-cell RNA-seq
data (accession number: E-MTAB-9005) from human tonsil tissue
to examine subset specific analysis of gene expression along the B
cell differentiation trajectory (Figure S6B). Naïve B cells expressed
relatively high levels of CD52, and expression decreased upon
activation. CD52 expression continued to decrease along the
differentiation trajectory as B cells entering the germinal center
(Pre-GC: pre-germinal center, DZ: dark zone) expressed lower
levels than activated naïve cells. Within the germinal center,
lowest levels were expressed among cycling and light zone (LZ) B
cells which interact with T cells and dendritic cells to undergo
affinity maturation (34). Antibody secreting plasmablasts, arising
post-GC, had the lowest expression of CD52 across all subsets while
memory B cells had the highest. In summary, peripheral B cell
subsets including naïve and memory B cells, which require tight
regulation of BCR signaling for maintenance of tolerance, exhibited
the highest expression of CD52, whereas B cell subsets undergoing
differentiation or having effector functions exhibited the lowest
levels of expression.

CD52 Is Cleaved on Stimulated B Cells
via PLC
To understand the relationship between B cell activation and CD52
surface expression, we analyzed B cells derived from healthy donors
stimulated for 40 h with a combination of the B cell activating
factors anti-IgM and IL-4. We used the marker CD69 to delineate
activated cells and found that CD52 surface expression was
significantly lower in CD69 positive cells (Figure 4A).

Given that BCR stimulation induces activation of PLC,
which cleaves GPI anchors, we assessed the ability of PLC to
cleave CD52 by treating PBMCs from HC (n = 5) and SLE (n =
5) donors with the enzyme, and analyzed CD52 surface
expression on treated and untreated cell populations (35). As
expected, CD52 surface expression was significantly diminished
in PLC treated populations, with no differences in the ability of
PLC to cleave CD52 on HC vs. SLE PBMCs (Figure 4B and
Figure S7A). Notably, the effect of PLC on surface levels of
CD52 was more pronounced in T cells and monocytes than in B
cells, indicating that CD52 on B cells might be protected from
PLC mediated cleavage and that differential mechanisms are
involved in CD52 cleavage from different cell types (36)
(Figures S7A, B).

To characterize the ability of B cells to cleave and generate
soluble CD52, we measured CD52 in supernatants of isolated
healthy donor B cells via western blot 5 days after IgM
stimulation. We used flow cytometry to analyze corresponding
cell surface CD52 expression. Soluble CD52 levels were significantly
elevated in the supernatants of stimulated B cells, while
corresponding cell surface expression decreased upon IgM
stimulation, indicating cleavage of CD52 from the surface of
stimulated cells as a significant mechanism for the lower surface
CD52 expression on activated cells (Figure 4C). Cleavage or
downregulation of CD52 from the cell surface was also time-
dependent; cells continuously stimulated with anti-IgM showed
lower surface expression on days 3 and 7 compared to 24 h post-
stimulation (Figure 4D).
February 2021 | Volume 11 | Article 626820

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Bhamidipati et al. B Cell CD52 in SLE
A B

C D

E F

G

FIGURE 3 | Surface CD52 expression inhibits B cell receptor signaling. (A) Flow cytometry data, showing a representative histogram of CD52 expression on wild-
type process control JeKo-1 cells and CD52 CRISPR knockout cells. (B) Calcium flux measurement in CD52-KO and WT cells before and after stimulation with anti-
IgM (25 µg/ml)(indicated time points). (C–G) Phospho-kinetics of (C) phospho-PLCg2, (D) phospho-BTK, (E) phospho-SYK, (F) phospho-AKT and (G) phospho-Lyn
in WT and KO cells stimulated with anti-IgM (10 µg/ml). Data in (B, C–G) representative of at least n = 2 independent experiments. *p < 0.05, **p < 0.01, according
to unpaired t-test.
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FIGURE 4 | Activation of B cells results in cleavage of CD52 from their cell surface in a phospholipase C dependent manner. (A) Purified B cells were stimulated
with anti-IgM (10 µg/ml) and IL-4 (20 ng/ml) for 40 h prior to staining. Paired CD52 MFI shown between CD69- and CD69+ cells within each replicate, gated on live
CD19+ cells. Paired t-test was used to compare the two groups. (B) HC (n = 5) and SLE (n = 5) PBMCs were treated with PLC and stained for expression of CD52.
Paired surface CD52 expression (MFI) shown for treated and untreated cells gated on live CD19+ cells. Paired t-test was used to compare the two groups.
(C) Western blot of supernatant CD52 shown with corresponding histogram displaying surface CD52 expression of cells in respective conditions. (D) Purified B cells
were left unstimulated or stimulated with anti-IgM (2.5 µg/ml) and stained at indicated time points for surface CD52. CD52 expression among stimulated cells is
shown relative to MFI of unstimulated cells at each time point, gated on live CD19+ cells. Differences between the groups were calculated with unpaired two-tailed t-
test. Data in (A–D) representative of at least n = 2 independent experiments. **p < 0.01, ***p < 0.001, ****p < 0.0001. ns, not significant.
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Soluble CD52 Inhibits B Cell Receptor-
Mediated Signaling
To elucidate the role of soluble CD52 in B cell function, we
recombinantly expressed CD52 protein as a dimeric Fc fusion
protein, along with the corresponding Fc control (Figure S8A).
The proteins were engineered with the LALA-PG mutations in the
Fc region to minimize binding to Fc receptors on B cells (27, 28).
We confirmed the presence of a large (~8 kDa) glycan by
comparing the molecular weight of PNGase F treated and
untreated protein (Figure S8B). Additionally, we used a MAL-II
coated ELISA to confirm the presence of a-2,3 sialylation which has
been reported as the glycan moiety that confers the most bioactivity
(37) (Figure S8C). Using flow cytometry, we confirmed binding of
CD52-Fc to B cells by comparing fluorescent intensities of CD52-Fc
pre-complexed with AlexaFluor 647 anti-IgG antibody to secondary
antibody alone (Figure S8D).

Given the observed effect of cell-bound CD52 on BCR signaling
(Figures 3C–F), as well as the reported role of soluble CD52 in
inhibiting T cell receptor signaling (18), we evaluated whether
soluble CD52 inhibited BCR mediated signaling. B cells were
incubated for 15 min with control Fc, or CD52-Fc prior to
stimulation with anti-IgM (25 µg/ml). We measured the impact
of control Fc or CD52-Fc pre-incubation on calcium flux responses
using Indo-1 labeled B cells and found that CD52-Fc significantly
diminished calcium flux responses over the Fc control (Figure 5A).
To further investigate the impact of CD52-Fc on BCR signaling we
assessed phosphorylation of signaling molecules downstream of the
BCR at serial timepoints by flow cytometry. In accordance with the
calcium flux data and similar to the effect of cell-bound CD52,
soluble CD52 significantly diminished BCR responses, with lower
levels of phospho-BTK, phospho-SYK, and phospho-PLC-g2 at
various timepoints (Figures 5B–D). To test if the observed effect
was mediated by Siglec-10, we blocked extracellular Siglec-10 prior
to incubation of B cells with CD52-Fc and observed partially
reversed inhibitory effects of CD52-Fc (Figures 5E–G).
Soluble CD52 Reduces Expression of
Surface Immunoglobulin
To identify changes in gene expression impacted by soluble CD52,
we incubated cells with CD52-Fc or vehicle control for 6 h prior to
lysing cells and extracting RNA for RNA-seq. Among the most
differentially expressed genes were immunoglobulin genes as well as
genes related to the B cell receptor complex including IgM, IgD and
CD19 (Figure 6A). In agreement with this we observed a significant
expansion of the previously reported IgD+IgMlo anergic B cells after
7 days of incubation with CD52-Fc (38) (Figure 6B). To confirm
whether the changes in gene expression translated to protein
expression changes for immunoglobulin, we incubated B cells
with PBS, control Fc, or CD52-Fc for 72 h or 7 days, after which
we assessed changes in expression of surface immunoglobulin and
CD19 by flow cytometry. CD52-Fc treatment significantly reduced
IgM, IgD, and CD19 expression, with greater reduction in surface
expression detected on day 7 (Figure 6C). Unlike in monocytes,
incubation of high dose CD52-Fc (100 µg/ml) with B cells did not
induce apoptosis (19) (Figure S9A).
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Soluble CD52 Reduces Surface
Expression of CXCR5 on B Cells
and Responses to CXCL13
In addition to changes in the expression of B cell receptor related
proteins, we observed that incubation of healthy donor B cells
with CD52-Fc significantly reduced surface expression of
CXCR5, a chemokine receptor important for B cell homing to
lymph nodes (39) (Figures S10A, B). Moreover, calcium flux in
response to CXCL13, the ligand for CXCR5, was significantly
diminished in cells pre-incubated with CD52-Fc compared to
control Fc for 24 h (Figure S10C).
DISCUSSION

Alterations in B cell phenotype and activation states in SLE have
been extensively described (1, 40–42). B cells from SLE patients
have lower surface expression of the CD19/CD21 receptor
complex but increased expression of other receptors including
CXCR4 and IL-21R (9, 43, 44); a number of these differentially
expressed proteins are thought to drive disease pathogenesis (45–
47), while others are considered to be biomarkers that reflect
immune dysregulation in these patients (48, 49). B cells in SLE are
considered hyperactivated and drivers of disease pathogenesis
(50). However, more recent studies have highlighted significant
hyporesponsiveness among B cells derived from SLE patients [(9),
p. 9; (10)]. In particular, signaling abnormalities are restricted to
the B cell compartment and encompass responses to TLR9
signaling and BCR signaling, but not TLR7 signaling (9). The
hyporesponsiveness is hypothesized to be a byproduct of an
anergic cell state acquired by chronic antigen stimulation of B
cells in the absence of secondary signals, such as those provided by
cognate T cells (10). Homeostatic features, such as the
hyporesponsiveness of SLE B cells and receptor editing, play a
prominent role in defining the course of disease pathogenesis (10,
51, 52). Here, we used an unbiased single cell RNA sequencing
approach to identify CD52, a small glycoprotein, as differentially
expressed on the B cells of SLE patients, and we establish its role as
an inhibitory autoregulatory protein.

We observed significantly increased CD52 gene expression and
surface expression on B cells, as well as increased soluble CD52 in
plasma, derived from SLE patients compared to healthy controls.
Increases in B cell surface CD52 expression and plasma soluble
CD52 levels correlated positively with some measures of disease
activity, including reduced complement levels and increased C-
reactive protein levels suggesting its potential utility as a disease
biomarker. Based on our finding that CD52 is cleaved from the B
cell surface upon BCR engagement, we hypothesize that the negative
correlation we observed between plasma soluble CD52 levels in
plasma and complement levels might reflect increases in chronic
antigen stimulation in patients with more severe disease. In support
of that view, plasma CD52 levels correlated positively with
immunoglobulin titers, a reflection of increased antigenic
engagement and plasma cell differentiation. As we show that
elevated levels of cell-bound and soluble CD52 have
predominantly inhibitory effects on B cell activation, we
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FIGURE 5 | Soluble CD52 inhibits B cell receptor signaling. (A) Calcium flux measurement in human B cells pre-incubated with either Fc (20 µg/ml) or CD52-Fc
(20 µg/ml) prior stimulation with anti-IgM (25 µg/ml) (indicated timepoints). (B–D) Phospho-kinetics of (B) phospho-BTK, (C) phospho-SYK, and (D) phospho-PLCg2
stimulated with anti-IgM (25 µg/ml) for B cells pre-incubated either Fc (20 µg/ml) or CD52-Fc (20 µg/ml). (E–G) Phospho-protein comparison of BTK, PLCg2 and
Syk, 5 min post-stimulation of cells pre-treated with anti-Siglec10 blocking antibody (50 µg/ml) and CD52-Fc (20 µg/ml) or CD52-Fc alone. Unpaired two-tailed t-test
used to compare groups. Data in (A–G) representative of at least n = 3 independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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FIGURE 6 | Soluble CD52 reduces expression of surface immunoglobulin. (A) Bar plot of gene expression levels for the indicate gene. Data represent mean ± SD, *
indicates DEG between CD52-Fc treated and vehicle control (Padj < 0.05) as determined by deseq2. (B) Healthy donor B cells were cultured for 7 days with vehicle
control, Fc (20 µg/ml), or CD52-Fc (20 µg/ml) and the proportion of IgD+IgMlo anergic B cells among live naïve CD19+IgD+ B cells was quantified. (C) B cells were
cultured with vehicle control, Fc (20 µg/ml), or CD52-Fc (20 µg/ml) and assessed for expression levels of surface IgM, IgD, and CD19 at indicated timepoints. Data
expressed as MFI ratio relative to average vehicle control MFI. One-way analysis of variance was used in conjunction with Dunnett’s test for multiple comparisons to
compare groups. Data in (B, C) representative of at least n = 3 independent experiments. *p < 0.05, **p < 0.01, ***p <0.001, ****p < 0.0001.
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hypothesize that up-regulation of CD52 and CD52-cleavage is a
negative feedback mechanism, intended to limit hyperactive B
cell responses.

Our data provides evidence for an inhibitory effect of cell-
bound and soluble CD52 on B cells. Using a knockout cell line
generated with CRISPR, we found that B cells lacking CD52
surface expression were hyper-responsive to B cell receptor
stimulation compared to wild type cells. Notably, treatment of
PBMCs with phospholipase C led to complete cleavage of CD52
from T cells and monocytes, while a significant fraction of CD52
remained membrane-bound on B cells, suggesting the presence
of a non-cleavable form of CD52 restricted to the B cell
compartment. This is consistent with our observation that
CD52 in its membrane-bound and its soluble states is elevated
in SLE patients. Given our finding that both forms regulate
responses to BCR signaling, CD52 may be an important
inhibitory regulatory molecule in SLE. Increases in surface
CD52 expression on B cells of SLE patients may in part
explain the hyporesponsiveness of SLE patient-derived B cells.

Through interrogation of a wide range of publicly available
single-cell RNA-seq PBMC datasets, we found that CD52
expression strongly correlates with expression of MHC class II
and surface tetraspanins including CD37 and CD53, which are
known to associate with MHC Class II. Though not in the scope
of this study, the co-expression of CD52 with MHC class II
proteins might imply cell surface associations of these proteins or
involvement of CD52 in MHC class II signaling. Moreover, when
looking at B cell subset-specific gene expression of CD52, we
found that CD52 was most highly expressed on mature
circulating cells such as memory and naïve B cells compared to
germinal center (GC) B cells and plasmablasts (34). The
significantly higher expression on circulating B cells, which
require precise regulation of BCR signaling responses, supports
a role for CD52 in peripheral tolerance.

Based on previous findings in T cells and monocytes, soluble
CD52 has been established as an inhibitory molecule that exerts
its effects via Siglec-10 and other as yet undefined receptors (18,
19). As with T cells, antigen stimulation of B cells leads to
phospholipase C activation, which then cleaves CD52 from the B
cell surface. Activated B cells exhibited significantly lower levels
of CD52 surface expression. We hypothesize that this could be a
homeostatic mechanism whereby cleavage of surface CD52
enables more complete cellular responses, while the soluble
form of CD52 can act in an autocrine or paracrine manner to
regulate local B cell responses to antigen receptor signaling.
Given the detectable levels of CD52 observed in the
supernatant of stimulated cells, we generated recombinant
CD52-Fc to elucidate the role of soluble CD52. We found that
CD52-Fc significantly diminished responses to BCR signaling,
and blockade of Siglec-10 partially reversed the inhibition,
suggesting Siglec-10 as a potential receptor for soluble CD52
on B cells. However, as our observed effect of blockade of Siglec-
10, which is known to be widely expressed on B cells, is
incomplete, it suggests that other as yet undefined receptors
for CD52 may contribute to its effects on B cells. As has been
reported, a2,3 sialylation of the glycan accounts for most of the
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inhibitory effects, and a wide range of receptors such as CD22
bind sialic acids (53). CD24 is another highly sialylated GPI-
linked protein expressed on transitional B cells and, as has been
reported for CD52, can both sequester HMGB1 and bind Siglec-
10 [(54), p. 24; (55, 56), p. 24]. Therefore, it is possible that CD52
and CD24 have redundant inhibitory functions, with CD52
playing a more prominent role in mature B cell subsets which
highly express CD52 but not CD24. HMGB1 is significantly
elevated in SLE patients with purported pro-inflammatory roles;
therefore, the ability of soluble CD52 to sequester HMGB1 is
potentially another autoregulatory function in SLE patients (57).
It is important to note that there was batch to batch variation in
the bioactivity of CD52-Fc produced from the same host
Expi293F cells, likely due to variations in glycosylation, which
has been well-described (18, 19, 37).

Lastly, in order to understand stimulation-independent
effects of soluble CD52 on B cell function we incubated B cells
with CD52-Fc without any stimulation to understand the
influence of CD52 on B cell behavior. Notably, we found
significant downregulation of surface immunoglobulin. Lower
surface expression of immunoglobulin has been found to
correspond with lower responsiveness to antigen stimulation
(38). In particular, we found a significant expansion of IgD+IgMlo

anergic B cells in groups incubated with CD52-Fc, indicating the
ability of CD52-Fc to partially induce anergy in B cells (38). In
addition to its impact on surface immunoglobulin, we also found
that CD52 decreases the surface expression of the chemokine
receptor CXCR5, which recognizes the ligand CXCL13 to promote
homing to secondary lymphoid organs (39). Mouse models of SLE
in which CXCR5 is knocked out have shown significantly
diminished disease onset, implying an important role for the
receptor in disease pathogenesis [(58), p. 5]. Our findings with
immunoglobulin and CXCR5 expression suggest a multi-faceted
role for soluble CD52 in regulating B cells in SLE.

Another potential inhibitory role for CD52 in SLE is in
reducing excessive complement activation. Previous work has
shown that C1q, which recognizes immune complexes as part of
the classical pathway, co-immunoprecipitates with CD52 [(15),
p. 52]. Moreover, rituximab-resistant cell lines over-expressing
CD52 are particularly resistant to complement-mediated
cytotoxicity which is partially reversed by CD52 blockade and
supports its role as a complement inhibitory protein (14).
Therefore, higher plasma and B cell surface levels of CD52 in
SLE patients may serve to sequester C1q, thereby limiting end
organ damage that results from excessive complement activation.
In support of this hypothesis, we observed significantly higher
levels of soluble CD52 in patients without lupus nephritis
compared to those with a history of lupus nephritis.

Also supporting an inhibitory role for CD52 is the
observation that 20% and 3% of MS patients treated with
lymphocyte-depleting alemtuzumab develop thyroid
autoimmunity and autoimmune thrombocytopenia respectively
within months or years after start of treatment. Moreover, 5.5%
of alemtuzumab-treated patients develop sustained non-thyroid
autoantibodies. Although the mechanism of secondary
autoimmunity is not yet established, increased expression of B-
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cell activating factor (BAFF) in patients post-treatment, and the
elevation of serum IL-21 in patients who develop autoimmunity,
both of which are important factors for B cell differentiation and
antibody production, support a B cell driven mechanism (59, 60).
Based on these observations, we propose that both the
predominance of immature B cells expressing low levels of
CD52 during the rapid reconstitution of the B cell
compartment following treatment, as well as the sequestration
of soluble CD52 by therapeutic antibody induce a homeostatic
imbalance that promotes breaks in B cell tolerance that in turn
drive secondary autoimmunity (59).

This study has several limitations. For one, this study does not
address how higher expression of CD52 is induced in SLE
patients or the milieu of soluble factors in patient serum as
well as the potential effects of immunosuppressive therapies,
both of which might influence CD52 expression. Previous studies
assessing CD52 expression in a cohort with relatively active
disease noted the expansion of CD4+CD52lo T cells and decrease
in soluble CD52, particularly in untreated patients, highlighting
the role that disease status and use of immunomodulatory
therapies has on CD52 expression (61). The majority of SLE
patients recruited as part of this study had well controlled
disease, which would support the notion that increased
expression of soluble CD52 in these patients might reflect a
homeostatic mechanism involved in improving or limiting their
disease severity. Lastly, despite extending and validating our
findings in larger sets of patients, our single cell RNA-Seq
findings are based on analysis of a small number of patients.

In summary, we demonstrated increased surface and plasma
levels of CD52 in patients with SLE compared to HCs. Our
findings suggest that CD52 serves as a homeostatic protein that
exerts inhibitory effects on B cell BCR signaling, immunoglobulin
expression, and chemokine receptor expression. Further studies
will be needed to establish which factors induce the upregulation
of surface CD52 expression, particularly in SLE patients, and to
investigate the possibility of additional receptors for CD52 on B
cells. The differential regulation of surface-bound and cleavable
CD52 is still unknown and will be critical for advancing our
understanding of the role CD52 plays in B cell homeostasis. The
inhibitory effects of CD52 on B cells suggests the potential to
therapeutically enhance its activity for the treatment of SLE.
Future studies are needed to evaluate the potential to leverage
the inhibitory activity of CD52 on B cells as a novel therapeutic
strategy for SLE and other autoimmune diseases.
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